JPS58215076A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58215076A
JPS58215076A JP9795482A JP9795482A JPS58215076A JP S58215076 A JPS58215076 A JP S58215076A JP 9795482 A JP9795482 A JP 9795482A JP 9795482 A JP9795482 A JP 9795482A JP S58215076 A JPS58215076 A JP S58215076A
Authority
JP
Japan
Prior art keywords
film
compound
insulating film
substrate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9795482A
Other languages
Japanese (ja)
Inventor
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9795482A priority Critical patent/JPS58215076A/en
Publication of JPS58215076A publication Critical patent/JPS58215076A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To contrive to stabilize the electrical properties by a method wherein a compound semiconductor is coated with the organic solvent solution of Si hydroxide which contains constituent elements, the replacement body thereof, or the low polymers thereof, thus heated, and then an insulation film is superposed thereon. CONSTITUTION:The N type GaAs substrate 1 is spin-coated with the solution wherein Si(OH)4, RnSi(OH)4-n, or the low polymers thereof and H3AsO4 are dissolved in C3H5OH. The SiO2 insulation film 2 is formed by fixed heat treatment by condensation from the Si(OH)4 and three dimensional polymerization between each other, and simultaneously the As by the decomposition of H3AsO4 is let to be contained in the film 2. The film 2 has good adhesion property, and the film thickness can be controlled by the viscosity of the solution and the number of spinning. An Al electrode 5 is provided by superposing a SiO2 film 3 on the film 2, and an AuGe/Au electrode 4 is added on the substrate, resulting in completion. This constitution reduces the seperation of constitutent atom As from the surface of the substrate 1, and reduces the surface level density at the interface between the film 2, therefore the characteristics of the device are stabilized.

Description

【発明の詳細な説明】 (a)  発明の技術分野 不党明は半壱体長寅、特に絶豚膜の製造カ法に係り、眠
杷縁膜に按する11Z合吻半専俸の法面準位密度を駅少
ゼしめる杷tK、膜の矢流刀云に丙、する。
[Detailed Description of the Invention] (a) The technical field of the invention relates to a method for producing a half-body long tora, especially an anti-pork membrane, and a method for producing a 11Z proboscis-half-toothed membrane that is applied to a sleeping loquat membrane.杷tK, which reduces the level density, causes the membrane's arrow to flow.

(b)  技術の背景 情報処理製版の能力及びコストパフォーマンスの一層の
向上はこれに使用でれる半導体装置に刀・かっていると
iされ、論理演算装置の高速化、低消費電力化及び記憶
装置の大容量化が強力に推進されている。
(b) Background of the technology Further improvements in the capacity and cost performance of information processing platemaking are said to depend on the semiconductor devices used in this process, and improvements in the speed and power consumption of logical arithmetic units and reductions in the power consumption of memory devices are essential. Larger capacity is being strongly promoted.

現在は専らシリコン(Si)半導体装置が実用化されて
いるが、Sl半導体装置の高速化は、低電界でのキャリ
アの移動度や強電界での飽和ドリフト速度などのStの
物性により?1I11tJさ几るために、Si による
超大規模集積回路装置の1発と併行して、810代りに
ガリウム・砒素(GaAs )やその他の化合物半導体
を使用して、Siでは到達し得ない高速性、低消費電力
性を具えたすぐれた半導体装置全実現する努力が進めら
几ている。
Currently, only silicon (Si) semiconductor devices are in practical use, but the high speed of Sl semiconductor devices may be due to the physical properties of St, such as carrier mobility in low electric fields and saturation drift velocity in strong electric fields. In order to reduce the size of 1I11tJ, in parallel with the development of ultra-large-scale integrated circuit devices using Si, gallium arsenide (GaAs) and other compound semiconductors were used instead of 810, achieving high speeds that could not be achieved with Si. Efforts are underway to realize all excellent semiconductor devices with low power consumption.

