JPS58215328A - Manufacture of stylene based resin foamed body - Google Patents

Manufacture of stylene based resin foamed body

Info

Publication number
JPS58215328A
JPS58215328A JP57099022A JP9902282A JPS58215328A JP S58215328 A JPS58215328 A JP S58215328A JP 57099022 A JP57099022 A JP 57099022A JP 9902282 A JP9902282 A JP 9902282A JP S58215328 A JPS58215328 A JP S58215328A
Authority
JP
Japan
Prior art keywords
foam
foaming
stylene
foamed
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57099022A
Other languages
Japanese (ja)
Other versions
JPS6151972B2 (en
Inventor
Tomoshige Hayashi
基滋 林
Shigetoshi Tanaka
田中 重利
Motokazu Yoshii
基員 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kaseihin Kogyo KK
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Sekisui Kaseihin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd, Sekisui Kaseihin Kogyo KK filed Critical Sekisui Plastics Co Ltd
Priority to JP57099022A priority Critical patent/JPS58215328A/en
Publication of JPS58215328A publication Critical patent/JPS58215328A/en
Publication of JPS6151972B2 publication Critical patent/JPS6151972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/505Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through a flat die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material

Landscapes

  • Molding Of Porous Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To achieve an even foaming of a stylene based reson foamable body with a large thickness by heat foaming of a stylene based resin foamable body bringing steam into contact with the surface thereof when it is at a high temperature thereinside while the surface thereof below the thermal deformation temperature. CONSTITUTION:A molten stylene based resin which is blended with a foaming agent such as aliphatic hydrocarbon and aliphatic hydrocarbon halide with a boiling point lower than the thermal deformation temperature of the stylene based resin is extruded to a low pressure area from an extruder and foamed to obtain a foamed body. When the foamed body is at a high temperature thereinside which the surface thereof is below the thermal deformation temperature, the surface of the foamed body heated to foam above the thermal deformation temperature in contact with steam to obtain a stylene based resin foamed body. The steam to contact the foamed body is preferably 80-120 deg.C and the contact time normally 1-10min.

Description

【発明の詳細な説明】 この発明は、スチレン系樹脂発泡体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a styrenic resin foam.

押出成形法によると、連続的に能率よく成形体を製造す
ることができるので、断面形状の一定な発泡体を作るに
は、押出成形法によることが好ましい。スチレン系樹脂
を用いて、シートと呼ばれるような薄い広幅の発泡体を
作る場合には、押出成形法によって良好な発泡体を製造
することができる。しかし、発泡シートの厚みが大きく
なって、例えば厚みが10票以上となり、いわゆる板と
呼ばれるような厚いものになると、これを押出成形法に
よって作ることが困難となる。それは、厚みが大きくな
ると、発泡体の局部的な密度差が顕著に現れ、表面部分
と内部とを一様に発泡させることが困難となるからであ
る。そこで、押出成形法によって厚みの大きいものを均
一に発泡させるに適した方法を案出する必要があった。
According to the extrusion molding method, a molded body can be manufactured continuously and efficiently, so the extrusion molding method is preferable in order to produce a foamed body having a constant cross-sectional shape. When making a thin, wide foam such as a sheet using styrene resin, a good foam can be produced by extrusion molding. However, when the thickness of the foamed sheet becomes large, for example, 10 sheets or more, and becomes so-called a plate, it becomes difficult to make it by extrusion molding. This is because, as the thickness increases, local density differences in the foam become noticeable, making it difficult to foam the surface portion and the interior uniformly. Therefore, it was necessary to devise a method suitable for uniformly foaming thick products using extrusion molding.

