JPS58214388A - Apparatus for photoreaction - Google Patents

Apparatus for photoreaction

Info

Publication number
JPS58214388A
JPS58214388A JP9809182A JP9809182A JPS58214388A JP S58214388 A JPS58214388 A JP S58214388A JP 9809182 A JP9809182 A JP 9809182A JP 9809182 A JP9809182 A JP 9809182A JP S58214388 A JPS58214388 A JP S58214388A
Authority
JP
Japan
Prior art keywords
ellipse
arc
light
correction
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9809182A
Other languages
Japanese (ja)
Inventor
Jun Kimura
純 木村
Komao Saitou
斉藤 駒男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9809182A priority Critical patent/JPS58214388A/en
Publication of JPS58214388A publication Critical patent/JPS58214388A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To expand the applicability of the apparatus, while eliminating unevenness in the application of light to a workpiece to be reated and making the intensity of radiation uniform, by revising the elliptic part of the elliptic cross section of the elliptic column of the apparatus for photoreaction under a specified condition. CONSTITUTION:The cross section of an elliptic column is made as the first ellipse, and the points of said ellipse intersecting a straight line connecting the focus mu, mu' of said ellipse are made as B, B'. The second ellipse is drawn using the focus mu and the intersecting point B as its focus, its point intersecting the straight line mu-mu' is made as C, and the point of said ellipse intersecting an arc AB is made as D. A part of the arc AB of the first ellipse is added to the arc CD of the second ellipse to form an arc CDB. Other three points are revised by the same way. Thus, the application of light to a workpiece to be reacted is made uniform, and the applicability is extended.

Description

【発明の詳細な説明】 本発明は光反応装置、特に紫外線透過性の悪い有機性、
無機性排水処理を紫外線ランプにより行う分解滅菌装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoreaction device, particularly an organic material having poor UV transmittance.
This invention relates to a decomposition sterilization device that processes inorganic wastewater using an ultraviolet lamp.

従来、紫外m<以下UVという)による水中有機物分解
装置又は滅菌装置に於ては、水をシールして水中に設置
された石英管内に紫外線ラング(以下UVランプという
)t−設置しこの石英管外に被処理水を流すことによシ
行われてきた。この方法は簡易な構造であるため、主に
滅菌装置として広く利用されている。この光反応装置は
ステンレス鋼(5US304又はBU8316)で作ら
れ、その内面を鏡面研磨する事によって光の利用効率を
上げているものが多く、また大量稀薄系の処理にも適し
ている。
Conventionally, in underwater organic matter decomposition equipment or sterilization equipment using ultraviolet m<hereinafter referred to as UV), an ultraviolet lamp (hereinafter referred to as UV lamp) is installed in a quartz tube that seals the water and is installed in the water. This has been done by draining the water to be treated outside. Since this method has a simple structure, it is widely used mainly as a sterilization device. This photoreaction device is often made of stainless steel (5US304 or BU8316) and has its inner surface polished to a mirror finish to increase the efficiency of light utilization, and is also suitable for large-scale diluted processing.

しかしながら、従来の光反応装置は、石英管を隔ててU
Vランプが被反応物である水と接触しているため、この
石英管に汚れ成分が付着することや液体の濁度によfi
UV実効出力が問題となるため、極めて透明度の良好な
液体に限って使用されていた。
However, the conventional photoreaction device uses a quartz tube across the U
Since the V-lamp is in contact with water, which is a reactant, there is a risk of dirt components adhering to the quartz tube or turbidity of the liquid.
Since the effective UV output is a problem, it has been used only for liquids with extremely good transparency.

