JPH039252A - Inspecting device for foreign matter in sliced raw shellfish - Google Patents

Inspecting device for foreign matter in sliced raw shellfish

Info

Publication number
JPH039252A
JPH039252A JP1143458A JP14345889A JPH039252A JP H039252 A JPH039252 A JP H039252A JP 1143458 A JP1143458 A JP 1143458A JP 14345889 A JP14345889 A JP 14345889A JP H039252 A JPH039252 A JP H039252A
Authority
JP
Japan
Prior art keywords
ray
shellfish
rays
pipeline
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1143458A
Other languages
Japanese (ja)
Other versions
JP2595352B2 (en
Inventor
Kuniyuki Fukuzawa
福沢 邦之
Fumitaka Hayata
早田 文隆
Tadashi Yoshida
正 吉田
Naoki Toyoda
直樹 豊田
Ikuo Hatsukade
廿日出 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOHATA KANZUME KK
Hitachi Plant Technologies Ltd
Original Assignee
AOHATA KANZUME KK
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOHATA KANZUME KK, Hitachi Plant Technologies Ltd filed Critical AOHATA KANZUME KK
Priority to JP1143458A priority Critical patent/JP2595352B2/en
Publication of JPH039252A publication Critical patent/JPH039252A/en
Application granted granted Critical
Publication of JP2595352B2 publication Critical patent/JP2595352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C29/00Processing shellfish or bivalves, e.g. oysters, lobsters; Devices therefor, e.g. claw locks, claw crushers, grading devices; Processing lines
    • A22C29/005Grading or classifying shellfish or bivalves
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C29/00Processing shellfish or bivalves, e.g. oysters, lobsters; Devices therefor, e.g. claw locks, claw crushers, grading devices; Processing lines
    • A22C29/02Processing shrimps, lobsters or the like ; Methods or machines for the shelling of shellfish

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Sorting Of Articles (AREA)
  • Processing Of Meat And Fish (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

PURPOSE:To detect foreign matter without being affected by the output variation of an X-ray source and the component variation of fluid for conveyance and to preclude an omission of detection by using both a multiplexer system and a multichannel system together. CONSTITUTION:A body to be inspected is irradiated with X rays emitted by an X-ray generation tube and transmitted X rays are measured by linear sensors 26A and 26B. Signals of respective photodetecting elements of the sensor 26A are applied to a multiplexer 32, which outputs a signal indicating the transmission quantity of X rays in the array direction of the sensor 26A to a signal processing circuit 34. The circuit 34 compares signals of individual channels relatively and outputs a foreign matter detection signal when a signal difference exceeds a specific level. Signals of photodetecting elements of the sensor 26B, on the other hand, are apllied to comparators comp.1 - comp.m, which compares the signal levels of respective channels with a threshold value and output an abnormality detection signal through an OR circuit 38 when the signal level of a channel becomes smaller than the threshold value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は貝剥身中の異物検査装置に係り、特にX線の透
過量に基づいて、貝剥身中に混入している貝殻片及び金
属片等の異物を検出する貝剥身中の異物検査装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for inspecting foreign substances in shellfish shellfish, and in particular detects shell fragments and foreign matter mixed in shellfish shellfish based on the amount of X-ray transmission. This invention relates to a foreign object inspection device in shellfish shellfish that detects foreign objects such as metal pieces.

〔従来の技術〕[Conventional technology]

従来、加工食品に対してX線を照射し、この加工食品か
らの透過X線量の変化に基づいて加工食品に混入した異
物を検出する方法がある(特開昭52−127393号
公報)。
Conventionally, there is a method of irradiating processed foods with X-rays and detecting foreign substances mixed in the processed foods based on changes in the amount of transmitted X-rays from the processed foods (Japanese Patent Laid-Open No. 127393/1983).

