JPH0353226A - Optical branch/insertion node - Google Patents

Optical branch/insertion node

Info

Publication number
JPH0353226A
JPH0353226A JP1189547A JP18954789A JPH0353226A JP H0353226 A JPH0353226 A JP H0353226A JP 1189547 A JP1189547 A JP 1189547A JP 18954789 A JP18954789 A JP 18954789A JP H0353226 A JPH0353226 A JP H0353226A
Authority
JP
Japan
Prior art keywords
wavelength
optical
optical signal
signal
multiplexed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1189547A
Other languages
Japanese (ja)
Inventor
Makoto Nishio
誠 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1189547A priority Critical patent/JPH0353226A/en
Publication of JPH0353226A publication Critical patent/JPH0353226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily execute the branch and the insertion of an optical signal having a different speed by allowing an optical signal of prescribed wavelength to branch from an inputted wavelength multiple optical signal, and also, converting the optical signal into prescribed wavelength, and thereafter, inserting it and outputting the wavelength multiple optical signal. CONSTITUTION:Optical branch/insertion nodes 100, 101 allow an optical signal of prescribed wavelength to branch from an inputted wavelength multiple optical signal to the other optical branch/insertion node, and can insert an optical signal from the other optical branch/insertion node into an optical signal of other wavelength than prescribed wavelength which is allowed to branch. Accordingly, since a wavelength multiple optical signal can be used, it will suffice that an operating speed requested by an optical device is a low speed, and also, the wavelength multiple optical signal can be used. In such a way, with regard to the multiple optical signal in which each signal speed is different at every wavelength, as well, the branch and the insertion can be executed easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は所定の光信号の分岐および挿入を行う光分岐・
挿入ノードに関する. (従来の技術) 伝送路に光ファイバを用いた光通信は、光ファイバの有
する広帯域性や無誘導性により多量の情報の伝送が可能
であることがら、今後広く使用されていくことが予想さ
れる. このような光通信ネットワークに光信号処理技術を導入
し、各種の機能を付加することにより、フレキシビリテ
ィの向きおよびスループットの増大を実現する光分岐・
挿入ノードの検討が行われている. そのような光分岐・挿入ノードの1つとして、従来、六
川等「電子情報通信学会光通信研究会予稿集JOCS8
8−63  pp.1−6記載のように、時分割多重さ
れた光信号の任意のタイムスロットの光信号を端末ある
いは他のノードへ分岐し、空きタイムスロットへ端末あ
るいは他のノードからの光信号を挿入する光分岐・挿入
ノードが提案されている. 第5図にはかかる従来の光分岐・挿入ノードの梢戒図が
示されている.第5図は、2つの時分割多重されたハイ
ウェイ間で所定のタイムスロットの光信号を入れかえる
動作を行う例についての構或例である.以下、その梢戒
・動作について説明する. 時分割多重光信号510は、光分岐・挿入ノード500
内の分岐器520によって分岐器521と光クロック抽
出回路530へ分岐される,さらに、分岐器520で分
岐された一方の時分割多重光信号は、分岐器521経出
で光ラッチ回路550と光消去回路560へ送出される
.光クロック抽出回路530は、分岐器520で分岐さ
れた他方の時分割多重光信号から光クロック信号を取り
出し、光分周器540へ光クロックを送出する. 光分周器540は、光クロック抽出回路530からの光
クロック信号から光多重化フレーム信号を作り、光多重
化フレーム信号を分岐器522経由で光ラッチ回i15
50,551へ送出する.光ラッチ回路550は、分岐
器521からの時分割多重光信号の所望のタイムスロッ
トの光信号を、光分周器540から分岐器522経出で
入射される光多重化フレーム信号に同期させて光分岐・
挿入ノード501へ出射する. 一方、光消去回路560は、分岐器521経出で入射さ
れる時分割多重信号から光ラッチ回路550で分岐され
た所望のタイムスロットの光信号のみを消去して、空き
タイムスロットを作り他のタイムスロットの光信号を合
流器570へ出射する.そして、光ラッチ回路551が
光分岐・押入ノード501から分岐される時分割多重光
信号511の所定のタイムスロットの光信号を分岐器5
22経出で光分周器540から入射される光多重化フレ
ーム信号に同期させて合流器570へ出射する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an optical branching and adding method for branching and adding predetermined optical signals.
Regarding insertion nodes. (Prior art) Optical communications using optical fibers as transmission paths are expected to become widely used in the future, as they are capable of transmitting large amounts of information due to the broadband and non-inductive properties of optical fibers. Ru. By introducing optical signal processing technology into such optical communication networks and adding various functions, optical branching and
Insertion nodes are being considered. As one such optical branch/add node, there has been a
8-63 pp. As described in 1-6, an optical system that branches an optical signal in an arbitrary time slot of a time-division multiplexed optical signal to a terminal or other node, and inserts an optical signal from the terminal or other node into an empty time slot. Branch/insert nodes have been proposed. Figure 5 shows a treetop diagram of such a conventional optical drop/add node. FIG. 5 shows an example of a configuration in which an optical signal in a predetermined time slot is switched between two time-division multiplexed highways. Below, we will explain the treetop precepts and actions. The time division multiplexed optical signal 510 is sent to an optical drop/add node 500
One of the time division multiplexed optical signals branched by the branching device 520 is branched by the branching device 520 in the branching device 520 to the optical clock extraction circuit 530. The data is sent to the erase circuit 560. The optical clock extraction circuit 530 extracts an optical clock signal from the other time division multiplexed optical signal branched by the splitter 520 and sends the optical clock to the optical frequency divider 540. The optical frequency divider 540 creates an optical multiplexed frame signal from the optical clock signal from the optical clock extraction circuit 530, and sends the optical multiplexed frame signal to the optical latch circuit i15 via the brancher 522.
Send to 50,551. The optical latch circuit 550 synchronizes the optical signal of a desired time slot of the time division multiplexed optical signal from the splitter 521 with the optical multiplexed frame signal input from the optical frequency divider 540 through the splitter 522. Optical branch/
Emit to insertion node 501. On the other hand, the optical erasing circuit 560 erases only the optical signal of the desired time slot branched by the optical latch circuit 550 from the time division multiplexed signal inputted through the branching device 521, thereby creating an empty time slot and The optical signal of the time slot is emitted to the combiner 570. Then, the optical latch circuit 551 transfers the optical signal of a predetermined time slot of the time-division multiplexed optical signal 511 branched from the optical branching/pushing node 501 to the branching device 551.
22, the signal is outputted to the combiner 570 in synchronization with the optical multiplexed frame signal input from the optical frequency divider 540.

