JPS58214649A - Control of air-fuel ratio of internal-combustion engine - Google Patents

Control of air-fuel ratio of internal-combustion engine

Info

Publication number
JPS58214649A
JPS58214649A JP9728582A JP9728582A JPS58214649A JP S58214649 A JPS58214649 A JP S58214649A JP 9728582 A JP9728582 A JP 9728582A JP 9728582 A JP9728582 A JP 9728582A JP S58214649 A JPS58214649 A JP S58214649A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
fuel
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9728582A
Other languages
Japanese (ja)
Other versions
JPH0366503B2 (en
Inventor
Yutaka Sawada
裕 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9728582A priority Critical patent/JPS58214649A/en
Publication of JPS58214649A publication Critical patent/JPS58214649A/en
Publication of JPH0366503B2 publication Critical patent/JPH0366503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Abstract

PURPOSE:To improve the fuel consumption, reduce the harmful components in exhaust gas, and suppress acceleration and deceleration shock by correcting the value of lean air-fuel ratio determined in accordance with the load of an engine according to the load variation rate of the engine. CONSTITUTION:A controller 50 calculates a fuel injection quantity on the basis of the data of each sensor and outputs said value into a fuel injection valve 23, and further calculates a bypass air quantity and outputs said value into a bypass flow-rate controlling valve 20. Air-fuel rate control by the controller 50 is performed by switching the air-fuel ratio to either a theoretical air-fuel ratio or a lean air-fuel ratio. When control is executed through a lean air-fuel ratio, the lean air-fuel ratio is set to a value in correspondence with the load of the egine, and the value thus determined is corrected according to the engine load variation rate. Thus, improvement of fuel consumption, reduction of the harmful components in exhaust gas are permitted, and acceleration and deceleration shock can be suppressed.

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御方式、特に機関の運転状
態に応じて理論空燃比または希薄空燃比のいずれかの空
燃比に切り換えて制御を行う空燃比制御方法の改良に係
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine, and more particularly to an air-fuel ratio control method that performs control by switching to either a stoichiometric air-fuel ratio or a lean air-fuel ratio depending on the operating state of the engine. This is related to improvements.

近年、エネルギー事情の悪化、大気汚染を防ぐための排
ガス規制の強化に伴って内燃機関の熱効率をより向上し
、また排ガスをよりクリーンにす−1− るlノ払、装置が研究、開発され、市場に1是供されて
いる。
In recent years, with the deterioration of the energy situation and the tightening of exhaust gas regulations to prevent air pollution, research and development have been conducted on devices that can further improve the thermal efficiency of internal combustion engines and make exhaust gas cleaner. , one is available on the market.

それらの一つに空燃比(△/l−)即15、機関に送I
)れる混合気中の空気と燃料の重量圧を制御し、刊ガス
中の自害成分をより低く抑えるど」(に熱動・朴を一高
める62人が知られている。
One of them is the air-fuel ratio (△/l-), which is 15, which is sent to the engine.
62 people are known to raise the level of Nesdo and Park by controlling the weight pressure of the air and fuel in the air-fuel mixture to keep the self-harming components in the gas to a lower level.

また、空燃比を制■づる方式どしては、単に空燃比を理
論的に定まる理論空燃化によっで制御1−るのみでなく
、機関の運転状態が所定の範囲にあるならば、理論空燃
比よりも熱効率が良くしかも411刀ス中の自害成分の
少ない希薄空燃比に切り換え゛C空燃比を制御する方式
が提案されている。
In addition, the method of controlling the air-fuel ratio is not only controlled by the stoichiometric air-fuel ratio determined theoretically, but also by controlling the air-fuel ratio if the operating condition of the engine is within a specified range. A method has been proposed in which the air-fuel ratio is controlled by switching to a lean air-fuel ratio that has better thermal efficiency than the stoichiometric air-fuel ratio and has fewer self-harmful components in the 411 engine.

尚、この様な方法においては、16 f+U空燃比を機
関が失火しない範囲で、−教的な値例えば20としく定
めるか、若しくは機関負仙に対応して変化Jる飴に定め
られているに過ぎず、機関負荷に対応して空燃比を変化
Jる場合でも、機関が加;*状態の時も定常状態の時も
機関負荷が同じならば同じ空燃比で制御されている。
In addition, in such a method, the air-fuel ratio of 16f+U is set to a certain value, for example, 20, within a range that does not cause the engine to misfire, or it is set to a value that changes according to the engine's negative ratio. However, even if the air-fuel ratio is changed in response to the engine load, if the engine load is the same, the air-fuel ratio is controlled both when the engine is in the acceleration state and in the steady state.

J:た、加速時は希薄空燃比による制御では出力−2− が不足り−ることになり、出力が不′AN 、Jる揚台
は自Vノ的に希薄空燃比J、すt〕リッf(ilill
密)な理論空燃比に自動的に切り商える。J、うにされ
ている。
J: Also, during acceleration, control using a lean air-fuel ratio will result in an insufficient output of -2-, so the output is insufficient, and the lift platform has a lean air-fuel ratio J,st] Liff(illill)
Automatically switches to the densest stoichiometric air-fuel ratio. J. It's being treated like a sea urchin.

従って加速状態におい′c1.1.、空燃化が・希薄空
燃比からlllll論比燃比1、k、 I’l’ il
l空燃比から希薄空燃比へと頻繁に切り換λj)れ、空
燃比が切り換えられることにj、り後記第0図X点/+
目5 ’/点に示1−如くトルクが変ること#”:’>
、1.II V) 1%り時点でショックが発生ηる。
Therefore, in the acceleration state 'c1.1. , air-fuel conversion from lean air-fuel ratio to lllll stoichiometric fuel ratio 1, k, I'l' il
The air-fuel ratio is frequently switched from l air-fuel ratio to lean air-fuel ratio λj), and the air-fuel ratio is switched at point X/+ in Figure 0 below.
Item 5: The torque changes as shown in point 1.#":'>
, 1. II V) Shock occurs at 1%.

この様イ「↓II!象は、運転性の面から見て好ま5い
ごどで1.t <↑く、この現象の発生を少なくする抑
えるために一8防空燃比を最適な1nよりもややリッチ
イヌ値に定めている1゜ ぞの結果、熱効率が低十1ノ燃費を充分に向上さ1!る
ことができず、511ζIJIガス中の言置成分も空燃
比をリッ゛fにJる分だ番目M )1口るどいった問題
が残されCいる。
In this case, from the point of view of drivability, it is preferable to use 1.t <↑, and in order to reduce the occurrence of this phenomenon, the 18 air-defense fuel ratio is lower than the optimal 1n. As a result of setting a slightly rich value of 1°, the thermal efficiency could not be sufficiently improved to improve the fuel efficiency of low 11. There is still one problem remaining.