そこで、この発明者は、厚みの大きいスチレン系樹l旨
発泡体を均一に発泡させる方法を案出すべく、種々の実
験を行った。その際、この発明者は、押亀機から出た肉
厚の発泡体を大気中で発泡させたのら、表面から冷却し
て表面部分だけを一旦固化させて皮をつけ、内部はまだ
高温にあって柔かい発泡力の残存する状態にあるとき、
この表面の皮か゛ら水蒸気を接触させて表面から加熱し
た。その結果、このようにすると、発泡体の表面の皮の
発泡につれて内部も残存発泡力で再び発泡し、その横断
面では表面部も内部も同じように発泡したものとなるこ
とを見出した。この発明は、このような知見に基すいて
なされたものである。
Therefore, the inventor conducted various experiments in order to devise a method for uniformly foaming a thick styrene foam. At that time, this inventor foamed the thick foam that came out of the press machine in the air, cooled it from the surface, solidified only the surface part, and put on a skin, while the inside was still hot. When it is in a state where soft foaming power remains,
Steam was brought into contact with the surface of the skin to heat it from the surface. As a result, it was found that by doing this, as the skin on the surface of the foam foams, the interior of the foam also foams again due to the residual foaming force, and in the cross section, both the surface and the interior become foamed in the same way. This invention was made based on such knowledge.

この発明は、発泡剤を含んだ@融スチレン系樹脂を押出
機から低圧領域に#出し、発泡させて発泡体とし、発泡
体の内部が高温にあって表面部が熱変形温度以下となっ
た状態で、発泡体表面に水蒸気を接触させ、表面を熱菱
形温度以上に加熱して発泡させることを特徴とする、ス
チレン系樹脂発泡体の製造方法に関するものである。
In this invention, molten styrene resin containing a blowing agent is discharged from an extruder to a low pressure region, and is foamed to form a foam, in which the inside of the foam is at a high temperature and the surface area is below the heat distortion temperature. The present invention relates to a method for producing a styrenic resin foam, which is characterized in that the surface of the foam is brought into contact with water vapor in a state in which the surface of the foam is heated to a temperature equal to or higher than a rhombus temperature to cause foaming.

スチレン系樹脂発泡体を再び加熱すると、発泡体が二次
発泡し、発泡倍率を増すに至ることは、既に知られてい
る。この場合、最初の発泡すなわら一次発泡と、あとか
らの発泡すなわら二次発泡との間には、ある程度の時間
を置かなければならないとされた。例えば、少くとも一
星夜位は放置することが必要とされた。このことは、ス
チレン系樹脂から成る発泡性ビーズを孔あき金型に入れ
、水蒸気を金型内に吹き込んで発泡成形体とする場合に
、ビーズを一次発泡させてから二次発泡させるまでに、
通常数日間放置することを必要としていたことからも明
らかである。すなわら、従来は、−次発泡に引き続いて
二次発泡を行ったのでは、二次発泡の効果が充分でない
と考えられていた。
It is already known that when a styrenic resin foam is heated again, the foam undergoes secondary foaming and the expansion ratio increases. In this case, it was determined that a certain amount of time must be allowed between the initial foaming, or primary foaming, and the subsequent foaming, or secondary foaming. For example, it was necessary to leave it alone for at least one star night. This means that when foaming beads made of styrene resin are placed in a perforated mold and water vapor is blown into the mold to form a foamed product, from the time the beads are firstly foamed to the time when they are secondarily foamed.
This is clear from the fact that it was usually necessary to leave it for several days. In other words, it has conventionally been thought that if secondary foaming is performed subsequent to secondary foaming, the effect of secondary foaming is not sufficient.

この発明方法では、押出発泡の過程で、−次発泡と二次
発泡とを引き絖いて行うのであるから、従来の常識から
云えば二次発泡の効果が充分でなく、従って無駄なこと
をすると考えられた。ところが、その常識に反して、押
出発泡に引き続いて水蒸気を用い、水蒸気を直接発泡体
に接触させて二次発泡を行うと、二次発泡の効果が現れ
、発泡が均一に行われることになるのである。このこと
は、全く意外なことである。
In the method of this invention, secondary foaming and secondary foaming are carried out in the process of extrusion foaming, so according to conventional wisdom, the effect of secondary foaming is not sufficient, and therefore it is wasteful. it was thought. However, contrary to common sense, if steam is used after extrusion foaming and secondary foaming is performed by bringing the steam into direct contact with the foam, the secondary foaming effect will appear and the foaming will be uniform. It is. This is completely surprising.