しかし、上記X線検査方式の場合、貝以外の食品の異物
検出に大きな実績があるが、あさり等の貝類の残穀検出
に適用した場合には、残穀と貫剥身とのX線吸収差はそ
れほど大きくない等の理由から貝剥身中の残穀検出をX
線を用いて行う装置は今まで実用化されていなかった。
However, in the case of the above-mentioned X-ray inspection method, although it has a great track record in detecting foreign substances in foods other than shellfish, when applied to detecting the remains of shellfish such as clams, the X-ray absorption Because the difference is not so large, the detection of residual grains in shellfish shells is
Devices that use wires have not been put into practical use until now.

これに対し、近年、パイプライン中を通過する貝殻身及
びその搬送用流体にX線を照射し、パイプラインを介し
てX線を受光するX線受光素子の上面に、X線に感光し
て発光するX線蛍光板を設けるようにしだ貝剥身中の残
穀検査装置が提案されている(特願昭62−26309
0号)。
On the other hand, in recent years, X-rays are irradiated onto the shellfish and its transport fluid passing through the pipeline, and the upper surface of the X-ray receiving element that receives the X-rays through the pipeline is exposed to the X-rays. A device for inspecting the remaining grains in shelled shellfish has been proposed by installing a luminescent X-ray fluorescent screen (Japanese Patent Application No. 62-26309).
No. 0).

また、食品機械装置(1987年、12月号、84頁〜
90頁)の文献には、食品に混入した異物のX線検査装
置において、オンラインの一次元X線センサを用い、こ
の−次元X線センサは、IX4,4mmのフォトダイオ
ード素子が一列に35個並んだもので、各フォトダイオ
ード素子には、それぞれ蛍光体としてI X 1 x4
.4mrnのX線発光結晶が光学的に結合されていると
の記載がある。
Also, Food Machinery and Equipment (1987, December issue, p. 84~
90 pages), an online one-dimensional X-ray sensor is used in an X-ray inspection system for foreign substances mixed in food, and this one-dimensional X-ray sensor has 35 photodiode elements of IX4. Each photodiode element has I x 1 x 4 as a phosphor.
.. There is a description that 4 mrn X-ray emitting crystals are optically coupled.

更に、この種の装置における信号処理方式には、複数の
X線受光素子の信号レベルをそれぞれ所定のサイクル時
間で順番に入力し、各々の信号レベルの相対的な大小比
較を行うことにより異物の有無を判別するいわゆるマル
チプレクサ方式と、複数のX線受光素子の信号レベルを
それぞれ経時的に入力し、その信号レベルと異物検出用
の閾値との大小比較を行うことにより異物の有無を判別
するいわゆるマルチチャンネル方式とがあり、従来はい
ずれか一方の方式を採用している。
Furthermore, the signal processing method in this type of device involves sequentially inputting the signal levels of multiple X-ray photodetectors at a predetermined cycle time, and comparing the relative magnitudes of each signal level to detect foreign particles. The so-called multiplexer method determines the presence or absence of a foreign object, and the so-called multiplexer method determines the presence or absence of a foreign object by inputting the signal levels of multiple X-ray photodetectors over time and comparing the signal level with a threshold for foreign object detection. There are multi-channel systems, and conventionally one of these systems has been adopted.

〔発明が解決しようする課題〕[Problem to be solved by the invention]

ところで、従来の貝剥身中の残穀検査装置のように僅か
なX線の変化量を問題にする場合において、その信号処
理方式として例えばマルチチャンネル方式を用いると、
X線源の出力変動、搬送用流体の成分変動等によりX線
透過量が変動し、そのため貝殻検出の判別基準である閾
値の設定が難しいという問題がある。尚、闇値を固定す
ると、検出が不安定になり、一方、閾値をその都度変更
するのは煩雑である。これに対し、マルチプレクサ方式
を用いると、所定のサイクル時間毎に各X線受光素子か
ら信号を入力するため、貝殻の寸法が小さい場合や、貝
殻の速度が速い場合には検出が困難となる。
By the way, when a small amount of change in X-rays is a problem, as in the case of the conventional grain residue inspection device for peeling shellfish, if a multi-channel method is used as the signal processing method, for example,
There is a problem in that the amount of X-ray transmission varies due to variations in the output of the X-ray source, variations in the components of the transport fluid, etc., and therefore it is difficult to set a threshold value that is a discrimination criterion for seashell detection. Note that if the darkness value is fixed, detection becomes unstable, and on the other hand, it is troublesome to change the threshold value each time. On the other hand, when a multiplexer method is used, signals are input from each X-ray photodetector at every predetermined cycle time, which makes detection difficult if the shell is small or the shell is moving fast.

