JPS58215622A - Optical bus branching and inserting circuit - Google Patents

Optical bus branching and inserting circuit

Info

Publication number
JPS58215622A
JPS58215622A JP57098801A JP9880182A JPS58215622A JP S58215622 A JPS58215622 A JP S58215622A JP 57098801 A JP57098801 A JP 57098801A JP 9880182 A JP9880182 A JP 9880182A JP S58215622 A JPS58215622 A JP S58215622A
Authority
JP
Japan
Prior art keywords
optical
branching
directional coupler
time
inserting circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57098801A
Other languages
Japanese (ja)
Other versions
JPS623930B2 (en
Inventor
Takehiko Yamaguchi
武彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57098801A priority Critical patent/JPS58215622A/en
Publication of JPS58215622A publication Critical patent/JPS58215622A/en
Publication of JPS623930B2 publication Critical patent/JPS623930B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure

Abstract

PURPOSE:To obtain an optical bus branching and inserting circuit for plural parallel optical loops by coupling other-side input/output terminals of N units of optical directional couplers with N units of input/output optical waveguides, and performing timedivision control over the optical directional couplers. CONSTITUTION:Four optical directional couplers are formed on an optical IC substrate and one-side input/output optical paths of the couplers are coupled. One optical coupler, e.g. the 2nd coupler is applied with voltages between electrodes A2 and B3, and A'2 and B'2, and then the branching and insertion of a optical signal with and from the 2nd optical path I2-O2 are carried out. Then, when the voltages V applied to the optical coupling part electrodes are varied on time-division basis to obtain the functions of a time-divided multiplex optical switch element, permitting the optical branching and inserting circuit to perform time-division multiplex operation. Thus, the optical bus branching and inserting circuit for plural parallel optical loop systems is obtained.

Description

【発明の詳細な説明】 (1)発明の分野 本発明は光バス通信方式に関し、特に光バスにアクセス
するための光バス分岐挿入回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to an optical bus communication system, and more particularly to an optical bus add/drop circuit for accessing an optical bus.

(2)従来技術と問題点 光通信方式は光源、光検出素子、光ファイバーその他関
連技術の著るしい進歩を背景に今や完全に商用化フェー
ズに入ったといえよう。又、同技術は長距離局間伝送方
式のみならず構内光ループ網などにもその適用を拡げつ
つある。ここに現状における構内光ループ網はどちらか
というと、データ端末、計算機端末等々を主体に収容す
るもので、光ループを一本敷設すれば(障害に対する予
備は別として)十分な伝送容量を有する。しかしながら
、今後の方向として上述のようなデータを主体とする光
ループ網に音声通信、超高速データ通信、画像通信など
も多重化する要求が強まるものと考えられ、その結果、
所要伝送容量も急激に増加し、複数体の光ループ伝送路
を併設する要求も高まるものと考えられる。
(2) Prior Art and Problems It can be said that optical communication systems have now fully entered the commercialization phase against the backdrop of significant advances in light sources, photodetectors, optical fibers, and other related technologies. Furthermore, the application of this technology is being expanded not only to long-distance interoffice transmission systems but also to in-plant optical loop networks. The current in-house optical loop network mainly accommodates data terminals, computer terminals, etc., and if one optical loop is installed, it has sufficient transmission capacity (aside from backup for failures). . However, in the future, it is thought that there will be a growing demand for multiplexing voice communications, ultra-high-speed data communications, image communications, etc. onto the optical loop networks that mainly handle data, as described above.
The required transmission capacity is expected to increase rapidly, and the demand for installing multiple optical loop transmission lines will also increase.