従来法では、押出発泡を行う場合、発泡後は形を整える
とともに冷却を続けそのまま成形体とするのであるが、
この発明方法では、従来どおり、例えば大気中で発泡さ
せ、形を整えるとともに完全に冷却するが、その冷却を
成形体の取得まで継続しないで、冷却を途中で一旦停止
する。その停止の時点は、発泡体の表面部分だけが熱変
形温度以下になった時である。すなわら、発泡体の内部
が葛温にあって、発泡力を維持され、表面部だけが冷え
た状態のとき、冷却を中止し、代わって表面から発泡体
を加熱するのである。加熱には水蒸気を用い、水蒸気を
発泡体に直接接触させる。この点で従来法とは異なる。
In the conventional method, when performing extrusion foaming, after foaming, the foam is shaped and continued to cool to form a molded product.
In the method of the present invention, the material is foamed in the air, shaped, and completely cooled as usual, but the cooling is not continued until the molded product is obtained, but the cooling is temporarily stopped midway. The point of termination is when only the surface portion of the foam is below the heat distortion temperature. In other words, when the inside of the foam is at kudzu temperature, the foaming power is maintained, and only the surface is cold, cooling is stopped and the foam is heated from the surface instead. Steam is used for heating, and the steam is brought into direct contact with the foam. This point differs from the conventional method.

発泡体を冷却すると云う従来法では、発泡体は表面が低
い倍率に発泡し、内部が薔い倍率に発泡することとなっ
た。従って、得られた成形体は、表面に堅い表皮が存在
するものとなった。ところが、上述のように、途中で冷
却を中止し再び水蒸気を接触させて加熱すると、表面部
分が、再び発泡するので、それにつれて内部の残存発泡
力も解除されて全体が均一に発泡することとなる。
In the conventional method of cooling the foam, the surface of the foam expands to a low magnification and the inside expands to a low magnification. Therefore, the obtained molded article had a hard skin on its surface. However, as mentioned above, if cooling is stopped midway and the product is brought into contact with water vapor and heated again, the surface portion will foam again, and the residual foaming force inside will also be released, resulting in uniform foaming throughout. .

上述のように、押出成形のあと工程で行う冷却を途中で
中止し、代りに水蒸気を接触させて加熱し二次発泡させ
ると、得られた成形体はただ均一に発泡しているという
だけでなく、色々な面でさらに良好なものとなる。例え
ば、発泡体は、全体として高倍率の発泡体となり、寸法
安定性がよく、さらに方向性のないものとなる。このう
ち、高倍率の点では、二次発泡により最高5割にも及ぶ
発泡倍率の上昇が見られ、これに伴ない熱絶縁性なども
向上するに至る。また、寸法安定性の点では、この成形
体は、これをやや高めの温度に曝してもさほど膨張や収
縮をしないものとなる。さらに、方向性の点では、従来
法では押出の際発泡しつつあるものを一定の速度で引取
るために、発泡体が押出方向に引延ばされるか又は圧縮
されることとなった。さらに詳述すれば、発泡に伴なう
膨張よシも早く引取ると、押出方向に引延ばされること
となって、押出方向に沿って裂は易いものとなり、逆に
おそく引取ると発泡体が圧縮され押出方向に軟かくなり
、何れにしても成形体が方向性を持つことを避は得なか
った。ところが、この発明方法によるものは、一応の発
泡が終ってまだ内部が発泡力を有するときにさらに表面
の加熱が行われるので内部も表面も自由に発泡して方向
性が減少又は消失されることとなる。従って、この発明
によるものは、品質的にすぐれたものとなる。
As mentioned above, if cooling, which is carried out in the post-extrusion process, is stopped midway through and instead heats and causes secondary foaming by contacting with water vapor, the resulting molded product will simply be uniformly foamed. Instead, it will be even better in many ways. For example, the foam will be a high-density foam as a whole, have good dimensional stability, and will be non-directional. Among these, in terms of high magnification, the expansion magnification increases by up to 50% due to secondary foaming, and the thermal insulation properties are also improved accordingly. In addition, in terms of dimensional stability, this molded product does not expand or contract significantly even if it is exposed to slightly higher temperatures. Furthermore, in terms of directionality, in the conventional method, the foam was stretched or compressed in the extrusion direction in order to take off the foaming material at a constant speed during extrusion. More specifically, if the expansion caused by foaming is removed too early, the foam will be stretched in the extrusion direction, making it easy to tear along the extrusion direction.On the other hand, if the foam is removed too late, the foam will was compressed and softened in the extrusion direction, and in any case, it was inevitable that the molded product would have directionality. However, in the method of this invention, the surface is further heated when the inside still has foaming power after foaming has finished, so both the inside and the surface foam freely and the directionality is reduced or lost. becomes. Therefore, the product according to the present invention has excellent quality.