即ち、マルチチャンネル方式はリアルタイム計測である
ことから、応答性に優れる反面X線の変動等に弱く、一
方、マルチプレクサ方式はX線の変動等には強いが、応
答性に欠けるという、相反する性質をもつ。
In other words, since the multi-channel method is a real-time measurement, it has excellent responsiveness but is weak against X-ray fluctuations, while the multiplexer method is strong against X-ray fluctuations but lacks responsiveness. have.

また、X線検査装置の検出対象の材質(例えば、石、金
属、木、植物等)や、その寸法により検出に最適なX線
のエネルギ或いはそのX線のエネルギに適合した蛍光体
及びX線受光素子の素子寸法等があることは周知の事実
であるが、従来の貫剥身の残穀検査装置の場合には、所
定の大きさ以上の貝殻片の検出は可能であるが、例えば
小さな金属片の検出はできない。また、食品機械装置の
文献中のX線検査装置においても、ある特定の条件のみ
に設定した一次元X線センサ等を使用せざるを得す、そ
の為、その条件を逸脱した検出対象物は当然の事ながら
検出することができない。
In addition, depending on the material to be detected by the X-ray inspection device (e.g., stone, metal, wood, plants, etc.) and its dimensions, the optimal X-ray energy for detection or the phosphor and X-ray suitable for the X-ray energy may be used. It is a well-known fact that there are dimensions of the light-receiving element, etc., but in the case of conventional shell fragment inspection equipment, it is possible to detect shell fragments larger than a predetermined size, but for example, small Metal fragments cannot be detected. In addition, even in the X-ray inspection equipment described in the food machinery equipment literature, it is necessary to use a one-dimensional X-ray sensor etc. that is set only under certain specific conditions. Naturally, it cannot be detected.

本発明の目的は、このような事情に鑑みてなされたもの
で、X線の出力変動あるいは搬送用流体の成分変動に対
しても安定して微小な異物も検出することができる貝殻
身中の異物検査装置を提供することにある。
The object of the present invention has been made in view of the above circumstances, and it is an object of the present invention to develop a method for detecting even the smallest foreign matter stably even in the face of fluctuations in the output of X-rays or fluctuations in the composition of the transport fluid. An object of the present invention is to provide a foreign matter inspection device.

また、本発明の他の目的は、貝殻片及び金属片等の種々
の材質及び寸法から成る異物を1つのX線発生源を用い
て効率良く検出することができる貝殻身中の異物検出装
置を提供することにある。
Another object of the present invention is to provide a foreign object detection device in shell body that can efficiently detect foreign objects made of various materials and sizes, such as shell pieces and metal pieces, using one X-ray source. It is about providing.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は前記目的を達成するために、貝の剥身を搬送用
流体と共にパイプラインを介して連続搬送する搬送手段
と、前記パイプライン中を通過する貝の剥身及び搬送用
流体にX線を照射するX線照射手段と、それぞれ複数の
微小なX線受光素子が前記パイプラインを横断する方向
に直線状に配列され、前記X線照射手段からのX線をパ
イプラインを介して受光する第1及び第2の1次元X線
センサと、前記第1の1次元X線センサの個々のX線受
光素子の信号レベルをそれぞれ所定のサイクル時間で順
番に入力し、各々の信号レベルの相対的な大小比較を行
うことにより貝剥身中の異物のを無を判別する第1の判
別手段と、前記第2の1次元X線センサの個々のX線受
光素子の信号レベルをそれぞれ経時的に入力し、該信号
レベルと異物検出用の所定の閾値との大小比較を行うこ
とにより貝剥身中の異物の有無を判断する第2の判別手
段と、を備えたことを特徴としている。
In order to achieve the above object, the present invention provides a conveying means for continuously conveying shellfish shells together with a transporting fluid through a pipeline, and X-rays for shellfish shells and the transporting fluid passing through the pipeline. X-ray irradiation means for irradiating the X-ray irradiation means, and a plurality of minute X-ray light receiving elements are arranged in a straight line in a direction crossing the pipeline, and receive the X-rays from the X-ray irradiation means via the pipeline. The signal levels of the first and second one-dimensional X-ray sensors and the individual X-ray receiving elements of the first one-dimensional The first discriminating means discriminates whether there is a foreign object in the shellfish shell by comparing the sizes thereof, and the signal level of each X-ray receiving element of the second one-dimensional X-ray sensor is determined over time. and second determining means for determining the presence or absence of foreign matter in the shellfish shellfish by inputting the signal level to a predetermined threshold value for detecting foreign matter and comparing the signal level with a predetermined threshold value for detecting foreign matter.