本発明σ月1的は、1)d(の問題を解決した内燃機関
の空燃比制御方法をII+’、 41い)ることにある
The primary objective of the present invention is to provide an air-fuel ratio control method for an internal combustion engine that solves the problems 1)d(II+', 41).

かかイ司′1的は、内燃機関の運転状態に応じて空燃比
を、31]1論空燃比4(、た(、L希iIヤ空燃比の
いずれか33− に切り換えて制御でる内燃機関の空燃比制御方法におい
て、上記−8薄空燃比にj;つで制御を行う運転状態の
肋、該希薄空燃比を該機関の負荷に応じた値に定めると
共に、当該定めに値を該機関の負荷変化率に応じて補正
することを狛徴どする内燃機関の空燃比制御方法によっ
て達成される。
The main purpose of the engine is to control the internal combustion engine by switching the air-fuel ratio to any one of the following: In the air-fuel ratio control method for an engine, the lean air-fuel ratio is set to a value corresponding to the load of the engine, and the value is applied to the above-mentioned -8 lean air-fuel ratio. This is achieved by an air-fuel ratio control method for an internal combustion engine that requires correction according to the engine load change rate.

以下に本発明を、実施例を挙げて図面と共に説明づる。The present invention will be explained below by giving examples and referring to the drawings.

第1図は本発明による空燃比制御方法が適用されI5二
機関(エンジン)の−実施例を示す概略構成図である。
FIG. 1 is a schematic diagram showing an embodiment of an I5 twin engine to which the air-fuel ratio control method according to the present invention is applied.

図においで、1はエンジンを示してa3す、該エンジン
1はシリンダブロック2とシリンダヘッド3とを右して
おり、シリンタブにトンクはイの内部に形成されたシリ
ンダボアにピストン4を受)J入れており、そのビス1
ヘン4の一1]方に前記シリンダヘッド3と共に燃焼室
5を形成している。
In the figure, 1 indicates an engine (a3).The engine 1 has a cylinder block 2 and a cylinder head 3 on the right, and a cylinder tab has a tonk and a piston 4 is received in a cylinder bore formed inside the cylinder. The screw 1
A combustion chamber 5 is formed together with the cylinder head 3 on one side of the cylinder 4.

シリンダヘッド3には吸気ボー1−〇とυ1気ボー(〜
7とが形成されており、これらボートは各々吸気バルブ
8、排気バルブ9にJ:り開閉されるようー  4  
ー にhっている、、31、たシリンダヘッド3には点火プ
ラグ10がIRすf=l l:Jられている。点火プラ
グ10には点火]イル11に(発生りる電流がディスト
リビコータ゛12を杼C11(給され、燃焼室5内にて
放電に」、る火イ1“・、4発/1!するJ、うになっ
ている。
Cylinder head 3 has intake bow 1-〇 and υ1 air bow (~
7 are formed, and these boats are opened and closed by intake valve 8 and exhaust valve 9, respectively.
The spark plug 10 is attached to the cylinder head 3, which is located at 31. A current generated in the spark plug 10 is supplied to the distributor 12 and is discharged in the combustion chamber 5, causing a fire 1, 4 shots/1! J. The sea urchin is turning.

吸気ボート6には吸気ン二ホールド13、サージタンク
14、ス[1ツトルボデー15、吸気チューブ16、■
−)′ノ1ー1メータ′17、]−アアクリナナ1の順
に接続されている1,またエンジン吸気系にはイのス[
1ツ1−ルボデー15をバイパスして吸気ヂコーブ16
ど1ノージタンク17Iどを接続するエアバイパス通路
′10が設置Jられでおり、このエアバイパス通路19
は電ta式のバイパス流量制御弁20により開閉及びそ
の間1−1度を制御されるようになっている。
The intake boat 6 includes an intake hold 13, a surge tank 14, a suction body 15, an intake tube 16,
-)' No. 1-1 meter'17, ]-A-acrylic annular 1 are connected in this order, and the engine intake system has an
Bypassing the 1st 1-le body 15, the intake dicove 16
An air bypass passage '10 is installed to connect the air tank 17 and the air bypass passage 19.
is controlled by an electric ta type bypass flow rate control valve 20 to open and close the valve 1-1 degrees.

また、排気ボー1へ7には剛気ン二ホールド21、排気
管22が接続されている。
Further, a rigid air intake hold 21 and an exhaust pipe 22 are connected to the exhaust bow 1 to 7.

吸気マニホールド133の各吸気ボー1〜6に対する接
続端近くに1,1燃別噴口・1弁23が取り付1)られ
ている。燃料噴射弁23には燃料タンク24に貯−ミ)
ー えられているガソリンの如き液体燃料が燃料ポンプ25
により燃料供給管26を経て供給されるようになってい
る。
A 1,1 combustion nozzle/1 valve 23 is attached 1) near the connection end of the intake manifold 133 to each of the intake bows 1 to 6. The fuel is stored in the fuel tank 24 in the fuel injection valve 23)
Liquid fuel, such as gasoline, is supplied to the fuel pump 25.
The fuel is supplied via the fuel supply pipe 26.

ス1]ツ1〜ルボデー15には吸入空気量をIII I
Ill !+−るス1」ットルバルブ27が設【プられ
ており、このス1]ットルバルブ27はアクセルペダル
28の踏み込みに応じて駆動されるようになっている。
S1] The amount of intake air is set for parts 1 to 15.
Ill! A throttle valve 27 is provided, and this throttle valve 27 is driven in response to depression of an accelerator pedal 28.

そしてエア70メータ17はエンジン吸気系を流れる空
気の流量を検出し、それらに応じた信号を制御11肢置
50へ出力するにうになっている。
The air 70 meter 17 detects the flow rate of air flowing through the engine intake system and outputs a signal corresponding to the flow rate to the control unit 50.

またディストリビ1−夕12にはこれらの回転数及び回
転位相、換言すればエンジン回転数とクランク角を検出
する回転数トンク29が組み込まれており、これが発生
する信号は制御装置50に入力されるようになっている
Further, the distributor 1-12 has a built-in rotation speed tonk 29 that detects the rotation speed and rotation phase, in other words, the engine speed and crank angle, and the signal generated by this is input to the control device 50. It has become so.