その結果、光消去回路560からの時分割多重信号の空
きタイムスロットへ光ラッチ回路551からの光信号が
挿入され、時分割多重光信号580が光分岐・挿入ノー
ド500がら出射される.同様にして光分岐・挿入ノー
ド501は光分岐・挿入ノード500がら分岐される所
定のタイムスロットの光信号を挿入し、時分割多重光信
号581を出力する. 以上のようにして、光分岐・挿入ノード500,501
は、入力される時分割多重光信号の任意のタイムスロッ
トの光信号を曲の光分岐・挿入ノードヘ分岐し、さらに
、光分岐・挿入ノード500,501は任意のタイムス
ロットの光信号を消去して空きタイムスロットを作り、
この空きタイムスロットへ他の光分岐・挿入ノードがら
分岐される光信号を挿入できるので、2つの時分割多重
されたハイウェイ間で所定のタイムスロットの光信号の
入れ換えを行うことができる. また、光分岐・挿入ノード500,501は同様にして
各々が収容する端末へ所定のタイムスロットの光信号を
分岐し、そして各端末がらの光信号を挿入することも可
能である. (発明が解決しようとする課題) 上述の第5図に示した従来の光分岐・挿入ノードでは、
光信号の分岐および挿入を行う場合に光信号が時分割多
重されているので、時分割多重度の増加とともに信号速
度が高速になると、光クロック抽出回FB530、光分
周器540、光ラッチ回路550,551、光消去回F
!?1560の高速動作が要求されるだけでなく、クロ
ック周期、フレーム同期の実現も難しくなるという問題
があった.さらに、第5図に示した従来の光分岐・挿入
ノードでは、光信号が時分割多重されているので、信号
速度の異なる光信号の間で分岐および挿入をする場合に
光クロック抽出回路530、光分周器540、光ラッチ
回路550,551、光消去回路560の制御が′a雑
になるという問題があった.本発明の目的は、このよう
な従来の問題点を除去し、光信号の分岐および挿入を行
う場合に光デバイスに要求される動作速度が低速でよく
、しかも容易に信号速度の異なる光信号を分岐および挿
入できる光分岐・挿入ノードを提供することにある. (課題を解決するための手段) 前述の課題を解決するために本発明の光分岐・挿入ノー
ドは複数の波長の光が多重化された波長多重化信号を受
ける1つの入力端および第1と第2の出力端を有し、予
め定めた制御信号が印加されていない場合は前記波長多
重光信号を全て前記第1の出力端から出射し、前記制御
信号が印加された場合は前記波長多重光信号がら前記制
御信号の種類によって定まる所定の波長の光信号のみを
前記第2の出力端から出射し、他の波長の光信号は前記
第1の出力端から出射する可変波長選択素子と、他から
供給される光信号を前記可変波長選択素子の第2の出力
端から出射される光信号の波長と同じ波長の光信号へ変
換する波長変換素子と、前記可変波長選択素子の第1の
出力端からの光信号と前記波長変換素子の出力端からの
光信号とを合流する合流器とを備えて成る. また、本発明は、複数の波長の光が多重化された波長多
重化信号と他の光信号を受ける第1と第2の入力端、第
1と第2の出力端を有し、予め定めた制御信号が印加さ
れていない場合は前記波長多重光信号を全て前記第1の
出力端から出射し,前記制御信号が印加された場合は前
記波長多重光信号から前記制御信号の種類によって定ま
る所定の波長の光信号のみを前記第2の出力端から出射
し、他の波長の光信号は前記第1の出力端から出射し、
前記第2の入力端がら入力された光信号を前記第1の出
力端へ出射する可変波長選択素子と他から供給される光
信号の波長を前記可変波長選択素子の第2の出力端から
出射される光信号の波長と同じ波長の光信号へ変換して
前記可変波長選択素子の前記第2の入力端に供給する波
長変換素子とを備える. (作用) 本発明の光分岐・挿入ノードは、入力される波長多重光
信号から所定の波長の光信号を分岐し、さらに光信号を
所定の波長へ変換した後に挿入して波長多重光信号を出
力するので、光デバイスに要求される動作速度は多重度
が増加しても低速でよく、さらに速度の異なる光信号の
分岐および挿人を容易に行うことができる. (実施例) 次に本発明について図面を参照しながら説明する. 第1図は本発明の第1の実施例を示す図であり、以下の
説明は第5図同様、2つのハイウエイ間で所定の光信号
の入れ換えを行う場合について行う.光分岐・挿入ノー
ド100内の可変波長選択素子120は、端子aから入
射される波長多重光信号110を端子bがら出射し、制
御信号が印加されると、波長多重光信号110から所定
の波長の光信号を選択してこれを端子Cがら光分岐・挿
入ノード101へ分岐するとともに所定の波長以外の光
信号を端子bから合流器130へ出射する.可変波長選
択素子120が選択する光信号の波長は印加する制御信
号によって変えることができる.第1図に示した例では
、端子aから入射された波長λ1〜λ4の多重光信号1
10の中から可変波長選択素子120は、波長λ2に対
応した制御信号によって波長λ2の光信号を選択し、端
子Cから光分岐・挿入ノード101へ分岐し、波長λ1
.^き、λ,の多重光信号を端子bから合流器130へ
送出している。波長変換素子140は、光分岐・挿入ノ
ード101から分岐される波長多重光信号111の中の
例えば波長λ1の光信号の波長を、可変波長選択素子1
20によって選択されている光信号の波長λ,へ変換し
て合流器130へ出射する. 合流器130では、可変波長選択素子120の端子bか
らの波長λ1,λ,、λ,の多重光と波長変換素子14
0からの波長λ2の光信号とが合流されて波長λ1〜λ
4の多重光信号150が光分岐・挿入ノード100から
出力される.同様にして光分岐・挿入ノード101は、
光分岐・挿入ノード100から分岐される波長λ2の光
信号の波長をλ》に変換して挿入し、波長多重光信号1
51を出射する. 以上のようにして光分岐・挿入ノード100.101は
入力する波長多重光信号から所定の波長の光信号を他の
光分岐・挿入ノードへ分岐し、そして分岐した所定の波
長以外の光信号へ他の光分岐・挿入ノードからの光信号
を挿入することができる.また、上記実施例の他に光分
岐・挿入ノードioo,toiは同様にして各々の端末
へ所定の波長の光信号を分岐し、そして、各々の端末か
らの光信号を所定の波長へ変換した後に挿入することも
可能である。
As a result, the optical signal from the optical latch circuit 551 is inserted into an empty time slot of the time division multiplexed signal from the optical erasure circuit 560, and the time division multiplexed optical signal 580 is emitted from the optical drop/add node 500. Similarly, the optical drop/add node 501 inserts the optical signal of a predetermined time slot branched from the optical drop/add node 500, and outputs a time division multiplexed optical signal 581. As described above, the optical branch/add nodes 500, 501
The optical branching/adding nodes 500 and 501 branch the optical signal of any time slot of the input time division multiplexed optical signal to the optical drop/add node of the song, and furthermore, the optical drop/add nodes 500 and 501 erase the optical signal of any time slot. to create an empty time slot,
Since optical signals dropped from other optical add/drop nodes can be inserted into these vacant time slots, optical signals in a given time slot can be exchanged between two time-division multiplexed highways. Furthermore, the optical branch/add nodes 500 and 501 can similarly branch the optical signal of a predetermined time slot to the terminals accommodated by each node, and can also insert the optical signal from each terminal. (Problems to be Solved by the Invention) In the conventional optical drop/add node shown in FIG. 5 above,
When branching and adding optical signals, the optical signals are time-division multiplexed, so as the signal speed increases as the degree of time-division multiplexing increases, the optical clock extraction circuit FB530, optical frequency divider 540, and optical latch circuit 550, 551, light erasure times F
! ? 1560 not only required high-speed operation, but also made it difficult to achieve clock cycle and frame synchronization. Furthermore, in the conventional optical drop/add node shown in FIG. 5, since optical signals are time-division multiplexed, when dropping and adding between optical signals having different signal speeds, the optical clock extraction circuit 530, There was a problem in that the control of the optical frequency divider 540, optical latch circuits 550, 551, and optical erase circuit 560 became sloppy. It is an object of the present invention to eliminate such conventional problems, to reduce the operating speed required of an optical device when branching and adding optical signals, and to easily handle optical signals with different signal speeds. The objective is to provide an optical drop/add node that can perform drop/add operations. (Means for Solving the Problems) In order to solve the above-mentioned problems, the optical branch/add node of the present invention has one input end that receives a wavelength multiplexed signal in which light of a plurality of wavelengths is multiplexed, and a first a second output end, when a predetermined control signal is not applied, all the wavelength multiplexed optical signals