一方従来、光ループ伝送路上の複数ノードでは隣接ノー
ドかもの光ループを自ノードに引込んだ後肢ノード内で
0/E(光/電気)変換をし、一旦電気信号に戻した後
、該ノードで所要の信号を分岐あるいは挿入を行った後
、再びElo(電気/光)変換をし次ノードへの光ルー
プに光信号を送出する方式が採られている。即ち、各ノ
ードでの信号の分岐挿入を電気信号の形で行い、又その
ための0/E、E10変換を行うための能動素子が必要
で該ノードの障害率も高く、かつその障害がループ全体
の通信の途絶を招くという欠点があった。
On the other hand, conventionally, in multiple nodes on an optical loop transmission path, 0/E (optical/electrical) conversion is performed within the hind node that brings the optical loop of the adjacent node into its own node, and once it is converted back to an electrical signal, the After branching or adding the necessary signals at the node, a method is adopted in which the Elo (electrical/optical) conversion is performed again and the optical signal is sent to the optical loop to the next node. That is, active elements are required to add and drop signals in the form of electrical signals at each node, and to perform 0/E and E10 conversion, and the failure rate of the node is high, and the failure can affect the entire loop. This had the disadvantage of causing a communication breakdown.

(3)発明の目的 本発明の目的は複数本の並列・光ループシステムにおけ
る分岐挿入方式を実現すること、ならびに特定ノードの
障害が全体の光ループ伝送シスーテムに影響を与えない
光バス介挿挿入回路を提供することにある。
(3) Purpose of the Invention The purpose of the present invention is to realize a drop-and-drop method in a multiple parallel optical loop system, and to provide an optical bus insertion and drop-in system in which a failure of a specific node does not affect the entire optical loop transmission system. The purpose is to provide circuits.

゛(4)発明の概要 本発明によれば光年積回路基板上KN個の光方向性結合
器を形成し、1番目(I=1〜N−1)の光方向性結合
器の出力の一方を(i+1)番目の光方向性結合器の入
力の一方に、1番目の光方向性結合器の入力の一方を光
挿入導波路に、N番目の光方向性結合器の出力の一方を
光分岐導波路に結合し、かつN個の光方向性結合器の他
の入力ならびに出力をそれぞれN本の入力光導波路、N
本の出力光導波路に結合した光回路構成を有し、上記光
方向性結合器を時分割周期制御することによυ前述の目
的を実現する時分割光バス分岐・挿入回路が得られる。
(4) Summary of the invention According to the present invention, KN optical directional couplers are formed on a light-year integrated circuit board, and the output of the first (I=1 to N-1) optical directional coupler is One of the inputs of the (i+1)th optical directional coupler, one of the inputs of the first optical directional coupler is connected to the optical insertion waveguide, and one of the outputs of the Nth optical directional coupler is connected to one of the inputs of the (i+1)th optical directional coupler. The other inputs and outputs of the N optical directional couplers are coupled to the optical branching waveguides, and the other inputs and outputs of the N optical directional couplers are connected to the N input optical waveguides, N
By having an optical circuit configuration coupled to a main output optical waveguide and controlling the time-division period of the optical directional coupler, a time-division optical bus drop/add circuit that achieves the above-mentioned object can be obtained.

(5)発明の実施例 次に図面を参照して本発明について説明する。(5) Examples of the invention Next, the present invention will be explained with reference to the drawings.

第1図は本発明の詳細な説明上必要な光方向性結合器の
原理を示す図である。従来、光IC基盤上に形成された
2本の3次元光導波路PR,Q8を図のように数μmi
で近接させると一方の光導波路中を伝播する光が進行と
ともに他方の光導波路中に移行していく光分布結合現象
のあることが知られている。さらにこのよう々近接光導
波路をLiNbO3のような材料基盤の上に形成し、第
1図に示すように光導波路の光分布結合部上に電極A、
BならびにA’、B’ を形成し、これに印加する電圧
の有無によって2本の導波路相互の結合を制御できるこ
とが知られている。即ち、図でP。
FIG. 1 is a diagram showing the principle of an optical directional coupler necessary for detailed explanation of the present invention. Conventionally, two three-dimensional optical waveguides PR and Q8 formed on an optical IC board have a thickness of several μm as shown in the figure.
It is known that when two optical waveguides are brought close to each other, a light distribution coupling phenomenon occurs in which light propagating in one optical waveguide migrates into the other optical waveguide as it progresses. Furthermore, such a close optical waveguide is formed on a material substrate such as LiNbO3, and as shown in FIG.
It is known that the mutual coupling between two waveguides can be controlled by forming waveguides B, A', and B' and applying or not applying a voltage thereto. That is, P in the figure.