IJIガス再循環(FGR)通路30は排気分岐管31
どサージタンク14とを接続し、デコーティ制御形式の
排ガス再循環弁32は電気パルスに応動してE G R
通路面積を変化さゼる。そして排ガス再循環弁32は制
御装置150により制御される5−  〇  − イしU 33 k、1. lンジン冷1.II水渇を検
出する水温セン9−134 i;i IJ1万ス中の残
存酸素を検出し空燃往信シ′Jを出力りる021−ンリ
、335はスロットルバルブ27に連動しス11ツトル
聞度を検出するスロットル1!ンリ、:361.1.吸
入空気の温度を検出する吸気温[ンリ、371.11バ
ツjり電源をそれぞれ表わしている、。
IJI gas recirculation (FGR) passage 30 is an exhaust branch pipe 31
The exhaust gas recirculation valve 32 is connected to the exhaust gas tank 14, and the exhaust gas recirculation valve 32 is controlled by the exhaust gas recirculation valve 32 in response to electric pulses.
Change the aisle area. The exhaust gas recirculation valve 32 is controlled by the control device 150. cold 1. II Water temperature sensor 9-134 i; i Water temperature sensor 9-134 i;i Detects residual oxygen in IJ10,000 and outputs air/fuel signal Throttle 1 that detects the degree! Nri, :361.1. The intake air temperature detects the temperature of the intake air.

次に制υ11装置% !’) OLこ一つい−C説明J
る。
Next control υ11 device%! ') OL little one-C explanation J
Ru.

制御装M 50 I、1マイクロ=]ンピZl−タであ
ってにり、イの一例が第2図に示されている。このマイ
クD mlンビ1−タは、中央処理コニツIへ(CPL
J ) 51と、1す11;空燃比ル11す11等のプ
[1グラムや、Lンジン制911に必1JIiなj2−
タが格納されるリードAンリメ七り52ど、ランプlえ
アクレスメモリ53と、通?11? +1.: Iff
 bバラノリ−バックアップによって記憶を保持りるb
う つのランダムアクレスメモリ54ど、人ノルflレ
クリとΔ/I)変換器を含むへカポ−1〜51′1と、
八ツファを有する人・出力ボート!j6と4イ11ノ、
これら【31.コモンバス57にJ、すηいに接続され
ている。このマイクロコン〜  7 − ピコ−夕は第1図に示されている如くバッテリ電源37
がイバ給J−る電流を与えられ、これにより作動するよ
うになっている。
The control device M 50 I, 1 micro=] is an example of a control device shown in FIG. This microphone Dml player is sent to the central processing unit I (CPL).
J) 51, 1 and 11; Air-fuel ratio 11 and 11, etc.
The read memory 52 where the data is stored, and the memory 53 where the lamp data is stored. 11? +1. : If
b Maintaining memory through backup b
Random address memory 54 of depression, 1 to 51'1 including Δ/I) converters,
People who have eight power output boats! j6 and 4i11no,
These [31. It is directly connected to the common bus 57. This microcomputer~7-pico-controller is powered by a battery power source 37 as shown in Figure 1.
is supplied with an electric current, which causes it to operate.

入カポ−1−551;i、■アフロメータ17が発生J
る吸入空気量信号と、吸気温度信号36が発生する吸気
温度信号と、水記しンサ3Gが発生ずるエンジン冷却水
温信号とを人力され、それらデータを△、/ n変換し
てCPU51の指示に従い所定の時間にCr P LJ
 51及びランダムアクレスメモリ53あるいは54へ
出力するようになっ−Cいる。
Incoming capo-1-551; i, ■ Afrometer 17 occurs J
The intake air amount signal generated by the intake air temperature signal 36, the intake air temperature signal generated by the intake air temperature signal 36, and the engine cooling water temperature signal generated by the water recorder 3G are manually input, and these data are converted into △, /n and predetermined according to the instructions of the CPU 51. Cr P LJ at the time of
51 and random address memory 53 or 54.

また人・出カポ−1〜56は回転数はンリ−29が発生
するエンジン回転数13号クランク角信号と02センリ
34が発生づる空燃比信号等が人力され、イれらのデー
タをCPU51の指示に従い所定のタイミングでCPU
51及びランダムアクレスメモリ53あるいは54へ出
力(るにうにイ1っている。
In addition, for the engine output capos 1 to 56, the engine rotation speed No. 13 crank angle signal generated by the engine 29 and the air-fuel ratio signal generated by the 02 center 34 are input manually, and these data are sent to the CPU 51. CPU at specified timing according to instructions
51 and output to random address memory 53 or 54.

弓を人・出力ボート56を経て燃利噴用弁23へ−8− 出力Jるにうになっ−(いる1、この場合の燃料供給量
の制御I it vアフ[1メータ17が検出する吸入
空気量と回転数レンリ2【)が検出する]ニンジン回転
数とにより求められ/、二1.L木哨DI Mを、吸気
温センリ36に」、り検出、された吸気温1αと、水温
センυ33により検出された1ンジン冷IJI水渇に応
じて修正JることにJ、り行4′)1′シ、史に押輪空
燃比で制御するされる場合02 L?ンリ334の信号
をフィードバックして修正を加える1゜ またCPU51は吸気温レンリ36により検出された吸
気温度と水温レンリ33にJ:り検出された丁ンジン冷
却水温とに応じ(アイドリング時にバイパス空気量信号
を人・出カポ−1〜56を経てバイパス流量制御弁20
へ出力Jるようになっている。バイパス流量制御弁20
は入・出力ボート56より!jえられるバイパス空気量
信号に応じてその開度及び開口1αを411罪される。
The bow is transferred to the fuel injection valve 23 via the output boat 56. Determined from the air amount and the rotational speed detected by the rotational speed sensor 2 [)]/, 21. The L control DI M is corrected according to the detected intake temperature 1α detected by the intake temperature sensor 36 and the engine cold IJI water shortage detected by the water temperature sensor υ33. ') 1', if the air-fuel ratio is controlled by the push wheel air-fuel ratio, 02 L? The CPU 51 feeds back the signal from the intake air temperature control 334 and makes corrections.The CPU 51 also adjusts the amount of bypass air during idling according to the intake air temperature detected by the intake air temperature control 36 and the cooling water temperature detected by the water temperature control 33. The signal is sent to the bypass flow control valve 20 via the output capos 1 to 56.
It is designed to output to. Bypass flow control valve 20
is from input/output boat 56! The degree of opening and opening 1α are determined according to the bypass air amount signal obtained.

また、CP U 511−Lこれがい出し1.T基本噴
!)J量と回転数1!ンリ29に、1、り検出されIこ
エンジン回転数及びクランク角ど吸気111jレンリ3
6により検−〇− 出された吸気温度に基づきR適点火時til1倍号をリ
ードAンリメ七り52より検出し、これを入・出カポ−
1−56より点火コイル11へ出力するようになってい
る。
In addition, CPU 511-L has started 1. T basic jet! ) J amount and rotation speed 1! The engine rotation speed and crank angle are detected in the engine 29, and the intake 111j
Based on the intake air temperature detected by 6, the R proper ignition time 1 times number is detected from the lead A rim 752, and this is detected from the input/output capo.
1-56 to output to the ignition coil 11.