are outputted from the first output end, and when the control signal is applied, the wavelength multiplexed optical signal is outputted from the first output end; a variable wavelength selection element that outputs only an optical signal of a predetermined wavelength determined by the type of the control signal among the optical signals from the second output end, and outputs optical signals of other wavelengths from the first output end; a wavelength conversion element that converts an optical signal supplied from another to an optical signal having the same wavelength as the wavelength of the optical signal output from the second output end of the variable wavelength selection element; It comprises a combiner that combines the optical signal from the output end and the optical signal from the output end of the wavelength conversion element. Further, the present invention has first and second input terminals that receive a wavelength multiplexed signal in which light of a plurality of wavelengths is multiplexed and other optical signals, and first and second output terminals that are predetermined. If no control signal is applied, all the wavelength-multiplexed optical signals are output from the first output end, and if the control signal is applied, the wavelength-multiplexed optical signal is outputted from the wavelength-multiplexed optical signal to a predetermined amount determined by the type of the control signal. only the optical signal with a wavelength of is output from the second output end, and the optical signal with other wavelengths is output from the first output end,
A variable wavelength selection element outputs an optical signal input from the second input terminal to the first output terminal, and a wavelength of an optical signal supplied from another output terminal is output from the second output terminal of the variable wavelength selection element. a wavelength conversion element that converts the optical signal into an optical signal of the same wavelength as the wavelength of the optical signal to be supplied to the second input terminal of the variable wavelength selection element. (Function) The optical drop/drop node of the present invention branches an optical signal of a predetermined wavelength from an input wavelength-multiplexed optical signal, further converts the optical signal to a predetermined wavelength, and then inserts the optical signal to generate a wavelength-multiplexed optical signal. Therefore, the operating speed required of the optical device can be kept low even when the degree of multiplicity increases, and optical signals with different speeds can be easily branched and inserted. (Example) Next, the present invention will be explained with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention, and the following explanation, like FIG. 5, will be made regarding the case where a predetermined optical signal is exchanged between two highways. The variable wavelength selection element 120 in the optical drop/add node 100 outputs the wavelength-multiplexed optical signal 110 input from the terminal a from the terminal b, and when a control signal is applied, selects a predetermined wavelength from the wavelength-multiplexed optical signal 110. selects an optical signal and branches it from terminal C to the optical drop/add node 101, and outputs the optical signal having a wavelength other than the predetermined wavelength to the combiner 130 from terminal b. The wavelength of the optical signal selected by the variable wavelength selection element 120 can be changed by an applied control signal. In the example shown in FIG. 1, a multiplexed optical signal 1 with wavelengths λ1 to λ4 input from terminal
A variable wavelength selection element 120 from 10 selects an optical signal with a wavelength λ2 according to a control signal corresponding to the wavelength λ2, branches it from a terminal C to an optical drop/add node 101, and selects an optical signal with a wavelength λ1.
.. A multiplexed optical signal of λ and λ is sent from terminal b to the combiner 130. The wavelength conversion element 140 converts the wavelength of the optical signal of wavelength λ1, for example, in the wavelength multiplexed optical signal 111 branched from the optical drop/add node 101 to the variable wavelength selection element 1.
The optical signal is converted into the wavelength λ of the optical signal selected by 20 and output to the combiner 130. In the combiner 130, the multiplexed light of wavelengths λ1, λ, , λ, from the terminal b of the variable wavelength selection element 120 and the wavelength conversion element 14 are combined.
The optical signal of wavelength λ2 from 0 is combined with the optical signal of wavelength λ1~λ
4 multiplexed optical signals 150 are output from the optical drop/add node 100. Similarly, the optical drop/add node 101
The wavelength of the optical signal with the wavelength λ2 branched from the optical drop/add node 100 is converted to λ》 and added, and the wavelength-multiplexed optical signal 1 is added.
51 is emitted. As described above, the optical drop/add nodes 100 and 101 branch optical signals of a predetermined wavelength from input wavelength multiplexed optical signals to other optical drop/add nodes, and then output optical signals of wavelengths other than the predetermined wavelengths that have been branched. Optical signals from other optical drop/add nodes can be added. In addition to the above embodiment, the optical drop/drop/add nodes ioo and toi similarly branch an optical signal of a predetermined wavelength to each terminal, and convert the optical signal from each terminal to a predetermined wavelength. It is also possible to insert it later.