Qから入射した光を例えば電圧を印加しないとき各々S
、Rから出射し、電圧を印加したとき各々JSから出射
させることができる(注、作υ方次第で逆の動作をさせ
ることも出来る)第2図は本現象を利用して実現された
本発明の一実施例である。第2図の例は第1図で説明し
たような光方向性結合器を光IC基盤上に4つ形成し、
かつ各々の光方向性結合器の入・出力光路のそれぞれ一
方を図で示すように互いに結合する。
For example, when no voltage is applied to the light incident from Q, each S
, R, and when a voltage is applied, they can be emitted from JS. This is an embodiment of the invention. In the example shown in FIG. 2, four optical directional couplers as explained in FIG. 1 are formed on an optical IC board,
In addition, one of the input and output optical paths of each optical directional coupler is coupled to each other as shown in the figure.

その結果、4つの光方向性結合器のいずれにも電圧を印
加しない場合には図で示す4つの入力光導波路II、1
2.IS、14がら入射した光はそれぞれ4つの出力光
導波路01,02.Og、04がら出射するととKなる
As a result, when no voltage is applied to any of the four optical directional couplers, the four input optical waveguides II, 1 shown in the figure
2. The light incident from IS, 14 is transmitted to four output optical waveguides 01, 02 . When it is emitted from Og and 04, it becomes K.

次に4つの光方向性結合器の中の任意の1つ、例えば第
2の光方向性結合器の電極A2 、 B 2ならびにA
’2.B’2に第1図で示した如く電圧を印加したとす
る。この場合、入力光導波路11.1B、I4がら入射
した光はそれぞれ出力導波路01,03,04から出射
するが、■2 から入射した光は02には出射せず導波
路の結合部をそのまま直進し、図で示す光分岐導波路D
B、Pから出射する。一方、この時同じく図で示す光挿
入導波路INSから光信号を入射すると、この光信号ば
第2の光方向性結合部に達した後、該結合部を直進し、
その結果出力光導波路02から出射する。即ち、第2の
光路I2−02に対し光信号の分岐・挿入が行われたこ
とと々る。
Then any one of the four optical directional couplers, for example the electrodes A2, B2 and A of the second optical directional coupler.
'2. Assume that a voltage is applied to B'2 as shown in FIG. In this case, the light that entered through the input optical waveguides 11.1B and 14 exits from the output waveguides 01, 03, and 04, respectively, but the light that entered from ■2 does not exit to 02 and leaves the coupling part of the waveguide as it is. Go straight to the optical branching waveguide D shown in the figure.
Emit from B and P. On the other hand, at this time, when an optical signal is input from the optical insertion waveguide INS shown in the figure, this optical signal reaches the second optical directional coupling part and then goes straight through the coupling part,
As a result, the light is emitted from the output optical waveguide 02. In other words, the optical signal has been branched and added to the second optical path I2-02.

第3図はこれを利用した光ループ伝送システムの例であ
る。図に示すようにN本の光パスをループ状に接続し、
これにmヶの通信ノードを収容した例である。各通信ノ
ードは眩光ループを介して他通信ノードと通信するため
、N本の光パスの中の任意の1本にアクセスし、相手ノ
ードからの光信号を分岐して取出すと同時に、相手ノー
ドへの光信号を挿入する。図中、INSは各ノードにお
ける光バスへの光信号挿入導波路、DRPは光バスから
の光信号分岐導波路を示し、各通信ノードは第2図の実
施例で示1−だ構成の通りである(バスの本数4本が一
般化されN本となっている点を除いて)。
FIG. 3 is an example of an optical loop transmission system using this. As shown in the figure, N optical paths are connected in a loop,
This is an example in which m communication nodes are accommodated. Since each communication node communicates with other communication nodes via a dazzling loop, it accesses any one of the N optical paths, branches and takes out the optical signal from the other node, and at the same time sends it to the other node. Insert the optical signal. In the figure, INS indicates an optical signal insertion waveguide to the optical bus at each node, DRP indicates an optical signal branching waveguide from the optical bus, and each communication node has the same configuration as shown in the embodiment of FIG. 2. (except that the number of buses has been generalized from 4 to N).