また、貝の剥身を搬送用流体と共にパイプラインを介し
て連続搬送する搬送手段と、前記パイプライン中を通過
する貝の剥身及び搬送用流体にX線を照射するX線照射
手段と、前記X線照射手段とパイプラインとの間に配設
され、X線照射光路内の一部のX線の長波長成分を吸収
する吸収材と、複数の微小なX線受光素子が前記パイプ
ラインを横断する方向に直線状に且つ前記吸収材を通過
しないX線を受光する位置に配列され、その上面に長波
長X線に感度をもつ蛍光物質が配設され、前記X線照射
手段からのX線をパイプラインを介して受光する第1の
1次元XvAセンサと、複数の微小なX線受光素子が前
記パイプラインを横断する方向に直線状に且つ前記吸収
材を通過するX線を受光する位置に配列されて成る第2
の1次元X線センサであって、その上面に短波長X線に
感度をもつ蛍光物質が配設され、前記X線照射手段から
のX線を吸収材及びパイプラインを介して受光する第2
の1次元X線センサと、それぞれ前記第1及び第2の1
次元センサの信号レベルに基づいて貝剥身中の異物の有
無を判別する判別手段と、を備えたことを特徴としてい
る。
Further, a transport means for continuously transporting the shellfish shells together with a transport fluid through a pipeline, and an X-ray irradiation means for irradiating X-rays to the shellfish shells and the transport fluid passing through the pipeline; An absorber that is disposed between the X-ray irradiation means and the pipeline and absorbs long wavelength components of some of the X-rays in the X-ray irradiation optical path, and a plurality of small X-ray light receiving elements are connected to the pipeline. A fluorescent substance sensitive to long-wavelength X-rays is disposed on the upper surface of the fluorescent substance, which is arranged in a straight line in a direction transverse to the absorber and at a position to receive X-rays that do not pass through the absorber. A first one-dimensional XvA sensor that receives X-rays through a pipeline, and a plurality of minute X-ray receiving elements that receive X-rays that pass through the absorbing material in a straight line in a direction that crosses the pipeline. The second
A one-dimensional X-ray sensor, in which a fluorescent material sensitive to short wavelength X-rays is disposed on the upper surface thereof, and a second X-ray sensor that receives X-rays from the X-ray irradiation means via an absorbing material and a pipeline.
a one-dimensional X-ray sensor, and said first and second one, respectively.
The present invention is characterized by comprising a determining means for determining the presence or absence of foreign matter in the shellfish shellfish based on the signal level of the dimensional sensor.