以上、第1図に示す本発明の第1の実施例による光分岐
・挿入ノードによれば、波長多重光信号が使用できるの
で光デバイスに要求されている動作速度は低速でよい。
As described above, according to the optical add/drop node according to the first embodiment of the present invention shown in FIG. 1, since a wavelength multiplexed optical signal can be used, the operating speed required of the optical device may be low.

例えば、信号速度100M b / sで多重度と12
8程度を考えると、従来の光分岐・挿入ノードでは、光
デバイスが800M b / sで動作する必要がある
のに対し、本発明の光分岐・挿入ノートでは光デバイス
は信号速度の100Mb/sで動作すればよい. さらに、本発明の光分岐・挿入ノートは波長多重光信号
が使用できるので、各波長毎に100Mb/s,50M
b/s,32Mb/sと各信号速度の異なる多重光信号
についても分岐および挿人を行うことができる. 第2図には本発明の第2の実施例が示されている.やは
り、2つのハイウエイ間で所定の光信号の入れ換えを行
う場合について説明する.光分岐挿入ノード200内の
可変波長選択素子220は、制御信号が印加されなけれ
ば端子aから入射される波長多重光信号210を端子b
から出射し、制御信号が印加されると波長多重光信号2
10から所定の波長の光信号を選択して、これを端子C
から出射し光分岐・挿入ノード201へ分岐する。可変
波長選択素子120に印加する制御信号によって可変波
長選択素子120が選択する光信号の波長を変えること
ができる.第2図に示した例では、端子aから入射され
た波長λ1〜λ,の多重光信号210から可変波長選択
素子220は、波長λ2に対応した制御信号によって波
長λ2の光信号を選択し、端子Cから光分岐・挿入ノー
ド201へ波長λ2の光信号を分岐している. 波長変換素子230は、光分岐・挿入ノード201から
分岐される波長多重光信号211の中の例えば波長λ3
の光信号の波長を、可変波長選択素子220によって選
択されている光信号の波長λ7へ変換して可変波長選択
素子220の端子dへ出射する. 可変波長選択素子220は、端子dから入力される波長
λ2の光信号を選択し、波長λ1,λ,,λ,の光信号
と合波して波長λ1〜λ4の多重光信号を、端子bから
出射する.従って、光分岐・挿入ノード200からは波
長多重光信号240が出力される.同様にして光分岐・
挿入ノード201は、光分岐・挿入ノード200から分
岐される波長λ2の光信号の波長をλ3に変換して挿入
し、波長多重光信号241を出力する.以上述べたよう
に第2図に示した本発明の第2の実施例によれば第1図
に示した本発明の第1の実施例と同様の効果を合流器を
用いずに得ることができる. 第3図(a)と(b)には第1図および第2図の実施例
の中の可変波長選択素子120  220の具体的梢或
例が示されている. 光導波路304,305は、基盤300の上に形成され
た分離層301を介して交差している.弾性表面波導波
路303に各波長に対応した弾性表面波を伝搬させると
、光導波路304と305の結合領域302において光
信号の波長の選択が行われる. 第3図(a)は第1図の可変波長選択素子120および
第2図の可変波長選択素子220の動作を説明するため
の図である。
For example, with a signal speed of 100 M b / s and a multiplicity of 12
8, in the conventional optical drop/add node, the optical device needs to operate at 800 Mb/s, whereas in the optical drop/add node of the present invention, the optical device has a signal speed of 100 Mb/s. It should work. Furthermore, since the optical drop/drop/add notebook of the present invention can use wavelength multiplexed optical signals, each wavelength can be used at 100 Mb/s, 50 Mb/s,
It is also possible to branch and insert multiplexed optical signals with different signal speeds such as b/s and 32 Mb/s. FIG. 2 shows a second embodiment of the invention. Again, we will explain the case where a predetermined optical signal is exchanged between two highways. The variable wavelength selection element 220 in the optical add/drop multiplexer node 200 converts the wavelength-multiplexed optical signal 210 input from the terminal a to the terminal b if no control signal is applied.
When a control signal is applied, the wavelength-multiplexed optical signal 2
Select an optical signal of a predetermined wavelength from 10 and send it to terminal C.
The light is emitted from the optical branch and branched to the optical branch/add node 201 . The wavelength of the optical signal selected by the variable wavelength selection element 120 can be changed by a control signal applied to the variable wavelength selection element 120. In the example shown in FIG. 2, the variable wavelength selection element 220 selects the optical signal of wavelength λ2 from the multiplexed optical signal 210 of wavelengths λ1 to λ inputted from terminal a by the control signal corresponding to wavelength λ2, An optical signal with wavelength λ2 is branched from terminal C to optical drop/add node 201. The wavelength conversion element 230 converts wavelength λ3, for example, in the wavelength multiplexed optical signal 211 branched from the optical drop/add node 201.
The wavelength of the optical signal of . The variable wavelength selection element 220 selects the optical signal of wavelength λ2 inputted from terminal d, multiplexes it with the optical signals of wavelengths λ1, λ,, λ, and outputs a multiplexed optical signal of wavelengths λ1 to λ4 to terminal b. It emits from. Therefore, a wavelength multiplexed optical signal 240 is output from the optical drop/add node 200. Similarly, light branching and
The insertion node 201 converts the wavelength of the optical signal of wavelength λ2 branched from the optical drop/add node 200 into wavelength λ3 and inserts it, and outputs a wavelength-multiplexed optical signal 241. As described above, according to the second embodiment of the present invention shown in FIG. 2, it is possible to obtain the same effect as the first embodiment of the present invention shown in FIG. 1 without using a merger. can. FIGS. 3(a) and 3(b) show specific examples of the variable wavelength selection elements 120 to 220 in the embodiments of FIGS. 1 and 2. The optical waveguides 304 and 305 intersect with each other via a separation layer 301 formed on the substrate 300. When surface acoustic waves corresponding to each wavelength are propagated through the surface acoustic wave waveguide 303, the wavelength of the optical signal is selected in the coupling region 302 between the optical waveguides 304 and 305. FIG. 3(a) is a diagram for explaining the operation of the variable wavelength selection element 120 of FIG. 1 and the variable wavelength selection element 220 of FIG. 2.