力お、以上の49明からも分かるように本発明によれば
、各通信ノードは第2図で示したような光方向性結合器
、即ち受動素子で構成されているため信頼性75:非常
に高く、かつ各ノードの図には示されていないが、光分
岐・挿入導波路DRP、INSとインタフェースする他
の回路(大部分が電子回路と力ろう)に供給する電源部
の障害があっても光バスシステムが途絶することもない
ことが判る。
As can be seen from the above 49, according to the present invention, each communication node is composed of an optical directional coupler, that is, a passive element as shown in FIG. Although it is not shown in the diagram of each node, there is a failure in the power supply section that supplies the optical drop/add waveguide DRP and other circuits (mostly electronic circuits and power lines) that interface with the INS. It can be seen that the optical bus system will not be disrupted even if

なお、第1図の構成において光結合部電極に印加する電
圧Vを時分割周期的に変化させるならは該光方向性結合
器は時分割多重光スイッチ・エレメントとなる。したが
って、第2図で示した光分岐、挿入回路に時分割多重動
作を行わせしめることも可能となる。その結果、第3図
の各々N本の光バスがタイムスロットTl、T2.・・
・・・・11k  なる多重INKの時分割多重光信号
を運んでいる場合、上述の光方向性結合器群に印加する
電圧をタイムスロットT1.T2.・・・・・・Tk 
 ごとに変化させてやる力らば、各通信ノードでは任意
のバスの任意のタイムスロットに関する光信号を分岐し
、逆にこれに挿入することができることとなる。
In the configuration shown in FIG. 1, if the voltage V applied to the optical coupler electrode is changed periodically in a time-division manner, the optical directional coupler becomes a time-division multiplex optical switch element. Therefore, it is also possible to cause the optical branching and adding circuit shown in FIG. 2 to perform time division multiplexing operations. As a result, each of the N optical buses in FIG.・・・
...11k, the voltage applied to the optical directional coupler group is applied to the time slot T1...11k. T2.・・・・・・Tk
If it were possible to change the optical signal for each time slot, each communication node could drop an optical signal related to an arbitrary time slot of an arbitrary bus, and conversely insert it into the optical signal.

(6)発明の効果 本発明は以上説明したように複数の並列光バスに対する
信頼性の高い光信号の分岐・挿入回路を単一光IC基盤
上に効果的に形成できる効果がある。
(6) Effects of the Invention As described above, the present invention has the advantage that a highly reliable optical signal drop/add circuit for a plurality of parallel optical buses can be effectively formed on a single optical IC board.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光方向性結合器の原理を説明する図、第2図は
本発明の一実施例による光バス分岐・挿入回路を示す図
、第3図は、本発明を応用した光ループ伝送システムの
一例を示す図である。 第3閃
Fig. 1 is a diagram explaining the principle of an optical directional coupler, Fig. 2 is a diagram showing an optical bus drop/add circuit according to an embodiment of the present invention, and Fig. 3 is an optical loop transmission applying the present invention. FIG. 1 is a diagram showing an example of a system. Third flash

Claims (1)