(e)  従来技術と問題点 カリウム・砒g (GaAs )やインジウム・燐(I
nP )などのI−V族化合物半婢体については、少数
キャリアの寿命が短いこと、工程がバイポーラトランジ
スタより簡単であることなどの理由によって電界効果ト
ランジスタ(以下FETと略称する)が主流となってい
る。特にこれらのl−V族化合物牛導体でに、これを半
絶縁性にして基叡に用いることによって対地容量を小さ
くすることができる利点を生かして、ショットキバリア
形FET4たは接合ゲート形F’ E Tが主として使
用されている。
(e) Conventional technology and problems Potassium/arsenic (GaAs) and indium/phosphorus (I)
Regarding I-V group compound semiconductors such as nP), field effect transistors (hereinafter abbreviated as FETs) have become mainstream due to the short lifetime of minority carriers and the fact that the process is simpler than bipolar transistors. ing. In particular, these l-V group compound conductors can be used as semi-insulating conductors to reduce ground capacitance. ET is mainly used.

5i−FETとして最も多く使用されているものはMI
S形である。しかし、III−V族化合吻半導体につい
てはMIS形F’ETは未だ試作段階全貌しない。これ
にGaAs化合物半纏体については後に脱明する如くn
型反転層の形成が極めて困難であること、またInPに
ついてにGaAsに比較してn型反転層は形成され易い
が、絶縁膜自芽ならひに絶縁膜とInPとの界面の篭気
的江質の安定化かN要な藺題となっていることなどによ
る。
The most commonly used 5i-FET is MI.
It is S-shaped. However, regarding III-V compound semiconductors, MIS type F'ETs are not yet in the prototype stage. Regarding the GaAs compound semi-enhanced body, as will be clarified later, n
It is extremely difficult to form a type inversion layer, and although it is easier to form an n-type inversion layer for InP than for GaAs, if the insulating film is self-sprouting, it is difficult to form a type inversion layer. This is due to the fact that stabilization of quality has become an important issue.

この化合物半4体と絶縁膜との界面の安定化に先に述べ
たンヨットキバリア形FETについても間=W生じてい
る。即ち、ショットキバリア形FETのゲート−極と、
ソース6極もしくはドレイン電極との間の半導体面上に
は、例えば二ば化ンリコン(SiOz)等の絶縁膜が配
設される。この7ヨツトキバリア形FETVcおいて、
GaAs等の半4 体9面の、ゲート直下のショソトキ
バU7(7)空乏層からソースもしくはドレイン電極に
到る前記絶縁膜に接する界面部分に表面空乏層がかなり
広く形成され、その結果このFETの筒周波特性などの
劣化を招いている。
In order to stabilize the interface between the compound semi-quartet and the insulating film, the gap =W also occurs in the above-mentioned Nyotoki barrier type FET. That is, the gate-pole of the Schottky barrier FET,
An insulating film, such as divanide silicon (SiOz), is provided on the semiconductor surface between the source hexode or the drain electrode. In this 7-layer barrier type FETVc,
A surface depletion layer is formed quite widely at the interface part of the 9th surface of a half-metal material such as GaAs, which is in contact with the insulating film from the depletion layer directly under the gate to the source or drain electrode, and as a result, the depletion layer of this FET This causes deterioration of cylinder frequency characteristics, etc.

先に述べたGaA s化合物半導体についてn型反転層
の形成が極めて困難であること、また前記の半導体界面
における空乏層の形成ば、GaAsの表面には構成原子
空位による表両立位が票制帯の中央付近に存在して表面
電位を固定する結果である。
It is extremely difficult to form an n-type inversion layer in the GaAs compound semiconductor mentioned above, and if the depletion layer is formed at the semiconductor interface, the surface of GaAs will have a voting band of compatible positions due to constituent atomic vacancies. This is the result of being present near the center of the surface and fixing the surface potential.

また、InPの場合にはこの表面準位が伝勇計の下端近
傍に生じるために、GaASに比較してnu反転層が形
成され易くなる。
Furthermore, in the case of InP, since this surface level occurs near the bottom end of the conductor, the nu inversion layer is more likely to be formed than in GaAS.