光導波路304の端子aから波長λ1〜λ,の多重光信
号310を入力し、制御信号として弾性表面波を弾性表
面波導波路303へ伝搬させないと、光導波路304の
端子bから波長λ,〜λ,の多重光信号310はそのま
ま出力される.一方、制御信号として波長λ2に対応し
た弾性表面波を弾性表面波導波路303へ伝搬させると
、結合領域302において波長λ2の光信号のみが波長
多重光信号310から選択され、その結果、光導波路3
05の端子Cから波長λ1の光信号のみが出力され、波
長λ1,λ,.λ4の多重光信号が光導波路304の端
子bから出力される.弾性表面波の周波数を変化させれ
ば、別の波長の光信号を吸収し光導波路305のC@子
から出力させることができる. また、第3図(b)は第2図の可変波長選択素子220
の別な動作を説明するための図である.光導波路304
の端子aには波長λ1,λ2,λ》,λ4の多重光信号
320を、光導波路305の端子dには波長λ2の光信
号330をそれぞれ入射させる.制御信号として弾性表
面波を弾性表面波導波路303へ伝搬させないと、光導
波路304の端子bからは波長λ1,λ2,λ,,λ4
の多重光信号320が、また光導波路305の端子Cか
らは端子dに入力された波長λ2の光信号330が、そ
れぞれ出射される. 一方、制御信号として波長λ2に対応した弾性表面波を
選び、これを弾性表面波導波路303へ伝撮させると、
結合領域302において、波長多重光信号320の中の
波長λ2の光信号のみが選択されて光導波路305のC
@子から出力されると同時に、波長λ1の光信号330
が光導波路304へ結合され、波長λ1.λ,.^4の
多重光信号へ合波される. その結果、光導波路304の端子bからは波長多重光信
号320の波長λ1,λ1,λ4の光信号と波長λ2の
光信号330との多重光信号が出力され、光導波路30
5の端子Cからは波長多重光信号320の中の波長λ2
の光信号が出力される.また、弾性表面波の周波数を変
化させれば別の波長の光信号を合波させることができる
.このようにして弾性表面波を制御信号として、これを
伝搬させるか否かによって波長多重光信号から所定の波
長の光信号を選択し、かつ、所定の波長の光信号を合波
して波長多重光信号を出力することができる. 第4図には第1図と第2図の実施例中の波長変換素子1
40,230の梢或例が示されている.入力光信号40
0は、光一電気変換回路410によって一旦電気信号4
01に変換される.半導体レーザダイオード411は、
印加されている駆動信号によって出力光の波長が制御さ
れるもので、上記電気信号401を駆動信号として半導
体レーザダイオード411に供給することによって入力
光信号400の波長を出力光信号402の波長に変換す
ることができる. 入力光信号400の波長を所定の波長に変換する場合に
は、半導体レーザダイオード411として、可変波長半
導体レーザダイオードを使用すればよい.可変波長半導
体レーザとしては例えば、文献1987年4月9日エレ
クトロニクス・レターズ(ELECTRONICS  
LETTERS)23集第8巻403頁に開示されてい
る可変波長半導体レーザを使用することができる.(発
明の効果) 以上説明したように本発明の光分岐・挿入ノードによれ
ば波長多重光信号が使用できるので光デバイスに要求さ
れる動作は低速でよく、しかも速度の異なる光信号を用
いることも可能である.
If a multiplexed optical signal 310 with wavelengths λ1 to λ is input from terminal a of the optical waveguide 304 and a surface acoustic wave is not propagated to the surface acoustic wave waveguide 303 as a control signal, the wavelengths λ1 to λ are input from terminal b of the optical waveguide 304. , the multiplexed optical signal 310 is output as is. On the other hand, when a surface acoustic wave corresponding to the wavelength λ2 is propagated to the surface acoustic wave waveguide 303 as a control signal, only the optical signal with the wavelength λ2 is selected from the wavelength multiplexed optical signal 310 in the coupling region 302, and as a result, the optical waveguide 3
Only the optical signal of wavelength λ1 is output from the terminal C of 05, and the optical signal of wavelength λ1, λ, . A multiplexed optical signal of λ4 is output from terminal b of the optical waveguide 304. By changing the frequency of the surface acoustic wave, it is possible to absorb an optical signal of a different wavelength and output it from the C@ of the optical waveguide 305. Further, FIG. 3(b) shows the variable wavelength selection element 220 of FIG.
This is a diagram for explaining another operation of . Optical waveguide 304
Multiplexed optical signals 320 with wavelengths λ1, λ2, λ》, λ4 are inputted into the terminal a of the optical waveguide 305, and an optical signal 330 with the wavelength λ2 is inputted into the terminal d of the optical waveguide 305, respectively. If a surface acoustic wave is not propagated to the surface acoustic wave waveguide 303 as a control signal, wavelengths λ1, λ2, λ, λ4 will be transmitted from terminal b of the optical waveguide 304.
A multiplexed optical signal 320 of . On the other hand, if a surface acoustic wave corresponding to the wavelength λ2 is selected as a control signal and transmitted to the surface acoustic wave waveguide 303,
In the coupling region 302, only the optical signal with wavelength λ2 from the wavelength multiplexed optical signal 320 is selected and connected to the C of the optical waveguide 305.
At the same time as being output from @, an optical signal 330 with wavelength λ1