発泡体の冷却は、自然放冷によって行うこともできるが
、好ましいのは冷却流体を金型又は発泡体に接触させる
方法である。冷却流体としては、空気又は水を用いるこ
とができる。
The foam can be cooled by natural cooling, but a preferred method is to bring a cooling fluid into contact with the mold or the foam. Air or water can be used as the cooling fluid.

発泡体の表面部分が熱変形温度以下に冷却され、内部が
まだ高温にある時点は、押出機から連続的に発泡体が押
出されて行く過程で、大よそ見当がつけられる。すなわ
ち、押出された兇泡体は、表面から次第に冷却され、冷
却はそれ自体が断熱材であるために非常にゆっくりと内
部へ進行する。
The point at which the surface portion of the foam has cooled below the heat distortion temperature while the interior is still at high temperature can be approximately estimated as the foam is continuously extruded from the extruder. That is, the extruded foam is gradually cooled from the surface, and since the foam itself is a heat insulating material, cooling progresses very slowly into the interior.

従って、発泡体の内部は相当の長い時間表面部分よりも
高温にある。そこで金型から出て表面に皮がつき、外寸
が概ね定まった時点で冷@を止め、加熱に切り替えるこ
ととする。かりに、表皮の冷却と内部の温度の関係がわ
からないときには、進行しつつある発泡体をところどこ
ろで切断してその断面を観察し、内部が残存発泡力ご膨
張する時点を選んで加熱に切り替えることができる。
Therefore, the interior of the foam remains hotter than the surface portions for a significant period of time. Therefore, when it comes out of the mold, a skin forms on the surface, and the outer dimensions are approximately determined, we stop cooling and switch to heating. However, if you do not know the relationship between the cooling of the skin and the internal temperature, it is possible to cut the expanding foam at certain points and observe its cross section, and select the point at which the interior expands due to residual foaming power before switching to heating. can.

この発明方法に2いて、冷却から加熱への切替を、発泡
体の冷却が進み過ぎた状態で行うと、殆んど二次発泡し
ないか、又は得らnた発泡体の中央部に低発泡の中間層
を生成させることになる。
In method 2 of this invention, if switching from cooling to heating is performed when the foam has cooled too much, there will be almost no secondary foaming, or there will be little foaming in the center of the resulting foam. This will generate a middle layer of .

また、逆に発泡体の冷却が不光分な状態で行うと、二次
発泡の効果が充分に現れない。そのため、切替時点は、
冷却された表面部分と、高温で残存発泡力を維持する内
部とが、適当な割合で共存する状態のときでなければな
らない。適当な状態は、熱変形温度以下に冷却された表
面部の厚みが、発泡体の中心から表面までの厚みの大よ
そ50分の1ないし2分の1の帝囲内にあるとき、さら
に好ましくは20分の1ないし5分の1の範囲内にある
ときである。
On the other hand, if the foam is cooled in the absence of light, the effect of secondary foaming will not be sufficiently achieved. Therefore, at the time of switching,
The cooled surface portion and the interior portion that maintains residual foaming power at high temperatures must coexist in an appropriate ratio. More preferably, the suitable condition is when the thickness of the surface portion cooled below the heat distortion temperature is within a range of approximately 1/50 to 1/2 of the thickness from the center to the surface of the foam. This is when it is within the range of 1/20 to 1/5.

発泡体の加熱には水蒸気を用いる。水蒸気は80℃ない
し120℃のものを用いるのが好ましい。
Steam is used to heat the foam. It is preferable to use water vapor at 80°C to 120°C.

水蒸気は、これを発泡体の表面に直接接顎させる。The water vapor brings it directly into contact with the surface of the foam.

その接触の時間は水蒸気の温度、発泡体の大きさ等を考
慮し、発泡体の表面が熱変形温度以上になって、適度に
発泡するに至ることを基準として適当に定める。その時
間は、通常1分ないし1o分の程度である。
The contact time is appropriately determined in consideration of the temperature of the water vapor, the size of the foam, etc., and based on the criterion that the surface of the foam reaches a temperature equal to or higher than the heat deformation temperature and foams appropriately. The time is usually about 1 minute to 10 minutes.