半導体面上に絶線膜を形成した場合に生ずる前記の表面
準位の存在は、MISダイオードを形反し、半導体と該
絶縁膜上に設けた金5属電称とのtillに印加された
電圧Vgに対す7S撫価的なキャパシタンスC全1足す
ることによって計価することができる。
The existence of the above-mentioned surface states that occurs when a disconnected film is formed on the semiconductor surface inhibits the MIS diode, and the voltage applied to the till between the semiconductor and the metal oxide layer provided on the insulating film. It can be calculated by adding 1 to the total capacitance C of 7S to Vg.

すなわち、等価BジなキャパシタンスCrri、e1r
*膜部分のキャパシタンスC1と、金属電極下の半導体
表面に生ずる空乏層のキャパシタンスc2との直列値C である。牛否体の伝導性がn型であるとするとさ、印加
電圧Vgに対する等価キャパシタンスCの1直は理想的
には第1図例示す如くに変化する。Vg〉0の領域1で
Vgが大きいときには半導体表面の成子の畜憤1層によ
ってC2が大きいためにCははソC+ Ic b L 
くなる。Vg全次第[減少さぞるとC7従ってCが減少
するが、vgく0となって空乏層音生じる領域■では、
空乏f曽幅の増大とともにc、、cが減少する。しかし
Vg < Oでlvglが犬さくp型反転層を生じる領
域■に到れは、空乏層幅はそれ以上には増大ぞす、表面
に誘起された正孔によるキャパシタンスが玩わtLるの
で、褥ひC2,Cは増大する。たたし、キャパシタンス
Cを高周及で演11足すると、p型反転層の形成がこの
筒波数に追従できないためにこの部分のキャパシタンス
は観測されず、破線Hが得られるために反転層領域VC
>けるキャパシタンスのヤこ犬は低周波によって測定し
なければならない。
That is, the equivalent B di capacitance Crri, e1r
*This is the series value C of the capacitance C1 of the film portion and the capacitance C2 of the depletion layer generated on the semiconductor surface under the metal electrode. Assuming that the conductivity of the corpuscular body is n-type, the equivalent capacitance C with respect to the applied voltage Vg ideally changes as shown in FIG. 1. When Vg is large in region 1 where Vg〉0, C2 is large due to the first layer of nuisance on the semiconductor surface, so C is so C + Ic b L
It becomes. Depending on Vg, C7 will therefore decrease, but in the region ■ where vg becomes 0 and depletion layer sound occurs,
As the depletion f width increases, c, , c decrease. However, when Vg < O and lvgl reaches the region (2) where a p-type inversion layer is formed, the depletion layer width increases further, and the capacitance due to the holes induced on the surface decreases. Pressure folds C2 and C increase. However, if we add the capacitance C at high frequencies, the formation of the p-type inversion layer cannot follow this cylinder wavenumber, so the capacitance in this part is not observed, and a broken line H is obtained, which indicates the inversion layer region. VC
The capacitance that can be measured must be measured by low frequency.

化合物半導体面上に絶縁膜を形成する方法としでに、該
半導体の直接さマ化、化字気相5又長法(CVD法〕に
よるS 1021窒化シリコン(S i3N4 )等の
堆積など相々の方法が従来行なわれている。
Methods for forming an insulating film on a compound semiconductor surface include direct thinning of the semiconductor, deposition of S1021 silicon nitride (S i3N4 ), etc. by CVD method (CVD method), etc. This method has been conventionally used.

しかしながらこれらの絶縁)G+’f−用いて化合物半
導体装置を形成した場合には先に述べた如き問題点があ
り、例えばGaAs#4体上に8102 址4;i膜を
設けてNi I Sタイオード?形b5シ、元に運べた
等価キャパシタンスC−印加電圧Vg刊性を洪11定す
るならは宛2図に示す例の如き形状が得られ、Vg<O
lvgl大の領域Vこおけるキャパシタンスの増大、す
なわち反転層の形成がシめて困−でに石ことか実証され
る。
However, when a compound semiconductor device is formed using these insulators (G+'f-), there are problems as mentioned above. ? If we define the original equivalent capacitance C-applied voltage Vg for the shape b5, we get a shape like the example shown in Figure 2, and Vg<O.
It is demonstrated that the increase in capacitance in the region V where lvgl is large, that is, the formation of an inversion layer, is very difficult to suppress.