次に第3図は本発明の第1実M!i例の空燃比制御方法
に適用される制御プログラムのノロ−f−17−1−を
表わす。以下このフローチャートに沿って本実施例の動
作を説明する。
Next, FIG. 3 shows the first actual M! of the present invention! 17-1 represents the control program Noro-f-17-1 applied to the air-fuel ratio control method of example i. The operation of this embodiment will be explained below along with this flowchart.

本プログラムは、エンジン1制御のメインプ[]グラム
の一部として、または所定の燃料噴削制御処理に先立ち
、サブルーチンとして割り込み処理される。
This program is interrupted as part of the main program for controlling the engine 1 or as a subroutine prior to predetermined fuel injection control processing.

本プログラムの処理が開始されると、ステップ100に
て入力ボート55、入・出カポ−]−56を介してエア
フロメータ17からQで表わず吸入空気量、回転数セン
1t 29からNで表わずエンジン回転数、水温セン9
59からTwで表わされる]−ンジン冷却水調等必要な
データが入力され、これらデータがランダムアクセスメ
モリ53内の所定エリアに記憶され、次ステツプ101
の処理に−]〇  − 移行Jる。。
When the processing of this program is started, in step 100, the intake air amount and the rotational speed sensor 1t29 to N are input from the air flow meter 17 through the input boat 55 and the input/output capo-56. Engine speed and water temperature sensor 9
59 to Tw] - Necessary data such as engine cooling water adjustment are input, these data are stored in a predetermined area in the random access memory 53, and the process proceeds to the next step 101.
-] 〇 - Transition to the process. .

ステツー7101 i、−おいtiよ前回の本プログラ
ムの処理で1)出されkQ/Nで表、1′)されるエン
ジン負荷と今回前記ステツ7’ 1 (1(’)−C人
力された吸入空気量Q、トンジンN転数NJ、り求めら
れる現エンジン負仙Q/N合比較1. tの増減分をエ
ンジン負荷変化率△Q/Nとし、次ステツプ102に移
る。
STETSU 7101 i, - Hey ti, in the last program processing, 1) Expressed kQ/N, 1') engine load, and this time STETSU 7' 1 (1(') - C manual intake) Compare the air amount Q, engine rotation number NJ, and current engine negative/sensitivity Q/N sum 1. Set the increase/decrease in t as the engine load change rate △Q/N, and proceed to the next step 102.

ステップ102においU 1.1.吸入空気1iQに基
づき空気過剰率λ−1、即I)叩論空燃比とした場合の
燃料の基本aI4II fjl ”I’ +1が1ン出
(\れランダムアクセスメモリ53内の所定の1ノジス
りに記憶され、次のステップに示J処即に移る1゜ 次のステップ103におい(は、前記ステップ100に
て読み込まれ〕こ1ンジン冷)Jl水温TW等のデータ
に基づき現白1−ンジン1が空燃比フィードバック(以
不甲に1/1]と略り)制御するに適しに条4!1トに
あるかtiかが判定され、適した条例−1・にないと判
定されに:ならばスフ−ツー、7104に示J処理が行
l′)れる。
In step 102 U 1.1. Based on the intake air 1iQ, the air excess ratio λ-1, i.e., I) is the fuel basic aI4II fjl ``I' +1 outputs 1 output (1 predetermined nozzle in the random access memory 53). In the next step 103, the current white level is stored based on data such as water temperature TW (read in step 100). It is determined whether 1 is in Article 4!1 or ti suitable for air-fuel ratio feedback (hereinafter abbreviated as 1/1) control, and it is determined that it is not in Article 1. If so, the processing shown in step 7104 is performed (line 1').

−11− ステップ104においては、−ト記ステップ102で鋒
出した基本噴射量Tpに[/[3制御をしない場合の補
正係数KO(通常の運転状態では1とされる。)を乗じ
実噴射it T A Uを求めた後本プ[]ググラフの
処理を終了する、。
-11- In step 104, the basic injection amount Tp determined in step 102 is multiplied by the correction coefficient KO when no control is performed (1 in normal operating conditions). After calculating it T AU, the processing of the present program graph is terminated.

一方、ステップ103において、エンジン1がF / 
R1blJ inを行うに適した条fl下にあると判定
された場合はステップ105に移行し空燃比を、M博学
燃比(リーン空燃比)で5111部することのできる条
イ′1が満足されているか否かが判定され、判定結束が
rNOJとなればステップ106の処理に移行ηる。
On the other hand, in step 103, engine 1
If it is determined that the condition fl is suitable for performing R1blJ in, the process moves to step 105, and condition A'1, which allows the air-fuel ratio to be reduced to 5111 parts by the M-engineered fuel ratio (lean air-fuel ratio), is satisfied. It is determined whether or not there is one, and if the determination result is rNOJ, the process moves to step 106 η.

ステップ106においては、空燃比をリーンな状態で制
御する条例が満足されていないことから、空燃比を理論
空燃比に維持するための基本噴射量「1)の補正係数、
即ち[−/B制御係数「EΔ[を前記ステップ100で
読み込まれた02センリ34の出力に基づき演韓して、
次ステツプ107に移行覆る。
In step 106, since the ordinance for controlling the air-fuel ratio in a lean state is not satisfied, a correction coefficient for the basic injection amount "1" for maintaining the air-fuel ratio at the stoichiometric air-fuel ratio,
That is, [-/B control coefficient "EΔ[ is calculated based on the output of the 02 sensor 34 read in step 100,"
The process moves to the next step 107 and is overwritten.

ステップ107において、前ステップ106で−12− 算出された[/[3制曲係数1−△I:をランダムアク
セスメモリ53内の所定のレジスタに記憶された凧本唱
躬吊Toに重して実唱IJ−1tri r△Uを求めl
こ後、木ブ1−1グラムを終−1′−Jる、1一方、ス
テップ10!”>においCリーン空燃比で制御できる条
1′1が満足さ1′L(いると判定された場合はステッ
プ10 E)に小(IIlllI即に移行する。
In step 107, the [/[3 curvature coefficient 1-ΔI: calculated in the previous step 106 is added to the kite book chanting To stored in a predetermined register in the random access memory 53. Actual performance IJ-1tri Find r△U l
After this, finish the wood block 1-1gram-1'-Jru, 1Meanwhile, step 10! If the condition 1'1, which can be controlled by the lean air-fuel ratio, is satisfied, the process immediately shifts to 1'L (step 10E).