このような流水式UV分解装置、殺菌装置の性能は石英
管の汚れと水の濁度に制限されたために、UVランプが
石英管を通じて直接水と接触する事を避けた装置も用い
られている。これはUVランプを内面の鏡面仕上げされ
た楕円柱の一方の焦点に設置し、他方の焦点に処理水な
どを流した非接触型装置が考案されている。この装置は
鏡面反射が効果的に利用され、処理対象物へのUV照射
量が増加するので、従来のUV反応装置の濁度に弱い欠
点を解消し、UVに不向きであった濁度のある処理対象
にも適用できるようにしている。
The performance of such flush-type UV decomposition equipment and sterilization equipment is limited by the dirt on the quartz tube and the turbidity of the water, so devices that avoid direct contact of the UV lamp with water through the quartz tube are also used. . A non-contact type device has been devised in which a UV lamp is installed at one focal point of an elliptical cylinder with a mirror-finished inner surface, and treated water is poured into the other focal point. This device effectively uses specular reflection to increase the amount of UV irradiation to the object to be treated, so it eliminates the drawback of conventional UV reactors that are susceptible to turbidity and It can also be applied to processing targets.

この型の光反応装置は、第1図の断面図に示すように、
内面を鏡面仕上げした正楕円柱4内の一方の焦点μに沿
って光源となるUVランプ10を保持し、もう一方の焦
点Iに沿って被反応物11を配置したものである。この
図上で焦点間μμ′をμ方向、μ′方向へ延長した直線
と楕円との交点をそれぞれA、Aとし、放射角αは直i
AμとこのAμから反時計廻シに放射光線と作成する角
度とし、入射角βは直線AIとこの人IIから反時計廻
りに反射光線と被反応物のある焦点Iとで作る直線で作
られる角度とする。この構造は単純な断面構造によって
被対象物への集中的光照射が可能となる。
This type of photoreaction device, as shown in the cross-sectional view of FIG.
A UV lamp 10 serving as a light source is held along one focal point μ of a regular elliptic cylinder 4 whose inner surface is mirror-finished, and a reactant 11 is arranged along the other focal point I. In this figure, the intersections of the ellipse and the straight line extending the interfocal μμ′ in the μ direction and the μ′ direction are respectively A and A, and the radiation angle α is the right angle i.
Let Aμ be the angle created by the emitted ray counterclockwise from this Aμ, and the incident angle β is created by the straight line AI and the straight line created by the reflected ray counterclockwise from this person II and the focal point I where the reacted object is located. Let it be an angle. This structure enables concentrated light irradiation to the target object due to its simple cross-sectional structure.

この構造の場合は、入射角αが00もしくは360゜付
近、すなわち光源に向いた方向の光量は大であるが、反
面光源の裏側部分への入射光量は極めて低い。すなわち
、入射角αの00付近は、光源からの直接光1および楕
円柱4内壁からの反射光2が照射されるので光量が大と
なるが、入射角の180゜付近は、光源からの放射光が
被反応物11に邪魔されるので、その放射光のうち被反
応物との接線を通って楕円柱4から反射した入射光3で
挾まれた入射角で入射光がなくなシ光量が零となるから
である。このためこの光反応装置は、光照射密度を要し
方向性のある対象物には適当であシ、微細な固体試料な
ど特定の対象以外では利用されているが、これ以外のも
のには利用されていない問題があった。
In this structure, when the incident angle α is around 00 or 360°, that is, the amount of light in the direction facing the light source is large, but the amount of light incident on the back side of the light source is extremely low. In other words, when the angle of incidence α is around 00, the amount of light is large because the direct light 1 from the light source and the reflected light 2 from the inner wall of the elliptical cylinder 4 are irradiated, but when the angle of incidence is around 180°, the amount of light emitted from the light source is large. Since the light is obstructed by the reactant 11, the incident light disappears at the angle of incidence between the incident light 3 that passes through the tangent to the reactant and is reflected from the elliptical cylinder 4, and the amount of light decreases. This is because it becomes zero. For this reason, this photoreaction device is not suitable for objects that require light irradiation density and has directionality, and is used for objects other than specific objects such as fine solid samples; There was no problem.

本発明の目的は、このような被反応物に対する光照射の
不均一をなくシ、照射光量を均−比して利用範囲を拡大
した光反応装置全提供することにある。
An object of the present invention is to eliminate such non-uniformity of light irradiation to reactants, and to provide a photoreaction device which can expand the range of use by equalizing the amount of light irradiated.