(d)  発明の目的 本先明は化合物半導体装置について、絶g族シこ接する
化合物中4休界面の表面卆色苗反を減少せしめてそのイ
気的性質全安定化ぞしめる炉わr庇の製造方法を提供す
ることを目的とする。
(d) Purpose of the Invention The present invention relates to a furnace for compound semiconductor devices, which reduces the surface color resistance of the four-terminal interface in a compound that is in contact with the G group, thereby completely stabilizing the chemical properties of the compound semiconductor device. The purpose is to provide a manufacturing method for.

(e)  勇・1明の構成 本発明の前h[1目的1は、化合物子8ず体面−Fに、
該化合物半導体1体を−(;す成する元素の少くとも−
を含む、ンリコン水6〕什物もしくはその11″+ 4
突f圭又にそノ1らの缶分子′tif合体のイI機溶媒
f’cF液を6ご布して加熱処fIIIをイ■なうこと
により、前iL′光素を含む/リコン(’、′)化物絶
縁膜全形成し、しかる抜、該シリコン酸化唆l絶縁BQ
上に史に虻」≠胆【を設けることにより達成でれる。
(e) Isamu・1mei's structure Before the present invention
At least - of the elements constituting one compound semiconductor -(;
Containing water, 6] goods or 11" + 4
By distributing the solvent f'cF solution of the can molecules 'tif coalescence of 6 times to Keimata Sono 1 and applying heat treatment fIII, the former iL' light element is contained/recombined. (',') Completely form the compound insulating film, and then remove the silicon oxide insulator BQ.
This can be achieved by creating a history above.

(f)  ’i(−明の′、、1.:が【1例以]・本
!+(、明を2友)朋f、iljにより11m1をと比
1して具体タイオードの主閥扱:j’、i工程を・7F
すし丁曲図で矛、る。
(f) 'i (-Ming's',, 1.: is [more than 1 example], book! + (, Ming is 2 friends) Tomo f, ilj compares 11m1 with 1 and treats it as the master of the concrete tiode. :j', i process・7F
The sushi choku diagram is spear, ru.

;A: J′l”’l (al VC7g:すZll 
(n ;’i!!GaAs &板1十V(ノリコンm 
11: g’n w、c*lI<、2 Y 、’l’l
’J’くするが、ぞの九〉1戊力法の[4111:! 
’l・1il−のlll+りである。
;A: J′l”'l (al VC7g:suZll
(n;'i!!GaAs & board 10V (Noricon m
11: g'n w, c*lI<, 2 Y, 'l'l
'J' Kusuruga Zono 9〉1 戊力法[4111:!
It's lll+ of 'l・1il-.

仝夫j、’1.Ilン11(・C、i、・いて(1、ン
リコン水1及化物(δ1(01−1) 、) <、L<
 kJ’j−のIi:iJ、jlト(RnS i (O
H) 4−n ;ただしRは有機基、n二1乃至3)、
又はそれらの低分子和合体と、砒酸(H3AsO4)等
の砒素(As)を含む化合物とをエタノール(C2Hw
OH)等の有機溶媒に溶解させた溶液を用い、この溶液
をスピンナー上に固定した前記GaAs基板1に滴下し
、スピンナーを回転しつつ塗布する。
Yuoj, '1. Iln11(・C,i,・te(1, chloride water monomer compound(δ1(01-1),) <, L<
Ii of kJ'j-: iJ, jlt(RnS i (O
H) 4-n; where R is an organic group, n21 to 3),
Alternatively, a low-molecular combination thereof and a compound containing arsenic (As) such as arsenic acid (H3AsO4) are mixed in ethanol (C2Hw
Using a solution dissolved in an organic solvent such as OH), this solution is dropped onto the GaAs substrate 1 fixed on a spinner, and applied while rotating the spinner.