ステップ108におい(’ C1,第1図に示す如きグ
ラフと、ス)ツノ1 (10て・モ売み込z1、れlこ
ランダムアクレスメしり53内のlす1定のエリアに記
憶されている吸入空気量Qど1ンジン回転数Nとから算
出された]ンジン角?*:i Q / Nに基づいて、
現エンジン角荷Q 、、、’ Nに適1.たリーン空燃
比を示ず仮の値に対応J−るリーン係数の設定値K l
−1を算出する。
In step 108, the graph as shown in FIG. Calculated from intake air amount Q and engine rotational speed N? *: i Based on Q/N,
Suitable for current engine square load Q,,,'N1. The set value of the lean coefficient K l corresponds to a provisional value that does not indicate a lean air-fuel ratio.
-1 is calculated.

ここC第4図についC説明する。第4図は縦軸に空燃比
(△/IN、横軸にTンジン負荷Q/Nを取−)た−b
のI”lンジンt″+ 6:+ Q / Nに応じて変
化Jるリーン空燃比を表t) L−(いる1、尚、図t
こおいCス1−イ1141、理論空燃比をホー11lr
iであり、グラフ−13− の高角動域においては空燃比切り換え時のハンチングを
防止づる目的でヒスブリシスを設(jている。
Here, C will be explained with reference to FIG. Figure 4 shows the air-fuel ratio (△/IN on the vertical axis and the T engine load Q/N on the horizontal axis).
Table 1 shows the lean air-fuel ratio that changes according to the engine t''+6:+Q/N.
Kooi C S1-I1141, stoichiometric air fuel ratio Ho 11lr
i, and in the high angular range of graph 13, a hysteresis is provided for the purpose of preventing hunting when switching the air-fuel ratio.

そして、ステップ108で設定愉K L 1を算出し/
、m 後、スう一ツノ゛109において、ステップ10
1て・求めたエンジン負荷変化率ΔQ/Nと設定値補正
係数の変更基準どなるエンジン負荷変化率Δ(Aは一定
水準以上の加速状態を表ねづ飴)どの比較判定を行い、
判定がl−No、1.、即15[ΔQ/N〉Δ11.【
らばステップ110に示J処即に移行する。
Then, in step 108, the setting value K L 1 is calculated/
, m, in step 109, step 10
1. What is the change criterion for the engine load change rate ΔQ/N and the set value correction coefficient? What is the engine load change rate Δ (A indicates an acceleration state above a certain level) Which comparison judgment is made,
Judgment is l-No, 1. , that is, 15[ΔQ/N>Δ11. [
If so, the process immediately moves to step 110.

ステップ110では、二[ンジン1が一定水準以上の加
速状態にあり、ややリッチな空燃比で制御する必要のあ
ることから、比較的大ぎな設定値補正係数KLBを乗じ
、積を最終設定値(〈1−とじ、続いてステップ112
に移行する。
In step 110, since the second engine 1 is accelerating above a certain level and needs to be controlled with a slightly rich air-fuel ratio, it is multiplied by a relatively large set value correction coefficient KLB, and the product is the final set value ( <1-Finding, followed by step 112
to move to.

−プJ1ステップ109においては判定がrYFS」、
即ち「△Q/N≦A」となれば、ステップ111の処理
に移る。
- In step J1 step 109, the determination is "rYFS",
That is, if "ΔQ/N≦A", the process moves to step 111.

ステップ11コにおいては、緩やかな加速、定常状態あ
るいは減速状態にあることからステップ−14− 1゛10の場合J、り比較的小さイ「設定値補正係数に
1Δを設定M+ K I−1に乗じ、(^を最終設定値
K l−どじ、続くステップ112の処1111に移る
In step 11, since it is in a gentle acceleration, steady state or deceleration state, in step-14-1゛10, J is relatively small. Multiply (^ to the final set value K l - doji, and proceed to step 1111 in step 112).

ステップ1′12においては、レジスタ内の基本11J
′i用邑王pに最終設定1(f K lを東じ、(hを
最適な空燃比を(lするIこめの実噴口・1吊王△(ノ
どして本プログラムを終了りる。
In step 1'12, the basic 11J in the register
'I set the final setting 1 (f K l to the p, set the optimal air-fuel ratio (l) to the actual nozzle of the I, and end this program. .

この様に1)inの11−1グシl\にもY−、)で制
御された結果、リーン空燃比fJ、 、J、 −1(制
御される場合は、Lンジン* ’4F+変化率がΔ(:
)/’NがA以下の場合は第55図1点鎖線で示り如さ
空燃比ど(7す、一方エンジン負不11変を率ΔQ /
 N /l<八より人ならば同図実線で示1如さ空燃比
ど<7る。
In this way, as a result of controlling the lean air-fuel ratio fJ, , J, -1 (when controlled, the L engine* '4F+ rate of change is Δ(:
)/'N is less than A, as shown by the one-dot chain line in Figure 55.
If N/l<8, then the solid line in the figure shows 1, and the air-fuel ratio becomes <7.

即ち、従来 れ的に定めるか、あるいは−Lンジン負り
iQ/Nの人ささに応じ(変化Jる空燃比の失火域基づ
き定めていlこ空燃比を、本実施例におい℃は第5図に
示1如く十ンジンt1荷変化率ΔQ/Nの人ささくΔJ
、り人J、l、11.1Δ以下)によってリーン係数の
設定+ff K i 1をi+ll 1l−iJる係数
の大きさをK L△、K 111(但し1り1−Δ< 
K l−13>のニー   1h   一 段階に代えている。
In other words, in this embodiment, the air-fuel ratio is determined based on the misfire range of the changing air-fuel ratio, or according to the degree of engine load iQ/N. As shown in 1, the load change rate ΔQ/N is ΔJ
, J, l, 11.1Δ or less), set the lean coefficient +ff K i 1 to i+ll 1l-iJ.
K l-13> knee 1h Replaced with one stage.