本発明の構成は、内面を鏡面仕上けした楕円柱内にこの
楕円柱の一方の焦点に光源、そのもう一方の焦点に被反
応物をそれぞれ配設し、その光源からの光を前記被反応
物に照射する光反応装置において、前記楕円柱の横断面
を第1の楕円とし、この第1の楕円の焦点μ、  11
′を結ぶ直線の延長線とこの楕円との交点ヲA、λとし
、その直線μIの垂直二等分線とこの楕円との交点4B
、Bとし。
The structure of the present invention is such that an elliptical cylinder whose inner surface is mirror-finished is provided with a light source at one focal point of the elliptical cylinder and a reactant at the other focal point, and the light from the light source is transmitted to the reacted object. In a photoreaction device that irradiates an object, the cross section of the elliptical cylinder is a first ellipse, and the focal point of this first ellipse is μ, 11
The intersection point between the extension of the straight line connecting ' and this ellipse is A, λ, and the intersection point between the perpendicular bisector of the straight line μI and this ellipse is 4B.
, B.

前記焦点μと交点Bとを焦点とし前記焦点μと前記交点
Aとの間に交点Cを有する第2の楕円とし、この第2の
楕円と前記第1の楕円の弧ADとの交点=iDとすると
き、前記第1の楕円の弧ABのうちその部分弧!”Dt
−前記第2の楕円の部分弧CDに代えた補正弧CDBと
;この補正弧と同様に前記焦点および交点のIとB、μ
とB′、μ′とB′ヲそれぞれ焦点とし前記第2の楕円
と同様の楕円の部分弧に前記第1の楕円の部分弧をそれ
ぞれ代えた三個の補正弧とからなる補正楕円によシ前記
楕円柱を形成したことを特徴とする。
A second ellipse with the focal point μ and the intersection point B as the focal point and an intersection point C between the focal point μ and the intersection point A, and the intersection point of this second ellipse and the arc AD of the first ellipse = iD Then, that partial arc of the arc AB of the first ellipse! "Dt
- a correction arc CDB replacing the partial arc CD of the second ellipse; similarly to this correction arc, I and B of the focal point and the intersection point, μ;
A correction ellipse is formed by focusing on B′, μ′, and B′, and three correction arcs in which the partial arcs of the first ellipse are replaced with partial arcs of the same ellipse as the second ellipse. A feature of the present invention is that the elliptical cylinder is formed.

以下図面によシ本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の実施例の基本構成を示す断面図である
。この実施例は、焦点μ、Iをもつ正楕円柱20の一部
に補正楕円鏡面21.22’e設けたものである。
FIG. 2 is a sectional view showing the basic configuration of an embodiment of the present invention. In this embodiment, a correction elliptical mirror surface 21.22'e is provided on a part of a regular elliptic cylinder 20 having focal points μ and I.

第3図はこの補正楕円鏡面21を説明する図面である。FIG. 3 is a diagram illustrating this corrected elliptical mirror surface 21. As shown in FIG.

なお、この図は見易いように楕円の長径/短径比を大き
くとっている。この図は、焦点μ。
Note that in this figure, the ratio of the major axis to the minor axis of the ellipse is set large for ease of viewing. This figure focuses on μ.

Iとし長径Aλ、短径BB’とした基本楕円5と、焦点
μ、Bとした補正楕円6とを示しているが、補正鏡面(
21)は焦点μとB、μとB’、  dとB。
A basic ellipse 5 with a major axis Aλ and a minor axis BB' with I, and a corrected ellipse 6 with focal points μ and B are shown, but the corrected mirror surface (
21) are the focal points μ and B, μ and B', and d and B.

μ′とI3”iもつ4個の補正楕円によシ形成される。It is formed by four correction ellipses with μ' and I3''i.