【特許請求の範囲】[Claims] 光集積回路基盤上にN個の光方向性結合器を形成し、i
番目(i=1〜N−1)の光方向性結合器の出力の一方
をCi+1 )  番目の光方向性紅4合器の入力の一
方に、1番目の光方向性結合器の入力の一方を光分岐導
波路に、N番目の光方向性結合器の出力の一方を光分岐
導波路に結合し2、かつN個の光方向性結合器の他の入
力ならびに出力をそれぞれN本の入力光導波路、N本の
出力光導波路に結合した光回路構成を有1−1、上記光
方向性結合器を時分割周期制御することを特徴とする時
分割光バス分岐・挿入回路。
N optical directional couplers are formed on an optical integrated circuit board, and i
One of the outputs of the (i=1 to N-1) optical directional coupler is connected to one of the inputs of the (Ci+1)-th optical directional coupler, and one of the inputs of the first optical directional coupler is to the optical branching waveguide, one of the outputs of the N-th optical directional coupler to the optical branching waveguide 2, and the other inputs and outputs of the N optical directional couplers to each of the N inputs. 1-1. A time-division optical bus drop/add circuit comprising an optical circuit configuration coupled to an optical waveguide and N output optical waveguides, and controlling the optical directional coupler in a time-division period.
JP57098801A 1982-06-09 1982-06-09 Optical bus branching and inserting circuit Granted JPS58215622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098801A JPS58215622A (en) 1982-06-09 1982-06-09 Optical bus branching and inserting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098801A JPS58215622A (en) 1982-06-09 1982-06-09 Optical bus branching and inserting circuit

Publications (2)

Publication Number Publication Date
JPS58215622A true JPS58215622A (en) 1983-12-15
JPS623930B2 JPS623930B2 (en) 1987-01-28

Family

ID=14229443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098801A Granted JPS58215622A (en) 1982-06-09 1982-06-09 Optical bus branching and inserting circuit

Country Status (1)

Country Link
JP (1) JPS58215622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713990A1 (en) * 1986-05-16 1987-11-19 Ericsson Telefon Ab L M OPTO-ELECTRONIC DIRECTIONAL COUPLER FOR A TENSION-FREE CONTROL SIGNAL
JPS63116118A (en) * 1986-11-04 1988-05-20 Nippon Sheet Glass Co Ltd Directional coupler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713990A1 (en) * 1986-05-16 1987-11-19 Ericsson Telefon Ab L M OPTO-ELECTRONIC DIRECTIONAL COUPLER FOR A TENSION-FREE CONTROL SIGNAL
JPS63116118A (en) * 1986-11-04 1988-05-20 Nippon Sheet Glass Co Ltd Directional coupler

Also Published As

Publication number Publication date
JPS623930B2 (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US4708424A (en) Transmissive single-mode fiber optics star network
SE9504681L (en) Resource management, plans and arrangements
US9020347B2 (en) Reconfigurable optical interconnect network
CN107800483B (en) Multi-core multi-wave short-distance interconnection network based on array waveguide grating
CN104734799A (en) Optical switching framework
WO2000041430A1 (en) Wavelength-modular optical cross-connect switch
CN113300804B (en) Optical path scheduling apparatus and method, optical transmission system and data communication system
JP3593291B2 (en) WDM network
JPS58215622A (en) Optical bus branching and inserting circuit
Zheng et al. Light: A scalable and efficient wavelength-routed optical networks-on-chip topology
JPS58215623A (en) Optical bus branching and inserting circuit
JP2003009195A (en) Crossconnect switch
EP1935119B1 (en) Optical routing and transport accelerator (orta)
EP0475016A2 (en) Wavelength-multiplexed optical network system
US7957645B1 (en) Fiber optic interconnection
JP2833536B2 (en) Optical bus and optical bus components
US6538780B1 (en) Apparatus and method for reducing the number of control elements for crosstalk reduction devices in an optical switching network
EP1352542B1 (en) Optical switch
Hill et al. Applications of wavelength routing in a core telecommunication network
JP2690310B2 (en) Optical switching system
CN113709603B (en) Packet rerouting with zero added latency through silicon photonics
CN116320845B (en) Flattened data exchange method and system based on optical switch
RU2744517C1 (en) Dual-circuit real-time information transmission system based on an all-optical wavelength-dense on-board network
CA2281774C (en) Switching network for a broadband communication system
JP3292390B2 (en) Communication device and control method thereof