その後、まず例えは温度350(℃L 時間30分間ぜ
度、次いで例えば温度650乃至700ピC〕時間40
分間権度の加熱処理を施すことにより、例えば 81(OH)4→S 102 +2HtOの如き縮合及
び5hot相互間の三次元重合を行々わせてシリコン酸
化物絶縁膜2を形成し5、同時に2HIAsO,→As
2O5+ 31−120等の分解が行なわれて、化合物
半導体を構成する元素の−であるAsがシリコン酸化物
絶縁膜2に含1れた状々hとなる。
After that, first, for example, the temperature is 350 degrees Celsius for 30 minutes, then the temperature is 650 to 700 degrees Celsius for 40 hours.
By performing heat treatment for a few minutes, a silicon oxide insulating film 2 is formed by condensation such as 81(OH)4→S102 +2HtO and three-dimensional polymerization between 5hots, and at the same time 2HIAsO ,→As
2O5+ 31-120, etc. are decomposed, and As, which is a negative element constituting the compound semiconductor, is contained in the silicon oxide insulating film 2 to form h.

とのノリコン酸化物絶縁膜2の形成に際して、溶液自体
の表面張力によって半導体面もしくは、半導体面−ヒに
既に設けられている箪極智に溶液が付着するためにこの
絶縁膜2の活着性が良く、また、早蟻体面上に票に設け
られている電極等の上にに、通宵、のCVD伍等矢−よ
って形成さオする絶縁膜ならl−′午ζ′体面上と同号
tl、<はそれ以上のハ≠さに泡、ズするのjIC対し
て、不労aによる東金には、′I□、訣等の上の膜厚を
傅くすることかでさる。、膜厚の差すなわち、i℃様ス
ク2の勾配部分C芯液のγ5度及びIB e=力によっ
てd、某することができる。
When forming the Noricon oxide insulating film 2, the surface tension of the solution causes the solution to adhere to the semiconductor surface or to the grooves already provided on the semiconductor surface. In addition, if an insulating film is formed overnight by CVD on the electrodes etc. provided on the surface of the early ant body, the same name as on the surface of the early ant body is used. In contrast to jIC, where ,< is more than ≠, the thickness of the film above ``I□, tip, etc., can be adjusted. , the difference in film thickness, i.e., the slope part of the screen 2 like i°C, γ5° of the core liquid and IB e=d, can be made to a certain extent.

次いで第3はI(b)に示す!/」く、つ・■肛のシリ
コン酸化吻七縁族2上に第2の忙緑、嗅3を形成する。
Then the third one is shown in I(b)! /'' Ku, Tsu・■ Forms a second green leaf, olfactory 3, on the silicon oxidized proboscis 7-line group 2 of the anus.

こ几(は/リコンば化1)絶籾慎2のλ気辷稼6(ζ必
ずしも光分で(グなく、所贅のに預仁籠を与えるために
形成するもので、材料としてはイタ1」えば5i02゜
513N++窒化アルミニウム(AIN)等を任伏て選
択することかでさ、又その形截万砥も2・・」えはCV
D汰等16]れの刀ユを用いてtよい。
This is not necessarily made of light, but it is formed in order to give a deposit basket, and as a material it is 1" For example, 5i02゜513N++ aluminum nitride (AIN) etc. should be selected at will, and its shape is also 2..." Eha CV
16] It is good to use your sword.

次いで第3図(cJに示す如く、n洪す竜与4をし、」
えは金・ケルマニウム(AuGe)/ミ(Au)青(′
こよって1.絶縁膜3上の醸伐5全一」え(Sアルミニ
ウム(Aし)寺(Cよって配設する。
Next, as shown in Figure 3 (cJ), do the 4 dragons that will rise,
Gold/Kermanium (AuGe)/Mi (Au) Blue ('
Therefore, 1. The layer 5 on the insulating film 3 is arranged as follows.

以上の様にして得られた本実り例のMISダイオードの
等価キャパシタンスC−印加篭圧Vg特性を測定した結
果、測定周蔑数200(H7)以下において、第4図に
示す6(Hz)における測定例の如< 、Vg < O
r 、lvg (犬のときに等価ヤヤバノタンスCの増
大が明確に現われ、反転層が形成されていることが確認
された。
As a result of measuring the equivalent capacitance C-applied cage pressure Vg characteristic of the MIS diode of this fruitful example obtained as described above, it was found that at a measurement frequency of 200 (H7) or less, at a frequency of 6 (Hz) shown in Fig. 4, As in the measurement example, Vg < O
r, lvg (In the case of dogs, an increase in the equivalent Yayabanotans C clearly appeared, confirming that an inversion layer was formed.