この補正楕円となる第1の条件は、補正楕円6と直線A
Nとの一方の交点Cが点A、μの間にある事である。こ
こで補正楕円6と基本楕円5との交点をDとしたとき曲
線CDが補正鏡面となる。この場合、焦点μに被反応物
11を置き、焦点μ′に光源中心を置いたとき、焦点μ
′を通る被反応物11との接線と基本楕円5との交点E
と楕円5゜6の交点りとが一致した場合に最も光の均一
性が得られる。したがってこれら交点り、Eが出来る限
シ一致するよう補正楕円6を設計する必要がある。一方
、基本楕円5の短径/長径比を小さくすると、被反応物
が液体の場合鏡面汚染の可能性もあるので、これを避け
るため短径/長径比は0.9以上とする方がよい。これ
ら交点り、El完全に一致させるのは実際上不可能であ
るから、直線Aμ′Eに対して0.8以上1.2以内で
ある事が望ましい。
The first condition for this corrected ellipse is the corrected ellipse 6 and straight line A.
One point of intersection C with N is between points A and μ. Here, when the intersection of the correction ellipse 6 and the basic ellipse 5 is defined as D, the curve CD becomes the correction mirror surface. In this case, when the reactant 11 is placed at the focal point μ and the center of the light source is placed at the focal point μ', the focal point μ
The intersection point E of the tangent to the reactant 11 passing through ' and the basic ellipse 5
The most uniform light can be obtained when the intersection point of the ellipse 5°6 coincides with the intersection point of the 5°6 ellipse. Therefore, it is necessary to design the correction ellipse 6 so that these intersection points and E match as much as possible. On the other hand, if the short axis/long axis ratio of the basic ellipse 5 is made small, there is a possibility of specular contamination if the reactant is a liquid, so to avoid this, it is better to set the short axis/long axis ratio to 0.9 or more. . Since it is practically impossible to completely match El between these points of intersection, it is desirable that El be within 0.8 or more and within 1.2 with respect to the straight line Aμ'E.

この様な補正楕円鏡面を4個用いることによシ、第2図
の実施例が構成される。図において、短径/長径比は0
.94であり、焦点μを通る被対象物の接線は主楕円2
0と補正鏡面21.22との境界に一致させている。か
かる補正鏡面21.22を設ける仁とにより、光源11
からの光が補正鏡面21、楕円面20および補正楕円2
2で反射した3次反射光27は放射光と入射光とが主楕
円20の短径に関して線対称の位置にある事が分る。
By using four such correction elliptical mirror surfaces, the embodiment shown in FIG. 2 is constructed. In the figure, the short axis/long axis ratio is 0.
.. 94, and the tangent to the object passing through the focus μ is the main ellipse 2
0 and the correction mirror surfaces 21 and 22. By providing such correction mirror surfaces 21 and 22, the light source 11
The light from the correction mirror surface 21, the ellipsoid surface 20 and the correction ellipse 2
It can be seen that the emitted light and the incident light of the tertiary reflected light 27 reflected by the main ellipse 20 are at a line-symmetrical position with respect to the short axis of the main ellipse 20.

なお、主楕円20の短径B B’の近傍は補正鏡面21
.22を用いた3次反射光が集中的に反射するため、特
に反射をよくするようにダイヤモンドペーストなどによ
る鏡面仕上げが必要である。
In addition, the vicinity of the minor axis B B' of the main ellipse 20 is the correction mirror surface 21
.. Since the tertiary reflected light using 22 is intensively reflected, mirror finishing with diamond paste or the like is required to particularly improve the reflection.

第4図は本発明の具体的実施例の部分破砕斜視図である
。図中、30はステンレス鋼パイプから形成され主楕円
面20と補正鏡面21.22とを含む鏡面、31は底面
、32はUVランプ、33はランプ32保護用石英管、
34は被処理液を通す通液装置である。なお、この光反
応装置の具体例トシテ、長す30crlL、消費電力8
W、UV出力(2537”A)1.3WのUVランプ(
32)  t−用いて楕円鏡面31とに5基本楕円20
が長径60cIrL。
FIG. 4 is a partially exploded perspective view of a specific embodiment of the present invention. In the figure, 30 is a mirror surface formed from a stainless steel pipe and includes a main elliptical surface 20 and correction mirror surfaces 21 and 22, 31 is a bottom surface, 32 is a UV lamp, 33 is a quartz tube for protecting the lamp 32,
34 is a liquid passing device through which the liquid to be treated passes. In addition, a specific example of this photoreaction device has a length of 30 crlL and a power consumption of 8.
W, UV output (2537”A) 1.3W UV lamp (
32) Using t-ellipse mirror surface 31 and 5 basic ellipses 20
The major axis is 60 cIrL.