従来第6図で示1如く、X点のリーン空燃比において加
速状態、即ちエンジン負荷Q/N増人状態となっlc場
合、出力不足から空燃比が理論空燃比に切り換った時は
Y点で示す値となる。よってX点Y点の間の出力の差(
1〜ルクの舵)から急に増速するショックが発生し、逆
にY点からX白へ切り換える場合は急に減速するショッ
クが発生していたものが、本実施例では、加速状態でリ
ーン空燃比によって制御される場合、当該空燃比はリッ
チに近い値とされるよう燃料の噴射が行われることによ
り、加速時の出力不足が解消され1p論空燃比への切り
換えが行われ難くなりその結果1〜ルクの切り換わりに
にるショックの発生がなくなる。
Conventionally, as shown in Fig. 6, when the lean air-fuel ratio at point X is in an acceleration state, that is, the engine load Q/N is increased, when the air-fuel ratio switches to the stoichiometric air-fuel ratio due to insufficient output, Y. The value is shown as a point. Therefore, the difference in output between point X and point Y (
When switching from point Y to point X, a shock of sudden speed increase occurred, and conversely, a shock of sudden deceleration occurred when switching from Y point to When controlled by the air-fuel ratio, fuel is injected so that the air-fuel ratio is close to a rich value, thereby eliminating the lack of output during acceleration and making it difficult to switch to the 1p stoichiometric air-fuel ratio. As a result, the shock that occurs when switching between 1 and 2 hours is eliminated.

また急イに加速状態で理論空燃比に切り換えられる場合
でも1〜ルクの差が少ない事からショックが小さくなる
Furthermore, even when the air-fuel ratio is suddenly switched to the stoichiometric air-fuel ratio in a state of acceleration, the shock is small because the difference between 1 and 1 lux is small.

また定常状態におけるリーン空燃比−し、従来のように
加速時の出力不足を考慮してリッチに近い値どする必要
もないことから、定常状態に適した−  16 − リーン空燃比にりることが可能となり、リーン空燃比制
御本来の[1的で(偽る燃費の向上、υFガス中中有酸
成分低減をJ、り効宋的に達成することができる。
In addition, since there is no need to set the air-fuel ratio to a lean air-fuel ratio in a steady state, and there is no need to adjust the air-fuel ratio to a value close to a rich one in consideration of the lack of output during acceleration, unlike in the past, it is possible to reach a lean air-fuel ratio that is suitable for a steady state. This makes it possible to achieve the original effect of lean air-fuel ratio control by improving fuel efficiency and reducing acidic components in υF gas.

以−L 1iliべた1711実施例にζ13いては設
定値補正係数とl〕で1<1−Δ、K1−1〕の二゛つ
を設けているが、更に緻密なリーン空燃比制御を行うた
めに設定値補正係数をエンジンt’< M疫化率ΔQ/
Nによって定まる関数とじT b良い。以下に説明する
第2実施例は設定値補正係数を]ニンジン負荷変化率Δ
Q/NにJ−って変化Jる値どじている。
In the 1711 embodiment described below, two sets of set value correction coefficients and l] are provided, 1<1-Δ, K1-1], but in order to perform more precise lean air-fuel ratio control. Set value correction coefficient to engine t'< M epidemic rate ΔQ/
The function binding determined by N is good. In the second embodiment described below, the set value correction coefficient is
The value of J- changes in Q/N.

第7図は本発明の第2実施例の制御プログラムを示゛す
1)ので、ステップ200から203及び205から2
081ご、jζ1処1甲り、L i’lil述第1実施
例のステップ10013日う103及び105から10
8に示すそれぞれの処理と11様であるので説明を略す
FIG. 7 shows the control program of the second embodiment of the present invention1), so steps 200 to 203 and 205 to 2
Steps 10013 and 105 to 10 of the first embodiment described in 081
8 and 11, so the explanation will be omitted.

今、ステップ203で1” / 8条件を満足し、続く
ステップ205でリーン空燃比制御を行うための条f1
が満足されでいると111定されたならばステップ20
8に示す処理に移行Jる。
Now, in step 203, the condition f1 for satisfying the 1''/8 condition and performing lean air-fuel ratio control in step 205 is established.
If it is determined that 111 is satisfied, step 20
The process moves to step 8.

−17− ステップ208ににおいては第1実施例同様現エンジン
曽荷Q/Nに対応するリーン係数の設定値に1−1を求
め、次ステツプ209の処理に移る。
-17- In step 208, as in the first embodiment, the set value of the lean coefficient corresponding to the current engine load Q/N is set to 1-1, and the process moves to the next step 209.

ステップ209では、第1実施例のステップ110また
は111で示した定数である補正係数の代りとして、以
下に示す、エンジン負荷変化率△Q/Nの一次関数(1
+(八〇/N )g+(八〇/N) −a x (△Q
/N)十b(a 、 bは定数) あるいは、Tンジン負荷変化率ΔQ/Nの二次関数92
(ΔQ/N ) (+2(ΔQ/N) −a −x (八〇/N )+b
 ′x(ΔQ/N)十c (a−1b−1cは定数) に従−)で補正係数KLFを求め一次ステップに移行す
る。
In step 209, a linear function (1
+(80/N)g+(80/N) -a x (△Q
/N) 10b (a, b are constants) Or, quadratic function 92 of engine load change rate ΔQ/N
(ΔQ/N) (+2(ΔQ/N) -a -x (80/N)+b
The correction coefficient KLF is determined by 'x(ΔQ/N)0c (according to a-1b-1c is a constant), and the process proceeds to the first step.

尚、−に記関数g+(△Q/N >または!+2(ΔQ
/N )加速状態に応じたリーン空燃比の限界を示す曲
線に対応して近似的に求められる。
Furthermore, the function g+(△Q/N > or !+2(ΔQ
/N) Approximately determined in accordance with the curve indicating the limit of the lean air-fuel ratio depending on the acceleration state.

次ステツプ210では、ト記補正係数K l−Fを−1
8− ステツノ゛208で求め/、=設定1+I’f K l
 1に乗じ、積を最終設定顧K l−どして次ステツプ
211の処理に移行りる9゜ ステップ゛211におい((,1第1実施例制抑プログ
ラムと同様スーアップ202で求められた基本噴制崩i
 11に前スフツ7’ 2 ’10で求めた最終設定値
KLを東し、現[ンジン負イ+:i にl / N及び
エンジン負前変化5←△Q/Nに即(〕Iこリーン空燃
比に対応づる燃料の実哨(1・1品1△Uを求め本プロ
グラムを終了する5゜ 一万スlツノ203に−(、’ l−’ / +1条f
1が渦足されていないと’1111iされ/;:<’r
ら(、「、ステップ204Aに移行しステップ202で
粋出しIこ基本噴q・1吊Tpを補正Jるための補11
係& K oをエンジン負荷Q/Nに基づいて静出し、
次ステツプ204Bに移行する。
In the next step 210, the correction coefficient Kl-F is set to -1.
8- Find with step number 208/,=setting 1+I'f K l
In step 211, the product is multiplied by 1, the product is finalized, and the process proceeds to the next step 211. Basic blowout collapse i
11, set the final set value KL obtained in step 7' 2 '10, and set the current [engine negative +:i] to l/N and the engine negative front change 5←△Q/N to immediately () Find the fuel corresponding to the air-fuel ratio (1.1 item 1△U and end this program.)
If 1 is not added, it becomes '1111i/;:<'r
(, "Proceed to step 204A, and in step 202, supplement 11 for correcting the basic jet q.1 suspension Tp.
Calculate & K o based on engine load Q/N,
The process moves to the next step 204B.