この反転層の形成は、GaAS牛導体基孜1のシリコン
酸化物絶縁膜2に按する界面にお・いて衣iM+電位を
固定する弄面準位否夏がへ少して、半導体装置の特性に
さほどの影響を及さなくなったことを意味する。これに
シリコン酸化物絶縁膜2に半導体を構成する元素の−で
あるAsが含1れるために、半導体基板1の表面に2け
る構成原子のそ脱が減少したことによる。
The formation of this inversion layer reduces the level of the active surface level that fixes the iM+ potential at the interface between the GaAS conductor substrate 1 and the silicon oxide insulating film 2, which affects the characteristics of the semiconductor device. This means that it no longer has a significant impact. This is because the silicon oxide insulating film 2 contains As, which is an element constituting the semiconductor, and therefore the amount of constituent atoms removed from the surface of the semiconductor substrate 1 is reduced.

との半導体全構成する原子の離脱全抑制する効果は、半
畳体衣面が繍出した状態で7Il]熱することのない本
兜明の/リコン肢化%J絶味族形成方法を用いることに
よって符に参者となる。
The effect of completely suppressing the dissociation of the atoms that make up the entire semiconductor is achieved by using Akira Honkabu's method of forming the % J Zemizoku group, which does not heat up, in the state where the surface of the semiconducting body is embossed. Become a participant in the sign.

また前記芙施例においてはシリコン酸化物馳イ、水膜2
にAsを含ませたが、ガリウム(Ga)を含フせること
によっても本笑庭例に近い効果?得ることができる。更
に半跨体基板か他の化合物例えばInPであるときには
、前記実施例のA9に代えて例えば燐(P)を用いてi
T5! 療の効果ケ得ることができる。
In addition, in the above embodiment, silicon oxide film 2, water film 2
Although As is included in the , does adding gallium (Ga) produce an effect similar to the Honsho Niwa example? Obtainable. Furthermore, when the semi-straddle substrate is another compound such as InP, for example, phosphorus (P) may be used in place of A9 in the above embodiment.
T5! You can get the benefits of treatment.

(g)  発明の効果 本発明の製造方法によiは、以上説明した叩く、化合働
手4体の絶縁膜に按する界面において、その表面準位密
度を減少せしめて、電気的8負を安定化することがでさ
る軸条、例えはMISダイオード等における電圧印刀a
に対する電流応谷丑性の向上、FET等における雑音の
減少、受光装置における受光領域外への空乏層拡大によ
る暗電流の増加の防止など、化合物子一体i−全叡の特
性。
(g) Effects of the Invention The manufacturing method of the present invention reduces the surface state density at the interface between the four compound workers and the insulating film described above, thereby increasing the electrical 8 negative. A shaft that can be stabilized, for example, a voltage stamp a in an MIS diode, etc.
Characteristics of i-zenei compound molecules include improved current response characteristics, reduced noise in FETs, etc., and prevention of increase in dark current due to expansion of the depletion layer outside the light-receiving region of the light-receiving device.

少笛、侶頓性を向上することかでさる。It's about improving one's short flute and one's composure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMISダイオードの寺1u11ヤヤハンタンス
ー印刀0゛蝿圧特性の良好なVI奮示f図衆、第2図は
元来の製造方法によるGaAs M、I Sダイオード
の前記特性の例を示f図表、第3〆:(aj乃至(C)
(一本発明の尖加ψ」を示す断面図 m4図は前1シ*
ミ匙グiの等価キャパシタンス−印六0徒′圧竹性のf
iiTh示す1弐である。 図において、■はGaAs化合物半4働手板、2はシリ
コン酸化物絶縁膜、  3i−1:絶縁膜、4はn (
If・。 電極、5は電極を示す。 い詮 稟1図 竿Z図 o   1F1)ptB−F) 、15ラ 図 ヤ′4′図 θ      卯1’Utfi−7ン
Figure 1 shows an example of the characteristics of a MIS diode with good pressure characteristics, and Figure 2 shows an example of the characteristics of a GaAs M, IS diode manufactured using the original manufacturing method. f diagram, 3rd part: (aj to (C)
(Cross-sectional view showing the peak addition ψ of the present invention)
Equivalent capacitance of the spoon i - 60 feet' pressure f
iiTh is 12. In the figure, ■ is a GaAs compound half-4 working plate, 2 is a silicon oxide insulating film, 3i-1 is an insulating film, and 4 is an n (
If. Electrode, 5 indicates an electrode. 1F1) ptB-F)