短径55.5cm、焦点間距離20crrL、高さが3
0(1’#1のものを構成できる。
Minor axis 55.5cm, focal distance 20crrL, height 3
0(1'#1 can be configured.

第5図は第4図の通液装置(34)の具体例の断面図を
示す。図中、40は処理すべき液を入れる循環槽、41
は循環ポンプ、42は液の通る中空円筒(パイプ)、4
3は円筒42の抑え、44は落下した液の受槽である。
FIG. 5 shows a sectional view of a specific example of the liquid passing device (34) shown in FIG. 4. In the figure, 40 is a circulation tank in which the liquid to be treated is placed, 41
is a circulation pump, 42 is a hollow cylinder (pipe) through which the liquid passes, 4
3 is a restraint for the cylinder 42, and 44 is a receiving tank for the fallen liquid.

この循環ボ/プ40により円筒42の内部から液を供給
しこの円筒の外壁に沿って受槽44に落下させる。この
場合円筒42に沿って水が下方へ流れるよう円筒に適当
な手段で接続された円筒抑え43が設けられている。
The circulation pipe 40 supplies liquid from inside the cylinder 42 and drops it into the receiving tank 44 along the outer wall of the cylinder. In this case, a cylinder retainer 43 is provided which is connected to the cylinder by suitable means so that the water flows downwardly along the cylinder 42.

この場合、中空円筒42の外径3 Q rrm 、内径
20ITInのものを用いている。
In this case, a hollow cylinder 42 with an outer diameter of 3 Q rrm and an inner diameter of 20 ITIn is used.

このような光反応装置によれば、楕円鏡面3゜によりU
Vランプ32からの紫外光がバイブ42の外壁全波れる
液体に均一に照射されるので、その液体の表面反応が効
率良く行われ、濁度の高い処理液にも有効となる。
According to such a photoreaction device, U
Since the ultraviolet light from the V-lamp 32 is uniformly irradiated onto the liquid that covers the entire outer wall of the vibrator 42, the surface reaction of the liquid is efficiently carried out, making it effective even for highly turbid processing liquids.

第6図、第7図は従来の装置(第1図)およびこの発明
の実施例(第4図)における円筒上の紫外線強度を測定
したグラフである。なお、この測定はダミー円筒を用い
てその上端から15cIrLの個所にUVセンサーを固
定しその円筒を回転させて行ったものである。これらグ
ラフの横軸は入射角β、縦軸は07強度りの直読値を示
している。従来の装置では、0°近辺で最高強度11,
000μw/cm程度の幅広い高いピークがあり、又1
80°近傍にわずか600μw/mと極めて低いピーク
があり、角度によって強度ばらつきの大きい装置といえ
る。特に円筒裏側に相当する場所ではUVが殆んど照射
されず長期的に問題の生ずる。これに対してこの実施例
の装置では、高いピークは25°近辺と335゜近辺に
9,000μw/mのピークと、180°近辺で5.0
00μw / crlのピークがちシ、低いピークでは
、θ°近辺の狭い4000μw / crlのピークと
160°、210゜近辺の3.000μw/cmのピー
クがあるが、少なくとも全域にわたって3.0001P
w/dの強度があシ、従来のような強度の不均一性につ
いて著るしく改善されている。したがって5本発明によ
る補正鏡面を持つ光反応装置は、被反応物表面にばらつ
きの少ない光照射を与え、濁度のある水の殺菌、有機物
分解装置はもとより、円柱状固体の光反応装置としても
十分利用できる。
FIGS. 6 and 7 are graphs showing measurements of the ultraviolet intensity on a cylinder in a conventional device (FIG. 1) and an embodiment of the present invention (FIG. 4). Note that this measurement was carried out by using a dummy cylinder, fixing the UV sensor at a position 15 cIrL from the upper end of the cylinder, and rotating the cylinder. The horizontal axis of these graphs shows the incident angle β, and the vertical axis shows the direct reading value of 07 intensity. With conventional equipment, the maximum strength at around 0° is 11,
There is a wide high peak of about 000 μw/cm, and 1
There is an extremely low peak of only 600 μw/m near 80°, and it can be said that the device has a large variation in intensity depending on the angle. Particularly in the area corresponding to the back side of the cylinder, almost no UV rays are irradiated, leading to long-term problems. On the other hand, in the device of this embodiment, the high peaks are 9,000 μw/m near 25° and 335°, and 5.0 μw/m near 180°.
There are many peaks of 00μw/crl, and the low peaks include a narrow peak of 4000μw/crl near θ° and a peak of 3.000μw/cm near 160° and 210°, but at least 3.0001P over the entire area.
The strength of w/d is high, and the non-uniformity of strength compared to the conventional method is significantly improved. Therefore, the photoreaction device with the corrected mirror surface according to the present invention provides uniform light irradiation to the surface of reactants, and can be used not only as a sterilizer for turbid water and as an organic matter decomposition device, but also as a photoreaction device for cylindrical solids. It is fully usable.