スフツー120413におい−(、^11記ステップ2
04Aで伸出された補汀係数1(0どjJ本III!l
射吊Tpを乗じ、F / I’311.II輝を行りな
い揚台の実噴IJ量TA Uを求めて本プ[1グンムの
処理を終了する。即−1’)   − ち第1実施例においては、補正係数1<()を定数、例
えばKo=1どしていたが本実施例においてはエンジン
負荷Q/Nに応じた値として1− / B lII神を
行わない場合の実噴射量1−△(Jの適正化を図ってい
る。
Sfutu 120413 smell-(, ^11 step 2
Correction coefficient 1 (0djJ book III!l) expanded in 04A
Multiply by the shooting height Tp, F/I'311. The actual injection IJ amount TAU of the lift platform where no II brightness is performed is determined and the processing of this program [1 gunm] is completed. In the first embodiment, the correction coefficient 1<() was set as a constant, for example, Ko=1, but in this embodiment, it is set as a value corresponding to the engine load Q/N. Actual injection amount 1-△ (J is being optimized when BlII God is not performed.

以−1−のようにリーン係数の設定値に1−1を補正す
る補正係数に1−1−を加速状態に応じて変化J−る植
としたことから、実噴射量TAUに相当する空燃比は、
第8図で示づ−ように定常状態ではαで示される実線の
空燃比が、加速状態では例えばβで示される一点鎖線の
如き空燃比となり、減速状態でt、L例えばγで示され
る二点鎖線の如き空燃比とイfす、丁ンジン負荷変化率
△Q/Nに応じて空燃比が変化づることどなり、前)本
の実施例J:りも更に緻密なリーン空燃比制御が可能と
イfる。
As shown in -1- below, since the correction coefficient that corrects the set value of the lean coefficient by 1-1 is changed according to the acceleration state, the empty air corresponding to the actual injection amount TAU is The fuel ratio is
As shown in FIG. 8, in a steady state, the air-fuel ratio is indicated by a solid line, α; in an acceleration state, the air-fuel ratio becomes, for example, a dashed line indicated by β, and in a deceleration state, the air-fuel ratio becomes t, L, for example, a If the air-fuel ratio is as shown by the dotted chain line, the air-fuel ratio will change according to the load change rate △Q/N, and even more precise lean air-fuel ratio control will be possible. It's like that.

尚、以−1に述べた実施例においては、エンジン負荷を
Q/Nで示1値どして説明しているが、この他1−ンジ
ン負Fi′□を示す値どして前jホの基本噴躬吊Tp、
あるいは体積効率ηV等を用いでも良い。
In the embodiment described below, the engine load is expressed as Q/N and is explained as a 1 value. The basic suspension Tp,
Alternatively, volumetric efficiency ηV or the like may be used.

イの場合、変化率は、それぞれ八Tp、ΔηVが−20
= 用いられる。
In case A, the rate of change is 8Tp and ΔηV is -20, respectively.
= Used.

また、各実施例におい(1,1,’d¥了制御にJ、る
燃料噴射方式のエンジンについ(′)!l(べているが
、アクヂュ■−タに電磁弁を用い7’ 1−−)イ比1
’l all等で空燃比を制御り−る気化器式の1ンジ
ンについても、燃利調吊部を変更]Jる1、f()C′
fV易に本発明を適用できる。
Furthermore, in each of the embodiments (1, 1, 'd\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\, -) A ratio 1
For carburetor-type 1 engines that control the air-fuel ratio with 'l all, etc., the fuel adjustment hanging part has been changed] Jru1, f()C'
fV can easily apply the present invention.

以十詳i!Bシたよ・)に本発明の内燃機関の空燃比制
御方法(、(、内燃機関の運転状態に応じで空燃比を、
理論空燃比ま11二は希i曽空燃比のいずれかに切り換
えて制御する内燃機関の空燃比制御方法において、−1
i nl’!希19リーン空燃比にJ、−)て制御11
を行う運転状態の時、該希)19リーン空燃比を該機関
の負仙に応じ1こ偵(こ定めるとJ(に、当該定めだ値
を該機関の負7jI変化率に応じて補正J゛ることを特
徴としている。
More details! The method for controlling the air-fuel ratio of an internal combustion engine according to the present invention (in which the air-fuel ratio is controlled depending on the operating state of the internal combustion engine)
In an air-fuel ratio control method for an internal combustion engine in which the stoichiometric air-fuel ratio is controlled by switching to one of the rarest air-fuel ratios, -1
i nl'! Control 11 with J, -) to lean air-fuel ratio
When in an operating state in which It is characterized by

このため本発明に、J、ればリーン空燃比制御中の加速
状態におGJる出力不順を改善し、機関特性に合致しI
こ空燃比1−11ν11を行−〕て燃費の向上、排ガス
中の有害成分の低減を図ることが可能となる。
For this reason, the present invention improves the output irregularity caused by GJ in the acceleration state during lean air-fuel ratio control, and matches the engine characteristics.
By setting the air-fuel ratio to 1-11ν11, it is possible to improve fuel efficiency and reduce harmful components in the exhaust gas.