〔作用〕[Effect]

本発明は、X線検査による異物の検出洩れの原因として
、X線発生源の出力変動(短期的には電源電圧の変動、
長期的にはX線発生管の経時劣化等)、あるいは被検体
の成分変化に伴うX線透過量の変動があり、そのためマ
ルチプレクサ方式による各X線受光素子(チャンネル)
間の相対的比較を行うと同時に、マルチチャンネル方式
によるリアルタイム計測で応答性をも兼ね備えるように
構成したものである。即ち、X線を受光するセンサとし
て、2つの1次元X線センサを配設し、方の1次元セン
サはマルチプレクサ方式の信号処理に使用し、これによ
りX線の変動等に強い異物の検出を可能にし、他方の1
次元センサはマルチチャンネル方式のリアルタイム信号
処理に使用し、これにより異物の寸法が小さい場合や異
物の移動速度が速い場合等における異物の検出を可能に
している。
The present invention addresses the problem of X-ray generation source output fluctuations (in the short term, power supply voltage fluctuations,
In the long term, the amount of transmitted X-rays may fluctuate due to changes in the X-ray generating tube (e.g. aging of the X-ray generating tube) or changes in the composition of the object, so each X-ray receiving element (channel) is
It is designed to perform relative comparisons between the two, and at the same time provide responsiveness through real-time measurement using a multi-channel method. In other words, two one-dimensional X-ray sensors are installed as sensors that receive X-rays, and one one-dimensional sensor is used for signal processing using a multiplexer method, which allows detection of foreign objects that are resistant to fluctuations in X-rays. enable the other one
The dimensional sensor is used for multi-channel real-time signal processing, making it possible to detect foreign objects when the size of the foreign object is small or when the moving speed of the foreign object is high.

また、本発明は、異物の材質により検出に有効なX線の
エネルギが異なり、それに応じて1次元センサの蛍光物
質を適当に選択することにより検出精度が向上すること
に着目し、これを実現するために1つのX線照射手段か
ら照射されるX線を複数のエネルギ帯のX線に分離すべ
く、X線照射光路に一部のX線の長波長成分を吸収する
吸収材を設けるようにしている。一方、前記吸収材を通
過しないX線を受光する位置と、吸収材を通過するX線
を受光する位置にそれぞれ第1、第2の1次元センサを
配設し、第1の1次元センサの上面には長波長X線に感
度を持つ蛍光物質を配設し、第2の1次元センサの上面
には短波長X線に感度をもつ蛍光物質を配設するように
している。これにより、第1及び第2の1次元センサか
らそれぞれ異物の材質、寸法に適した信号レベルを取り
出すことができ、種々の異物を同時に検出することがで
きる。
In addition, the present invention focuses on the fact that the effective X-ray energy for detection differs depending on the material of the foreign object, and that detecting accuracy can be improved by appropriately selecting the fluorescent material of the one-dimensional sensor accordingly. In order to separate the X-rays irradiated from one X-ray irradiation means into X-rays of multiple energy bands, an absorbing material that absorbs some of the long wavelength components of the X-rays is provided in the X-ray irradiation optical path. I have to. On the other hand, first and second one-dimensional sensors are arranged at positions that receive X-rays that do not pass through the absorbing material and at positions that receive X-rays that pass through the absorbing material, respectively. A fluorescent material sensitive to long wavelength X-rays is disposed on the upper surface, and a fluorescent material sensitive to short wavelength X-rays is disposed on the upper surface of the second one-dimensional sensor. Thereby, signal levels suitable for the material and size of the foreign object can be extracted from the first and second one-dimensional sensors, respectively, and various foreign objects can be detected simultaneously.

〔実施例〕〔Example〕

以下添付図面に従って本発明に係る貝剥身中の異物検査
装置の好ましい実施例を詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the apparatus for inspecting foreign substances in shellfish shellfish according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、被検体(貝剥身と貝殻片及び金属片等
の異物と搬送用流体の混合物)は、供給口10を通して
供給タンク12に供給される。供給タンク12では、撹
拌器14で攪拌しなから貝剥身と搬送用流体の混合比調
整及び流体の比重調整が行われる。
In FIG. 1, a specimen (a mixture of shellfish shells, shell pieces, foreign objects such as metal pieces, and a transport fluid) is supplied to a supply tank 12 through a supply port 10. In the supply tank 12, while stirring with a stirrer 14, the mixing ratio of the shellfish and the transporting fluid is adjusted and the specific gravity of the fluid is adjusted.