are coupled to the optical waveguide 304 and have wavelengths λ1 . λ,. It is multiplexed into ^4 multiplexed optical signals. As a result, from the terminal b of the optical waveguide 304, a multiplexed optical signal consisting of the optical signals of the wavelengths λ1, λ1, λ4 of the wavelength multiplexed optical signal 320 and the optical signal 330 of the wavelength λ2 is output, and the optical waveguide 304
From the terminal C of 5, the wavelength λ2 of the wavelength multiplexed optical signal 320 is
An optical signal is output. Furthermore, by changing the frequency of the surface acoustic wave, optical signals of different wavelengths can be combined. In this way, using the surface acoustic wave as a control signal, an optical signal of a predetermined wavelength is selected from a wavelength multiplexed optical signal depending on whether or not to propagate it, and the optical signals of a predetermined wavelength are multiplexed to perform wavelength division multiplexing. It can output optical signals. FIG. 4 shows the wavelength conversion element 1 in the embodiment of FIGS. 1 and 2.
An example of 40,230 treetops is shown. Input optical signal 40
0 is once converted into an electrical signal 4 by an optical-to-electrical conversion circuit 410.
Converted to 01. The semiconductor laser diode 411 is
The wavelength of the output light is controlled by the applied driving signal, and the wavelength of the input optical signal 400 is converted into the wavelength of the output optical signal 402 by supplying the electric signal 401 as a driving signal to the semiconductor laser diode 411. can do. When converting the wavelength of the input optical signal 400 to a predetermined wavelength, a variable wavelength semiconductor laser diode may be used as the semiconductor laser diode 411. For example, the tunable wavelength semiconductor laser is described in the document ELECTRONICS, April 9, 1987.
The tunable wavelength semiconductor laser disclosed in LETTERS) Vol. 23, Vol. 8, p. 403 can be used. (Effects of the Invention) As explained above, according to the optical drop/add node of the present invention, wavelength multiplexed optical signals can be used, so the operation required of the optical device can be performed at low speed, and optical signals of different speeds can be used. is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の梢或図、第2図は本発
明の第2の実11例の構成図、第3図は第1図と第2図
中の可変波長選択素子の具体的梢或例を示す図、第4図
は第1図と第2図中の波長変換素子の具体的梢戒例を示
す図、第5図は従来の光アクセス端末における光分岐・
挿入ノードを示す図である. 100,101,200,201・・・光分岐・挿入ノ
ード、110,111,150,151,210,21
1,240,241・・・波長多重光信号、120.2
20・・・可変波長選択素子、130・・・合流器、1
40,230・・・波長変換素子、300・・・基盤、
301・・・分離層、302・・・結合領域、303・
・・弾性表面波導波路、304.305・・・光導波路
、310・・・波長多重光信号、400・・・入力光信
号、401・・・電気信号、402・・・出力光信号、
410・・・光一電気変換回路、411・・・半導体レ
ーザ、500.501・・・光アクセス端末、510,
511,580.581・・・時分割光信号、520,
521,522・・・分岐器、530・・・光クロック
抽出回路、540・・・光分周器、550,551・・
・光ラッチ回路、560・・・光消去回路、570・・
・合流器.
FIG. 1 is a top view of the first embodiment of the present invention, FIG. 2 is a block diagram of the second embodiment of the present invention, and FIG. 3 is a variable wavelength selection diagram in FIGS. 1 and 2. FIG. 4 is a diagram showing a specific example of the wavelength conversion element in FIGS. 1 and 2, and FIG. 5 is a diagram showing a specific example of the wavelength conversion element in FIGS.
It is a diagram showing an insertion node. 100, 101, 200, 201... Optical drop/add node, 110, 111, 150, 151, 210, 21
1,240,241...Wavelength multiplexed optical signal, 120.2
20... Variable wavelength selection element, 130... Combiner, 1
40,230...Wavelength conversion element, 300...Base,
301... Separation layer, 302... Bonding region, 303...
... surface acoustic wave waveguide, 304.305 ... optical waveguide, 310 ... wavelength multiplexed optical signal, 400 ... input optical signal, 401 ... electrical signal, 402 ... output optical signal,