−21− J:Iこ本発明によれば加速状態の出力不足が改善され
たことから理論空燃比かIうリーン空燃比あるいはリー
ン空燃比から理論空燃比への切り換えの頻度を減らすこ
とができ、また切り換え時の出力差も少ないことから、
当該切り換え時に発生するショックの頻度、大ぎさを共
に抑制Jることが可能となる。
-21- According to the present invention, the lack of output in the acceleration state is improved, so it is possible to reduce the frequency of switching from the stoichiometric air-fuel ratio to the lean air-fuel ratio, or from the lean air-fuel ratio to the stoichiometric air-fuel ratio. , and since there is little output difference when switching,
It becomes possible to suppress both the frequency and magnitude of shocks that occur during the switching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用された実施例の内燃機関〈エンジ
ン)及びその周辺装置を示す概略構成図、第2図はその
制御回路を示Jブロック図、第3図は第1実施例の制御
プログラムを示すフローチャート、第4図は各実施例に
て仮に設定されるり一ン空燃比とエンジン負荷Q/Nの
関係を示すグラフ、第5図(ま第1実施例の作用を説明
するグラフ、第6図は空燃比切り換えと出力(トルク)
の関係を示すグラフ、第7図は本発明第2実施例の制御
プログラムを示Jフローチャー1〜、第8図は第2実施
例の作用を説明号−るグラフである。 1・・・エンジン(内燃機関) −22− 17・・・1ノノソ11メータ 23・・・燃料哨q・1弁 29・・・回転数Eでンリ 33・・・木調1ピンリ 34・・・02L!ンリ 50・・・制御猛lN 51・・・c l) 1.J 代即人 弁理l 足)l 勉 −23− 第4図 ωN Q/N 第6図 第8図 へ
Fig. 1 is a schematic configuration diagram showing an internal combustion engine and its peripheral equipment in an embodiment to which the present invention is applied, Fig. 2 is a block diagram showing its control circuit, and Fig. 3 is a block diagram of the first embodiment. FIG. 4 is a flowchart showing the control program, FIG. 4 is a graph showing the relationship between the air-fuel ratio temporarily set in each embodiment and the engine load Q/N, and FIG. 5 is a graph explaining the operation of the first embodiment. , Figure 6 shows air-fuel ratio switching and output (torque)
FIG. 7 is a graph showing the control program of the second embodiment of the present invention. FIG. 8 is a graph explaining the operation of the second embodiment. 1...Engine (internal combustion engine) -22- 17...1 nonoso 11 meter 23...Fuel gauge q/1 valve 29...RPM E 33...Wood tone 1 pin 34...・02L! 50... Control strength 1N 51... c l) 1. J Sokujin Patent Attorney L Foot)l Tsutomu-23- Figure 4 ωN Q/N Figure 6 Go to Figure 8

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の運転状態に応じて空燃比を、理論空燃比また
は希薄空燃比のいずれかに切り換えて制御する内燃機関
の空燃比制御方法において、上記希薄空燃比によって制
御を行う運転状態の時、該希薄空燃比を該機関の負荷に
応じた値に定めると共に、当該定めだ値を該機関の負荷
変化率に応じて補正することを特徴とする内燃機関の空
燃比制御方法。
In an air-fuel ratio control method for an internal combustion engine, which controls the air-fuel ratio by switching it to either a stoichiometric air-fuel ratio or a lean air-fuel ratio according to the operating state of the engine, when the operating state is such that control is performed using the lean air-fuel ratio, An air-fuel ratio control method for an internal combustion engine, characterized in that a lean air-fuel ratio is determined at a value corresponding to the load of the engine, and the determined value is corrected according to a rate of change in the load of the engine.
JP9728582A 1982-06-07 1982-06-07 Control of air-fuel ratio of internal-combustion engine Granted JPS58214649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9728582A JPS58214649A (en) 1982-06-07 1982-06-07 Control of air-fuel ratio of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9728582A JPS58214649A (en) 1982-06-07 1982-06-07 Control of air-fuel ratio of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58214649A true JPS58214649A (en) 1983-12-13
JPH0366503B2 JPH0366503B2 (en) 1991-10-17

Family

ID=14188236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9728582A Granted JPS58214649A (en) 1982-06-07 1982-06-07 Control of air-fuel ratio of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58214649A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035144A (en) * 1983-08-05 1985-02-22 Nippon Denso Co Ltd Air-fuel ratio control device
JPS6312852A (en) * 1986-07-01 1988-01-20 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine
EP0272814A2 (en) * 1986-11-29 1988-06-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air/fuel ratio controller for engine
JPH04203446A (en) * 1990-11-30 1992-07-24 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
WO1992017697A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air-fuel ratio controller of internal combustion engine
US5954028A (en) * 1996-08-08 1999-09-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371069B1 (en) * 2012-10-31 2014-03-07 주식회사 아이디 Micro-display apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110224A (en) * 1974-07-16 1976-01-27 Nippon Soken NAINENKIKAN
JPS5352825A (en) * 1976-10-25 1978-05-13 Toyota Motor Corp Fuel supply system for internal-combustion engine
JPS5458138A (en) * 1977-09-26 1979-05-10 Bendix Corp Circuit of thickening accelerated mixture of controlling mixing ratio of closed loop fuel treating device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110224A (en) * 1974-07-16 1976-01-27 Nippon Soken NAINENKIKAN
JPS5352825A (en) * 1976-10-25 1978-05-13 Toyota Motor Corp Fuel supply system for internal-combustion engine
JPS5458138A (en) * 1977-09-26 1979-05-10 Bendix Corp Circuit of thickening accelerated mixture of controlling mixing ratio of closed loop fuel treating device of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035144A (en) * 1983-08-05 1985-02-22 Nippon Denso Co Ltd Air-fuel ratio control device
JPS6312852A (en) * 1986-07-01 1988-01-20 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine
EP0272814A2 (en) * 1986-11-29 1988-06-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air/fuel ratio controller for engine
US4908765A (en) * 1986-11-29 1990-03-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air/fuel ratio controller for engine
JPH04203446A (en) * 1990-11-30 1992-07-24 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
WO1992017697A1 (en) * 1991-03-28 1992-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air-fuel ratio controller of internal combustion engine
US5347974A (en) * 1991-03-28 1994-09-20 Mitsubishi Jidosha Kogyo Kabushi Kaisha Air-to-fuel ratio control system for internal combustion engine
US5954028A (en) * 1996-08-08 1999-09-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

Also Published As

Publication number Publication date
JPH0366503B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
JPH09126003A (en) Control device for cylinder injection engine
JPH028131B2 (en)
WO2003006808A1 (en) 4-stroke engine control device and control method
JPH0315648A (en) Ignition timing control device for internal combustion engine
JPS58214649A (en) Control of air-fuel ratio of internal-combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6231179B2 (en)
JPS6365173A (en) Ignition timing controller for engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JPS59176447A (en) Method of controlling idling revolution speed of internal-combustion engine
US10563595B2 (en) Control device of internal combustion engine
JPH028130B2 (en)
JPH07332097A (en) Supercharge pressure feedback control device for internal combustion engine with supercharger
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS59203849A (en) Method of controlling idling speed
JP3307306B2 (en) Combustion system control device for internal combustion engine
JPH0615831B2 (en) Combustion control device for internal combustion engine
JPS60192826A (en) Control method of internal-combustion engine
JPS60233350A (en) Fuel-injection controlling apparatus for internal-combustion engine
JP3888781B2 (en) Engine control device
JP3916416B2 (en) Control device for internal combustion engine
JPS627949A (en) Fuel injection amount control device of internal-combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH06249050A (en) Misfire detecting device of engine
JPH0533707A (en) Air-fuel ratio control device for internal combustion engine