調整後の被検体は、サニタリー仕様のSUS製パイプラ
イン16を通してロータリーポンプ17によりX線検査
部20に供給される。尚、第1図中、18は装置架台で
あり、19はドレンバルブである。
The subject after adjustment is supplied to the X-ray inspection section 20 by a rotary pump 17 through a pipeline 16 made of sanitary SUS. In FIG. 1, 18 is a device stand, and 19 is a drain valve.

X線検査部20では、X線発生管22から照射されたX
線が、カーボンFRP製のバイブライン24を通して被
検体に照射され、透過したX線が1次元X線センサ26
A、26Bで計測される。
In the X-ray inspection section 20, the X-rays irradiated from the X-ray generating tube 22
The X-rays are irradiated onto the subject through the vibration line 24 made of carbon FRP, and the transmitted X-rays are sent to the one-dimensional X-ray sensor 26.
A, measured at 26B.

そして、1次元X線センサ26A、26Bの出力に基づ
いて被検体中の貝殻片及び金属片等の異物を検出した際
には、異物検出信号を発生し、この異物検出信号に基づ
いて排出弁30を作動させて異物を含む被検体を排出す
る。
When foreign objects such as shell pieces and metal pieces are detected in the subject based on the outputs of the one-dimensional X-ray sensors 26A and 26B, a foreign object detection signal is generated, and a discharge valve is opened based on this foreign object detection signal. 30 to discharge the object containing foreign matter.

次に、第2図乃至第6図を参照しながら上記X線検査部
20について詳細に説明する。
Next, the X-ray inspection section 20 will be explained in detail with reference to FIGS. 2 to 6.

第2図はX線検査部20の拡大断面図である。FIG. 2 is an enlarged sectional view of the X-ray inspection section 20.

同図において、X線発生管22のべIJ IJウム窓2
2Aの表面の一部(図中の右半分)には、長波長X線の
吸収材(アルミニウムの薄膜)22Bが配設されている
。これにより、X線照射領域は、長波長X線を多く含む
照射領#c(図中中心線に対し左側の照射領域)A、長
波長X線が少ない照射領域(図中中心線に対し右側の照
射領域)Bとに分離される。そして、バイブライン24
の下方の各照射領域A及びBには、それぞれ長波長X線
及び短波長X線の検出に適した1次元X線センサ26A
及び26Bが配設されている。
In the same figure, the X-ray generating tube 22 is
A long wavelength X-ray absorbing material (aluminum thin film) 22B is disposed on a part of the surface of 2A (the right half in the figure). As a result, the X-ray irradiation area is divided into irradiation area #c (the irradiation area on the left side of the center line in the figure) which contains many long wavelength The irradiation area is separated into B and B. And vibe line 24
Each lower irradiation area A and B is provided with a one-dimensional X-ray sensor 26A suitable for detecting long wavelength X-rays and short wavelength X-rays, respectively
and 26B are provided.

ここで、X線を短波長のものと長波長のものとに分離し
て用いることによる異物検出への効果について説明する
Here, the effect of separating X-rays into short-wavelength and long-wavelength X-rays on foreign object detection will be explained.

一般に、金属等に比べて動植物によるX線の吸収が低い
ことは周知であり、本発明の主たる検査対象である貝殻
もX線の吸収率は高くなく、従って、物質による吸収の
大きい長波長X線が検出に必要である。
Generally, it is well known that X-ray absorption by animals and plants is lower than that of metals, etc., and seashells, which are the main inspection target of the present invention, do not have a high X-ray absorption rate. line is required for detection.

一方、被検体に同時に含まれいてる金属片や石は、長波
長X線ばかりでなくそれよりエネルギが高く物質の透過
性が強い短波長X線でも吸収率が高いが、通常貝殻に比
べてこれらの寸法は小さい。
On the other hand, metal pieces and stones that are present in the specimen have a high absorption rate not only for long-wavelength X-rays but also for short-wavelength dimensions are small.