なお、これら従来の装置およびこの実施例の装置により
殺菌試験を行った結果を次に説明する。
The results of sterilization tests conducted using these conventional devices and the device of this example will be described below.

サンプルとして一般道路側溝よシ採取した水に濁度成分
としてFe2O3微粉末’eloOppm分散したもの
全1昼夜攪拌した原水を用いて、両装置により紫外光を
照射し1〜6時間後の生菌数(個/wtl)を測定した
結果を第1表に示す。
As a sample, Fe2O3 fine powder 'eloOppm was dispersed as a turbidity component in water collected from a public road gutter.Using raw water that had been stirred all day and night, it was irradiated with ultraviolet light using both devices, and the number of viable bacteria was determined after 1 to 6 hours. Table 1 shows the results of measuring (number/wtl).

第1表 表中、UV処理しない水は対象実験で同一条件でポンプ
循環させていたものである。この時、原水を11使用し
水は217時で供給され、円筒部の氷落下時間は約0.
3秒であった。第1表に示した様に、この実施例の光反
応装置は処理液に均一にUVが照射される事によってU
Vが効果的に利用されるため、従来の約半分の時間で滅
菌出来る事が分った。
In Table 1, the water that was not UV treated was circulated by a pump under the same conditions in the target experiment. At this time, raw water was used at 11 hours, water was supplied at 217 hours, and the ice falling time on the cylinder was about 0.
It was 3 seconds. As shown in Table 1, the photoreaction device of this example has a U
It has been found that because V is used effectively, sterilization can be done in about half the time compared to conventional methods.

なお、この装置を大形比し、大強度のUVランプを用い
ることKより、各種分解装置や光合成反応装置にも適用
することができる。
Since this device is large-sized and uses a high-intensity UV lamp, it can also be applied to various decomposition devices and photosynthetic reaction devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来からの楕円柱型光反応装置の断面図、第2
図は本発明の実施例の基本構成を示す断面図、第3図は
第2図の構成を説明する構成図、第4図は本発明の実施
例の部分破砕斜視図、第5図は第4図の通液装置の部分
断面図、第6図、第7図は従来の装置およびこの実施例
の装置による入射角度に対するUV照射強度を測定した
グラフである。図において 1.25・・・・・・直接光、2.26・・・・・・−
次反射光。 3・・・・・・被反応物に接する光線、4・・・・・・
正楕円柱、5・・・・・・基本楕円、6・・・・・・補
正楕円、10・旧・・光源(UVランプハ 11・・・
・・・被反応物、20・・・・・・主楕円面、21.2
2・・・・・・補正楕円鏡面、27・・印・三次反射光
、30・・・・・・鏡面、31・・・・・・底面、32
・・・・・・UVランプ、33・・・・・・石英管、3
4・旧・・通液装置、40・・・・・・循環槽、41・
・・・・・循環ポンプ、42・・・・・・中空円筒(パ
イプ)、43・・・・・・円筒抑え、44・・・・・・
受槽、μ、11′・・・・・・焦点、 AA’・・曲長
径。 BB’・・・・・・短径、である。 案タソ1 穿6回 □ 人鼾西(勾 茅71¥r
Figure 1 is a cross-sectional view of a conventional elliptical cylindrical photoreactor;
The figure is a sectional view showing the basic configuration of an embodiment of the present invention, FIG. 3 is a configuration diagram explaining the configuration of FIG. 2, FIG. FIG. 4 is a partial cross-sectional view of the liquid passing device, and FIGS. 6 and 7 are graphs showing measurements of UV irradiation intensity versus incident angle using a conventional device and the device of this embodiment. In the figure, 1.25...direct light, 2.26...-
Next reflected light. 3...Light ray that comes into contact with the reactant, 4...
Regular ellipse cylinder, 5...Basic ellipse, 6...Correction ellipse, 10. Old light source (UV lamp) 11...
...Reactant, 20...Main ellipsoid, 21.2
2...Corrected elliptical mirror surface, 27...mark/tertiary reflected light, 30...mirror surface, 31...bottom surface, 32
...UV lamp, 33...Quartz tube, 3
4.Old...Liquid passing device, 40...Circulation tank, 41.
... Circulation pump, 42 ... Hollow cylinder (pipe), 43 ... Cylindrical retainer, 44 ...
Receiver, μ, 11'...Focus, AA'...Long axis of curve. BB' is the short axis. Plan Taso 1 6 times □ Jinno Nishi (Kaya 71 yen r