410... Optical electrical conversion circuit, 411... Semiconductor laser, 500.501... Optical access terminal, 510,
511,580.581... time division optical signal, 520,
521, 522... Brancher, 530... Optical clock extraction circuit, 540... Optical frequency divider, 550, 551...
- Optical latch circuit, 560... Optical erase circuit, 570...
・Merge device.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の波長の光が多重化された波長多重化信号を
受ける1つの入力端および第1と第2の出力端を有し、
予め定めた制御信号が印加されていない場合は前記波長
多重光信号を全て前記第1の出力端から出射し、前記制
御信号が印加された場合は前記波長多重光信号から前記
制御信号の種類によつて定まる所定の波長の光信号のみ
を前記第2の出力端から出射し、他の波長の光信号は前
記第1の出力端から出射する可変波長選択素子と、他か
ら供給される光信号を前記可変波長選択素子の第2の出
力端から出射される光信号の波長と同じ波長の光信号へ
変換する波長変換素子と、前記可変波長選択素子の第1
の出力端からの光信号と前記波長変換素子の出力端から
の光信号とを合流する合流器とを備えて成ることを特徴
とする光分岐・挿入ノード。
(1) having one input end for receiving a wavelength multiplexed signal in which light of a plurality of wavelengths is multiplexed, and first and second output ends;
If a predetermined control signal is not applied, all the wavelength multiplexed optical signals are output from the first output end, and if the control signal is applied, the type of the wavelength multiplexed optical signal is changed from the wavelength multiplexed optical signal to the type of the control signal. a variable wavelength selection element that outputs only an optical signal of a predetermined wavelength determined by the above from the second output end, and outputs optical signals of other wavelengths from the first output end, and an optical signal supplied from another. a wavelength conversion element that converts the wavelength into an optical signal having the same wavelength as the wavelength of the optical signal emitted from the second output end of the variable wavelength selection element; and a first wavelength conversion element of the variable wavelength selection element.
An optical branch/add node comprising: a combiner that combines an optical signal from an output end of the wavelength conversion element with an optical signal from an output end of the wavelength conversion element.
(2)複数の波長の光が多重化された波長多重化信号と
他の光信号を受ける第1と第2の入力端および第1と第
2の出力端を有し、予め定めた制御信号が印加されない
場合は前記波長多重光信号を全て前記第1の出力端から
出射し、前記制御信号が印加された場合は前記波長多重
光信号から前記制御信号の種類によって定まる所定の波
長の光信号のみを前記第2の出力端から出射し、他の波
長の光信号は前記第1の出力端から出射し、前記第2の
入力端から入力された光信号を前記第1の出力端へ出射
する可変波長選択素子と他から供給される光信号の波長
を前記可変波長選択素子の第2の出力端から出射される
光信号の波長と同じ波長の光信号へ変換して前記可変波
長選択素子の前記第2の入力端に供給する波長変換素子
とを備えて成ることを特徴とする光分岐・挿入ノード。
(2) It has first and second input ends and first and second output ends that receive a wavelength multiplexed signal in which light of a plurality of wavelengths is multiplexed and other optical signals, and has a predetermined control signal. If not applied, all of the wavelength multiplexed optical signals are output from the first output end, and if the control signal is applied, an optical signal of a predetermined wavelength determined by the type of the control signal is output from the wavelength multiplexed optical signal. The optical signals of other wavelengths are outputted from the first output end, and the optical signals input from the second input end are outputted from the first output end. The variable wavelength selection element converts the wavelength of the optical signal supplied from the other device into an optical signal having the same wavelength as the wavelength of the optical signal emitted from the second output end of the variable wavelength selection element. and a wavelength conversion element supplied to the second input end of the optical drop/add node.
JP1189547A 1989-07-21 1989-07-21 Optical branch/insertion node Pending JPH0353226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189547A JPH0353226A (en) 1989-07-21 1989-07-21 Optical branch/insertion node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189547A JPH0353226A (en) 1989-07-21 1989-07-21 Optical branch/insertion node