そのため、カーボンFRP製のバイブライン24や搬送
用流体による長波長X線の吸収分による信号で、金属や
石によるX線の吸収分による信号が埋もれてしまうこと
がある。従って、バイブライン24や搬送用流体による
吸収が少ない短波長X線でこれらを検出する方が有効で
ある。
Therefore, the signal due to the absorption of long wavelength X-rays by the carbon FRP vibrating line 24 or the transport fluid may obscure the signal due to the absorption of X-rays by metal or stone. Therefore, it is more effective to detect these using short wavelength X-rays that are less absorbed by the vibrator 24 or the transport fluid.

以上のことから、本発明では貝殻と金属、石とで検出に
用いるX線の波長(エネルギ)を分けている。
From the above, in the present invention, the wavelengths (energy) of X-rays used for detection are divided between seashells, metals, and stones.

次に、XWAの波長の点及び検出対象の寸法の点から選
定した1次元X線センサ26の詳細について説明する。
Next, details of the one-dimensional X-ray sensor 26 selected based on the XWA wavelength and the size of the detection target will be described.

第3図は1次元X線センサ26の構成を示す斜視図であ
り、1次元X線センサ26は、複数の受光素子27Aが
一列に並んだフォトダイオードアレイ27と、蛍光物質
28とから構成されている。
FIG. 3 is a perspective view showing the configuration of the one-dimensional X-ray sensor 26. The one-dimensional X-ray sensor 26 is composed of a photodiode array 27 in which a plurality of light receiving elements 27A are arranged in a row, and a fluorescent substance 28. ing.

ここで、第4図にX線エネルギに対する各種の蛍光物質
の吸収特性を示す。同図に示すように、貝殻の検出に有
効な波長の長い(エネルギの小さい)X線では、酸硫化
ガドリウム・テルビウム(Gd20.5−Tb)及びタ
ングステン酸カルシウム(CaWO4)が有効であり、
一方、金属や石の検出に有効な波長の短い(エネルギの
大きい)X線では、酸硫化ガドリウム・テルビウムくG
d202S−Tb)、酸硫化ランタン・テルビウム(L
a202S ’ Tb) 、ヨウ化セシウム・ナトリウ
ム(Csl・Na)及び酸臭化ランタン・テルビウム(
LaOB、5−Tb)が有効である。
Here, FIG. 4 shows the absorption characteristics of various fluorescent substances with respect to X-ray energy. As shown in the figure, gadolinium terbium oxysulfide (Gd20.5-Tb) and calcium tungstate (CaWO4) are effective for long wavelength (low energy) X-rays that are effective for detecting seashells.
On the other hand, X-rays with short wavelengths (high energy) that are effective for detecting metals and stones are
d202S-Tb), lanthanum terbium oxysulfide (L
a202S' Tb), cesium sodium iodide (Csl.Na) and lanthanum terbium acid bromide (
LaOB, 5-Tb) are effective.

即ち、第2図に示す1次元X線センサ26Aは、その上
面に長波長X線に感度をもつ蛍光物質28Aが配設され
、1次元X線センサ26Bは、その上面に短波長X線に
感度をもつ蛍光物質28が配設されている。
That is, the one-dimensional X-ray sensor 26A shown in FIG. 2 has a fluorescent substance 28A sensitive to long-wavelength X-rays on its upper surface, and the one-dimensional X-ray sensor 26B has a fluorescent material 28A sensitive to short-wavelength X-rays on its upper surface. A sensitive fluorescent substance 28 is provided.

また、前述した検出対象の寸法によって1次元X線セン
サの素子寸法を適当に選定することで、検出信号のダイ
ナミックレンジが高く得られることから、貝殻片の検出
用としては出現頻度の高い寸法に合わせて0.5叩〜1
.5ffi11角の素子寸法を、一方、金属片や石の検
出用としては同様に出現頻度の点から0.5市〜1.O
ma+角の素子寸法としている。
In addition, by appropriately selecting the element dimensions of the one-dimensional X-ray sensor according to the dimensions of the detection target mentioned above, a high dynamic range of the detection signal can be obtained. 0.5 to 1 stroke in total
.. On the other hand, for the detection of metal pieces and stones, the element size is 0.5 to 1.5 mm in terms of the frequency of appearance. O
The element dimension is ma+angle.