Claims (1)

【特許請求の範囲】[Claims] 化合物半導坏面上に、該化合物十響2本を構成する元f
の少くとも−を含む、シリコン水酸化物もしく(はその
に4体又はそれらの低分子す合体の有機溶媒浴液を塗布
して加熱処理を行なうことにより、前記元素を含むシリ
コン酸化物粘椋腹を形成し、しかる優、該シリコン叔化
物絶林族上に更に絶縁膜を設ける工程を含んでなること
を特徴とする半導体装置の衾遣方紐。
On the compound semiconductor cutting surface, the element f constituting the two tenkyo of the compound
By applying an organic solvent bath solution of silicon hydroxide (or four of them or a low-molecular combination thereof) containing at least - to the silicon oxide viscous material containing the above-mentioned elements, the silicon oxide viscosity containing the above elements is applied and heated. 1. A method for attaching a semiconductor device, comprising the steps of forming a bulge, and further providing an insulating film on the silicon hydride.
JP9795482A 1982-06-08 1982-06-08 Manufacture of semiconductor device Pending JPS58215076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9795482A JPS58215076A (en) 1982-06-08 1982-06-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9795482A JPS58215076A (en) 1982-06-08 1982-06-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58215076A true JPS58215076A (en) 1983-12-14

Family

ID=14206056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9795482A Pending JPS58215076A (en) 1982-06-08 1982-06-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58215076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155722A (en) * 1989-09-29 1992-10-13 Kabushiki Kaisha Toshiba Recording/reproducing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155722A (en) * 1989-09-29 1992-10-13 Kabushiki Kaisha Toshiba Recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
US8927379B2 (en) Method to bridge extrinsic and intrinsic base by selective epitaxy in BiCMOS technology
US4199384A (en) Method of making a planar semiconductor on insulating substrate device utilizing the deposition of a dual dielectric layer between device islands
US3943542A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
US20150325436A1 (en) Semiconductor devices including an electrically-decoupled fin and methods of forming the same
JP2010050459A (en) Method of forming partial germanium-on-insulator structure acquired by concentration of germanium
CN105070663B (en) Silicon carbide MOSFET channel self-alignment process implementation method
JPH10247636A (en) Semiconductor device and its manufacture
DE3780907T2 (en) DOPED SEMICONDUCTOR CONTACT TO CONTACT.
JPH01287942A (en) Soi semiconductor structure and its manufacture
US3685140A (en) Short channel field-effect transistors
US3863330A (en) Self-aligned double-diffused MOS devices
US3919765A (en) Method for the production of integrated circuits with complementary channel field effect transistors
US4523368A (en) Semiconductor devices and manufacturing methods
JPS58215076A (en) Manufacture of semiconductor device
JPH11121738A (en) Mos transistor
CN109817703A (en) High on-off ratio graphene hetero junction field effect pipe and preparation method thereof
US4054989A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
US9627482B2 (en) Reduced current leakage semiconductor device
JPS6054450A (en) Manufacture of semiconductor device
US3776786A (en) Method of producing high speed transistors and resistors simultaneously
US3706918A (en) Silicon-silicon dioxide interface of predetermined space charge polarity
JP2005026242A (en) Semiconductor element and method of manufacturing the same
CN113363255B (en) Semiconductor device and preparation method thereof
KR20000010131A (en) Silicon-on-insulator device
Moravvej-Farshi et al. Effects of interfacial Oxide layer on short-channel polycrystalline source and drain MOSFET's