水蒸気による加熱の際及びそり直後には、発泡体が発泡
して体積を増すがら、発泡体が膨張できる状■に保持し
なければならない。それとともに、発泡体が望ましくな
い変形を起すのを避ける必要がある。このために、テフ
ロン被覆した板面で発泡体をゆるく挾んだり、又は多数
のロールを平行に並べて少くとも上下から発泡体を支え
るようにする。連続的に行うときには、板又はロール間
の間隔を入口がわから出口がわに向って次第に広くし、
広がシに応じて発泡体が膨張できるようにする。こうし
て板又はロール間を通過する間に、発泡体が水蒸気に接
触して表面から加熱されるようにする。また、加熱に際
しては、加熱区域を区切って1つの槽とし、発泡体を連
続的に槽内へ送り込み、槽内を通過させろことによって
71I′l熱を行うようにしてもよい。
During heating with steam and immediately after warping, the foam must be maintained in a state in which it can expand while it expands and increases in volume. At the same time, it is necessary to avoid undesirable deformations of the foam. For this purpose, the foam is loosely sandwiched between Teflon-coated plate surfaces, or a large number of rolls are arranged in parallel to support the foam from at least the top and bottom. When carrying out continuously, the intervals between plates or rolls are gradually widened from the entrance to the exit.
Allow the foam to expand as it spreads. During its passage between the plates or rolls, the foam is thus brought into contact with water vapor and heated from the surface. Further, during heating, the heating area may be divided into one tank, and the foam may be continuously fed into the tank and passed through the tank to perform 71I'l heating.

表jから加熱され、表面部分が二次発泡せしめられた発
泡体は、その後冷却され−、そのまま又は切断されて製
品となる。こうして得られた製品は、表面部分が内部と
同じように均−I11!細に発泡しており、表面部分と
内部との間に発泡倍率の差、すなわち密度差がないのを
特色とする。そのほか、前述のように、高倍率に発泡し
ており、方向性のないものとなり、気温の上下による寸
法変化の少ない等の特色を併せ持っている。従って、こ
の発明方法による製品は、発泡体として良好なものであ
り、この方法による板は、住宅の天井、一般建造物の屋
上又は外壁における断熱材として用いるのにとくに適し
ている。
The foamed material whose surface portion is subjected to secondary foaming by heating from the surface j is then cooled and is made into a product as it is or by being cut. The product thus obtained has a uniform surface area similar to that of the internal area. It is characterized by being finely foamed, with no difference in expansion ratio, that is, no difference in density, between the surface portion and the inside. In addition, as mentioned above, it is foamed at a high magnification, has no directionality, and has other characteristics such as little dimensional change due to temperature fluctuations. Therefore, the product produced by the method of this invention is good as a foam, and the board produced by this method is particularly suitable for use as a heat insulating material in the ceiling of a house, the roof of a general building, or the outer wall.

この発明方法において用いられるスチレン系樹脂は、ス
チレン系単量体の単独重合体に限らず、共重合体をも含
んでいる。スチレン系単量体にはスチレンのほか、メチ
ルスチレン、エチルスチレンも含まれる。また、共重合
体は、スチレン系単量体が50モル%以上含まれている
共重合体を含んでいる。共重合の相手方単量体としては
、メチクリル酸メチρ、アクリロニトリル、無水マレイ
ン酸等が挙げられる。そのうち、好適な樹脂は、ポリス
チレン、スチレン−アクリロニトリル共重合体、及びス
チレン−無水マレイン酸共重合体である。
The styrenic resin used in the method of this invention is not limited to homopolymers of styrene monomers, but also includes copolymers. In addition to styrene, styrenic monomers include methylstyrene and ethylstyrene. Further, the copolymer includes a copolymer containing 50 mol% or more of a styrene monomer. Examples of the monomer to be copolymerized include methacrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, and the like. Among them, preferred resins are polystyrene, styrene-acrylonitrile copolymer, and styrene-maleic anhydride copolymer.