Claims (1)

【特許請求の範囲】[Claims] 内面を鏡面仕上げした楕円柱内にこの楕円柱の一方の焦
点に光源、そのもう一方の焦点に被反応物をそれぞれ配
設し、その光源からの光を前記被反応物に照射する光反
応装置において、前記楕円柱の横断面を第1の楕円とし
、この第1の楕円の焦点μ、μ′を結ぶ直線の延長線と
この楕円との交点’iA’、Aとし、その直線μIの垂
直二等分線とこの楕円との交点iB、gとし、前記焦点
μと交点Bとを焦点とし前記焦点μと前記交点Aとの間
に交点Ct有する第2の楕円とし、この第2の楕円と前
記第1の楕円の弧K)との交点をDとするとき、前記第
1の楕円の弧ABのうちその部分弧ADi前記第2の楕
円の部分弧CDに代えた補正弧CDBと;この補正弧と
同様に前記焦点および交点のμ′とB、μと13’、 
 dとn=1それぞれ焦点とし前i己第2の楕円と同様
の楕円の部分弧に前記第1の楕円の部分弧をそれぞれ代
えた三個の補正弧とからなる補正楕円によシ前記楕円柱
を形成したことを特徴とする光反応装置。
A photoreaction device in which a light source is placed at one focus of the elliptical cylinder and a reactant is placed at the other focus in an elliptical cylinder whose inner surface is mirror-finished, and the reactant is irradiated with light from the light source. Let the cross section of the elliptical cylinder be a first ellipse, let the intersection point 'iA', A of the extension of the straight line connecting the foci μ, μ' of this first ellipse and this ellipse, and let the perpendicular of the straight line μI be The intersection points iB and g between the bisector and this ellipse are defined as a second ellipse whose focal point is the focal point μ and the intersection point B, and which has an intersection point Ct between the focal point μ and the intersection point A, and this second ellipse and the arc K) of the first ellipse is defined as D, the partial arc ADi of the arc AB of the first ellipse, and the correction arc CDB replaced by the partial arc CD of the second ellipse; Similarly to this correction arc, μ' and B, μ and 13' of the focal point and the intersection point,
The ellipse is formed into a correction ellipse consisting of three correction arcs each having a focal point of d and n=1 and three correction arcs in which the partial arcs of the first ellipse are respectively replaced by partial arcs of the same ellipse as the second ellipse. A photoreaction device characterized by forming pillars.
JP9809182A 1982-06-08 1982-06-08 Apparatus for photoreaction Pending JPS58214388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9809182A JPS58214388A (en) 1982-06-08 1982-06-08 Apparatus for photoreaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9809182A JPS58214388A (en) 1982-06-08 1982-06-08 Apparatus for photoreaction

Publications (1)

Publication Number Publication Date
JPS58214388A true JPS58214388A (en) 1983-12-13