Publications (1)

Publication Number Publication Date
JPH0353226A true JPH0353226A (en) 1991-03-07

Family

ID=16243142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189547A Pending JPH0353226A (en) 1989-07-21 1989-07-21 Optical branch/insertion node

Country Status (1)

Country Link
JP (1) JPH0353226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308794A (en) * 2000-02-18 2001-11-02 Marconi Communications Ltd Optical communication system
JP2008101409A (en) * 2006-10-20 2008-05-01 Yokomura Seisakusho:Kk Door locking mechanism
US7450851B2 (en) 2004-08-27 2008-11-11 Fujitsu Limited System and method for modularly scalable architecture for optical networks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308794A (en) * 2000-02-18 2001-11-02 Marconi Communications Ltd Optical communication system
JP4610754B2 (en) * 2000-02-18 2011-01-12 エリクソン アクチボラゲット Optical communication system
US7450851B2 (en) 2004-08-27 2008-11-11 Fujitsu Limited System and method for modularly scalable architecture for optical networks
JP2008101409A (en) * 2006-10-20 2008-05-01 Yokomura Seisakusho:Kk Door locking mechanism

Similar Documents

Publication Publication Date Title
JP3256419B2 (en) Optical filter and optical signal transmission system
US7522843B2 (en) Optical repeater converting wavelength and bit rate between networks
US5589967A (en) Method and device for transmitting and switching packets in an optical network
US6304690B1 (en) Connecting a plurality of circuit boards
JP2989269B2 (en) Cross connection for optical networks
US9986316B2 (en) Optical switching
EP3407511A1 (en) Reconfigurable optical transmitter
JPH08251634A (en) Coupled wavelength router and switching device for use in wavelength-division multiplexed optical communication system
US5144465A (en) Switched optical network
US5121381A (en) Optical switching apparatus for digital signal cross connection and method of interswitch optical transmission of digital signals
US6744986B1 (en) Tunable wavelength add/drop multiplexer based on integrated optic devices
EP1100284A2 (en) Optical router
JP3593291B2 (en) WDM network
JPH0353226A (en) Optical branch/insertion node
KR100498926B1 (en) Apparatus of Transmission By Using Multi Lambda Source In Wavelength Division Multiplexing Network
KR20010056912A (en) Method for controlling dynamic wavelength path in wdm mesh networks
JPH0653936A (en) Optical signal time-division multiplex transmitting method
US7016562B2 (en) Optical switch
JP3247886B2 (en) Optical communication network
JP2658114B2 (en) Wavelength conversion switch
WO2024038542A1 (en) Optical switch and switching system
JPH0697884A (en) Optical frequency changeover switch and optical frequency switching method
Prucnal et al. Optical interconnect switch
JP3117006B2 (en) Optical wavelength selector and wavelength division multiplexing optical network
Prucnal et al. Optical Interconnect Switch