この発明方法において用いられる発泡剤は、スチレン系
樹脂の熱変形温度よりも低い沸点を持った脂肪族炭化水
素、又はハロゲン化脂肪族炭化水素である。脂肪族炭化
水素の例は、プロパン、ブタン、ペンタン、ヘキサンの
ような飽和脂肪族炭化水素であり、プロピレン、ブテン
等の不飽和脂肪族炭化水素である。また、ハロゲン化脂
肪族炭化水素の例は、メチルクロライド、メチレンクロ
ライド、ジクロロジフルオロメタン、等である。
The blowing agent used in the method of this invention is an aliphatic hydrocarbon or a halogenated aliphatic hydrocarbon having a boiling point lower than the heat distortion temperature of the styrenic resin. Examples of aliphatic hydrocarbons are saturated aliphatic hydrocarbons such as propane, butane, pentane, hexane, and unsaturated aliphatic hydrocarbons such as propylene, butene. Examples of halogenated aliphatic hydrocarbons include methyl chloride, methylene chloride, dichlorodifluoromethane, and the like.

これらのものは、単独で又は2種以上のものを混合して
用いることができる。
These materials can be used alone or in combination of two or more.

樹脂に発泡剤を含ませる場所は、押出機に樹脂を供給す
る以前であっても、或いは押出機の途中であってもよい
。押出機は、−軸スクリユーのものでも、二軸スクリュ
ーのものであってもよい。
The foaming agent may be added to the resin before the resin is supplied to the extruder or during the extruder. The extruder may be a -screw or a twin-screw extruder.

この発明方法は、大きい肉厚の発泡体を作る場合にとく
に顕著な効果を発揮するが、肉厚の小さい発泡体の製造
にも適用できる。ここで大きい肉厚の発泡体とは、厚み
が10fi以上の大きさの発泡体を指している。
Although the method of this invention is particularly effective when producing foams with large walls, it can also be applied to the production of foams with small walls. Here, the term "large-walled foam" refers to a foam with a thickness of 10 fi or more.

次に実施例を挙げて、この発明方法の具体例を述べる。Next, specific examples of the method of this invention will be described with reference to Examples.

以下で単に部というのは、重量部の意味である。In the following, parts simply mean parts by weight.

実施例 樹脂としてポリスチレンを用い、ポリスチレン100部
に微粉末タルク(気泡調整剤)0.5部を配合し、この
配合物を押出機に1時間60に9の割合で供給し、押出
機の中で発泡剤を樹脂中に圧入した。発泡剤としては、
ジクロロジフルオロメタン3部とメチルクロライド7部
′との混合物を用い、この混合物を樹脂1舛に対し11
0gの割合で圧入した。
Example Using polystyrene as the resin, 100 parts of polystyrene was mixed with 0.5 part of finely powdered talc (bubble control agent), and this mixture was fed to an extruder at a ratio of 60 to 9 parts for 1 hour. The blowing agent was injected into the resin. As a foaming agent,
Using a mixture of 3 parts of dichlorodifluoromethane and 7 parts of methyl chloride, add 11 parts of this mixture to each resin.
It was press-fitted at a rate of 0g.

口金は、先端に厚み2.5 M、幅501Egの開口を
備え開口部の上下に直径10真の穴をあけ、60゜Cの
水を通して表面を冷やしながら、この開口から樹脂を温
度110℃で押出した。口金の先端には、樹脂の変形を
防ぐために成形具を密接した。
The cap has an opening with a thickness of 2.5 M and a width of 501 Eg at the tip, and holes with a diameter of 10 mm are made above and below the opening, and while cooling the surface by passing water at 60°C, resin is poured through this opening at a temperature of 110°C. Extruded. A molding tool was attached closely to the tip of the cap to prevent the resin from deforming.

成形具としては、入口寸法が口金の開口に実質的に等し
く、出口寸法が厚み82111、幅130m、長さが3
10麿であり、入口から出口に向って緩やかに拡大され
た樹脂通路を備えたものを用いた。
As a forming tool, the inlet dimensions are substantially equal to the opening of the cap, and the outlet dimensions are 82111 in thickness, 130 m in width, and 3 in length.
10 mm and provided with a resin passageway that gradually expanded from the inlet to the outlet.

成形具の樹脂通路壁には、弗素樹脂を被覆した。The resin passage wall of the molding tool was coated with fluororesin.

成形具内には60℃の水を循環させた。Water at 60°C was circulated within the molding tool.