Family

ID=14210666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9809182A Pending JPS58214388A (en) 1982-06-08 1982-06-08 Apparatus for photoreaction

Country Status (1)

Country Link
JP (1) JPS58214388A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238994A (en) * 1984-05-11 1985-11-27 株式会社 小田原機器 Paper money/tickets separator
JPH05104084A (en) * 1991-10-18 1993-04-27 Nec Corp Method for decomposing organochlorine type solvent component in water and apparatus therefor
JP2003053178A (en) * 2001-08-13 2003-02-25 Dkk Toa Corp Photo-oxidizer
JP2005313173A (en) * 1999-06-21 2005-11-10 Access Business Group Internatl Llc Lamp assembly
JP2011509169A (en) * 2007-12-18 2011-03-24 ウルトラバイオレット サイエンシーズ インコーポレイテッド UV light processing chamber
US9808544B2 (en) 2005-08-31 2017-11-07 Ultraviolet Sciences, Inc. Ultraviolet light treatment chamber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238994A (en) * 1984-05-11 1985-11-27 株式会社 小田原機器 Paper money/tickets separator
JPS6250876B2 (en) * 1984-05-11 1987-10-27 Odawara Kiki Kk
JPH05104084A (en) * 1991-10-18 1993-04-27 Nec Corp Method for decomposing organochlorine type solvent component in water and apparatus therefor
JP2005313173A (en) * 1999-06-21 2005-11-10 Access Business Group Internatl Llc Lamp assembly
JP2003053178A (en) * 2001-08-13 2003-02-25 Dkk Toa Corp Photo-oxidizer
US9808544B2 (en) 2005-08-31 2017-11-07 Ultraviolet Sciences, Inc. Ultraviolet light treatment chamber
US11000605B2 (en) 2005-08-31 2021-05-11 Neo Tech Aqua Solutions, Inc. Ultraviolet light treatment chamber
US11806434B2 (en) 2005-08-31 2023-11-07 Neo Tech Aqua Solutions, Inc. Ultraviolet light treatment chamber
JP2011509169A (en) * 2007-12-18 2011-03-24 ウルトラバイオレット サイエンシーズ インコーポレイテッド UV light processing chamber
US9511344B2 (en) 2007-12-18 2016-12-06 Ultraviolet Sciences, Inc. Ultraviolet light treatment chamber

Similar Documents

Publication Publication Date Title
US7847269B2 (en) Apparatus for and method of treating a fluid
KR100797790B1 (en) Method for disinfecting and purifiying liquids and gasses
Ray Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment
Tegze et al. Three dimensional imaging of atoms with isotropic 0.5 Å resolution
TWI245163B (en) Lithographic apparatus and device manufacturing method
Blawas et al. Step-and-Repeat Photopatterning of Protein Features Using Caged-Biotin− BSA: Characterization and Resolution
Marhaba et al. Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures
Cabrera et al. Novel reactor for photocatalytic kinetic studies
JPS58214388A (en) Apparatus for photoreaction
EP3533765B1 (en) Water treatment device
DK0983968T3 (en) Process for the treatment of biological waste
US6818900B2 (en) Optical radiation sensor system and method for measuring radiation transmittance of a fluid
JP2018079462A (en) Working method and apparatus for monitoring of ultraviolet disinfection facility
US6303086B1 (en) Disinfecting water by means of ultraviolet light
KR970066558A (en) Method and apparatus for determining crystal plane orientation
CN101885517B (en) Ultraviolet radiation apparatus
US3695772A (en) Sample cell holder for radiant energy analyzers
WO2002068917A3 (en) Flow-through chemical actinometer for ultraviolet disinfection reactors
Sellami et al. Modelling of UV radiation field inside a photoreactor designed for wastewater disinfection Experimental validation
Shang et al. Nonuniform radiation modeling of a corrugated plate photocatalytic reactor
HUE031008T2 (en) A multipurpose device for transmitting radiation
JPH039252A (en) Inspecting device for foreign matter in sliced raw shellfish
JPH055943Y2 (en)
JPH0921680A (en) Device for determining position of boundary between two media, container using device thereof and detecting method thereof
JPH0141474Y2 (en)