成形具を出た発泡体は大きく発泡していた。この発泡体
に20℃の空気を吹付けて発泡体を冷却した。冷却は成
形具の端から1005のところまでとした。このとき、
発泡体は表面温度が35℃であり、中心が75℃でおっ
た。この先には長さ5mの蒸気宿を置き、槽内にQ、l
/g/c+dの水蒸気(95℃)を噴出させて、発泡体
を加熱した。
The foam that came out of the molding tool was highly foamed. This foam was cooled by blowing air at 20°C. Cooling was performed from the end of the molding tool to a point 1005. At this time,
The foam had a surface temperature of 35°C and a center temperature of 75°C. A steam house with a length of 5 m is placed ahead of this, and Q and l are placed inside the tank.
The foam was heated by blowing out /g/c+d of steam (95°C).

こうして得られた成形品について物性を測定すると、次
表の実施例の欄に示すように、密度が全体にわたって均
一化し、発泡倍率が上昇して密度が小さくなっており、
さらに圧縮強度の方向性が少なくなっていることを認め
た。また、こうして得だ成形品は若干フレキシブμなも
のとなっていた。
When the physical properties of the molded product thus obtained were measured, as shown in the Examples column of the following table, the density became uniform throughout, the expansion ratio increased, and the density became smaller.
Furthermore, it was observed that the directionality of compressive strength was reduced. Moreover, the resulting molded product had a slightly flexible μ.

なお、比較のだめに、上記の実施例の操作において、蒸
気槽を使用しないで、直接冷却して得られた成形品の物
性を比較例の欄に記載した。比較例の場合には、成形品
の厚み方向に密度差が大きく、圧縮強度の方向性の差も
大きくなっている。
For comparison purposes, the physical properties of molded articles obtained by direct cooling without using a steam bath in the operations of the above examples are listed in the column of comparative examples. In the case of the comparative example, the density difference in the thickness direction of the molded product is large, and the difference in the compressive strength direction is also large.

さらK、比較例の成形品を1週間常温に放置したのち、
95℃の蒸気槽の中で2分間加熱したが、密度が上部3
0.5、中部30.1 、下部81.4となっただけで
、殆んど二次発泡しなかった。
Sara K. After leaving the molded product of the comparative example at room temperature for one week,
It was heated for 2 minutes in a steam bath at 95℃, but the density was lower than 3.
0.5, middle part 30.1, and lower part 81.4, and almost no secondary foaming occurred.

表  成形品の物性 ※1 長さ200mの成形品の皮を上下、左右約5mず
つ剥ぎ捨て、残った発泡体を厚み方向に3分割して、上
、中、下の密度%、Q )を測定した。
Table Physical properties of molded product *1 Peel off the skin of a 200 m long molded product by approximately 5 m each on the top, bottom, left and right sides, divide the remaining foam into three parts in the thickness direction, and calculate the density % of the top, middle, and bottom (Q). It was measured.

※2 成形品の中から50m1角の試験片を切出し、押
出方向(MD )、幅方向(TD)及び厚さ方向(VD
 )の3方向から、それぞh圧縮強度’Q 測定し、M
DXTDXVD=1となる様にそれぞれの比率を求めた
ものである。
*2 Cut out a 50m square test piece from the molded product, and measure it in the extrusion direction (MD), width direction (TD), and thickness direction (VD).
) from three directions, h compressive strength 'Q is measured, and M
The respective ratios were determined so that DXTDXVD=1.

特許出願人  積水化成品工業株式会社−−− 代理人 弁理士酒井正美 −Patent applicant Sekisui Plastics Co., Ltd. --- Agent: Patent attorney Masami Sakai -

Claims (1)

【特許請求の範囲】[Claims] 発泡剤を含んだ溶融スチレン系樹脂を押出夢から低圧領
域へ押出し、発泡させて発泡体とし、発泡体の内部が高
温にあって表面部が熱変形温度以下となった状態で、発
泡体表面に水蒸気を接触させ、表面を熱変形温度以上に
加熱して発泡させることを特徴とする、スチレン系樹脂
発泡体の製造方法。
Molten styrene resin containing a foaming agent is extruded from an extruder to a low pressure region, and is foamed to form a foam. When the inside of the foam is at a high temperature and the surface is below the heat distortion temperature, the foam surface is A method for producing a styrene resin foam, which comprises bringing the foam into contact with water vapor and heating the surface to a temperature higher than the heat distortion temperature to cause foaming.
JP57099022A 1982-06-08 1982-06-08 Manufacture of stylene based resin foamed body Granted JPS58215328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099022A JPS58215328A (en) 1982-06-08 1982-06-08 Manufacture of stylene based resin foamed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099022A JPS58215328A (en) 1982-06-08 1982-06-08 Manufacture of stylene based resin foamed body

Publications (2)

Publication Number Publication Date
JPS58215328A true JPS58215328A (en) 1983-12-14
JPS6151972B2 JPS6151972B2 (en) 1986-11-11

Family

ID=14235588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099022A Granted JPS58215328A (en) 1982-06-08 1982-06-08 Manufacture of stylene based resin foamed body

Country Status (1)

Country Link
JP (1) JPS58215328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122515A (en) * 1986-11-11 1988-05-26 Sekisui Plastics Co Ltd Manufacture of styrene resin foamed sheet
JPS645823A (en) * 1987-06-29 1989-01-10 Sekisui Plastics Flexible styrene-based resin foamed plate and manufacture thereof
JPS6464820A (en) * 1987-09-04 1989-03-10 Jsp Corp Polystyrene resin foamed sheet and its production
JPH04189526A (en) * 1990-11-26 1992-07-08 Sekisui Plastics Co Ltd Styrene resin foam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699635A (en) * 1980-01-14 1981-08-11 Sekisui Plastics Co Ltd Preparation of styrene resin foam plate of large thickness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699635A (en) * 1980-01-14 1981-08-11 Sekisui Plastics Co Ltd Preparation of styrene resin foam plate of large thickness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122515A (en) * 1986-11-11 1988-05-26 Sekisui Plastics Co Ltd Manufacture of styrene resin foamed sheet
JPS645823A (en) * 1987-06-29 1989-01-10 Sekisui Plastics Flexible styrene-based resin foamed plate and manufacture thereof
JPH0661861B2 (en) * 1987-06-29 1994-08-17 積水化成品工業株式会社 Flexible styrenic resin foam board and method for producing the same
JPS6464820A (en) * 1987-09-04 1989-03-10 Jsp Corp Polystyrene resin foamed sheet and its production
JPH04189526A (en) * 1990-11-26 1992-07-08 Sekisui Plastics Co Ltd Styrene resin foam

Also Published As

Publication number Publication date
JPS6151972B2 (en) 1986-11-11

Similar Documents

Publication Publication Date Title
CA2486159C (en) To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof
US5453454A (en) Production of foam boards of high compressive strength from styrene polymers
US5650106A (en) Extruded foams having a monovinyl aromatic polymer with a broad molecular weight distribution
TW533221B (en) Method for producing an alkylene aromatic polymer or copolymer multistrand or coalesced strand foam and product thereof
US3855377A (en) Method for improving internal foam fusion of molded styrene polymer foam billets
EP1263850B1 (en) Extruded foam product with reduced surface defects
JPS58215328A (en) Manufacture of stylene based resin foamed body
US8557884B2 (en) To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof
US5898039A (en) Foaming method
JPS6052929B2 (en) Method for manufacturing expanded polystyrene sheet
JPH0348016B2 (en)
JPH07106591B2 (en) Styrene resin foam
JPS6124976B2 (en)
JPH07117094A (en) Production of heat-insulating pipe coated with foamed polystyrene copolymer
JPH02270539A (en) Manufacture of synthetic resin foam
JPS63122515A (en) Manufacture of styrene resin foamed sheet
JPH09206669A (en) Polystyrene resin foamed sheet and its manufacture
AU2003233528B2 (en) Anisotropic polymer foam
JP2007223153A (en) Method for thermoforming extrusion foamed plate
JPH0657028A (en) Polystyrenic resin foam
JPH0382518A (en) Manufacture of high foamed molding of polystyrene resin
JP3270109B2 (en) Styrene-based resin foam and method for producing the same
JPH0587361A (en) Air conditioner drain pan
JPH0587290A (en) Rear surface heat insulator for air conditioner
JPH0657029A (en) Styrenic resin foam