次に、X線検査部20におけるカーボンFRP製のパイ
プライン24の好ましい形状について第5図を用いて説
明する。
Next, a preferred shape of the carbon FRP pipeline 24 in the X-ray inspection section 20 will be described using FIG. 5.

第5図(A)は被検体の搬送方向と直交する方向におけ
るパイプライン24の断面図であり、同図に示すように
このパイプライン24は、X線発生管22のターゲット
とパイプライン底部の両端とを結ぶ直線がパイプライン
240両辺となる台形状になっている。これは、矩形の
パイプライン(破線で表示)にみられるデッドスペース
DSをなくしたもので、これにより検出精度が格段に向
上した。
FIG. 5(A) is a cross-sectional view of the pipeline 24 in a direction perpendicular to the transport direction of the subject. The pipeline 240 has a trapezoidal shape, with straight lines connecting both ends forming both sides of the pipeline 240. This eliminates the dead space DS seen in a rectangular pipeline (indicated by a broken line), which significantly improves detection accuracy.

第5図(B)は被検体の搬送方向と平行な方向における
パイプライン24の断面図であり、同図に示すように、
1次元X線センサ26A、2.68とX線発生管22の
ターゲットとを結ぶ面に交差する部分のパイプライン2
4に凹部24A、24Bをもたせ、その部分によるX線
吸収を低減するようにしている。これにより、パイプラ
イン24の機械的強度を最小限に抑えながら、検出精度
の向上が図れた。
FIG. 5(B) is a cross-sectional view of the pipeline 24 in a direction parallel to the transport direction of the subject, and as shown in the figure,
Pipeline 2 at the portion intersecting the plane connecting the one-dimensional X-ray sensors 26A, 2.68 and the target of the X-ray generating tube 22
4 has recesses 24A and 24B to reduce X-ray absorption by those parts. As a result, detection accuracy was improved while minimizing the mechanical strength of the pipeline 24.

尚、本実施例では、X線検査部20におけるバライン2
4の材質として、カーボンFRPを用いているが、これ
はX線の透過率が塩化ビニールやアクリル材に比べて高
く、且つ機械的強度及び耐薬品性の点で優れていること
によるもので、これにより食品衛生上行われる熱水洗浄
や薬品による洗浄に対しても十分に耐久性を確保するこ
とができる。
In addition, in this embodiment, the balaine 2 in the X-ray inspection section 20
Carbon FRP is used as the material in step 4 because it has a higher X-ray transmittance than vinyl chloride or acrylic materials, and is superior in terms of mechanical strength and chemical resistance. This makes it possible to ensure sufficient durability against hot water cleaning and chemical cleaning for food hygiene reasons.

次に、1次元X線センサから得られる信号の信号処理方
法を第6図及び第7図を用いて説明する。
Next, a signal processing method for signals obtained from the one-dimensional X-ray sensor will be explained using FIGS. 6 and 7.

本発明では、1次元X線センサからの信号に基づいて異
物を検出するための信号処理方式として、マルチプレク
サ方式とマルチチャンネル方式とを併用している。
In the present invention, a multiplexer method and a multichannel method are used together as a signal processing method for detecting a foreign object based on a signal from a one-dimensional X-ray sensor.

先ず、マルチプレクサ方式について説明する。First, the multiplexer method will be explained.

第6図において、1次元X線センサ26Aの各受光素子
(n個のチャンネルch、 l〜ch、n )の信号は
マルチプレクサ32に加えられており、マルチプレクサ
32はn個のチャンネルの信号を順番に選択して取り込
み、これを信号処理回路34に出力する。即ち、マルチ
プレクサ32は、n個のチャンネルの信号を読み出すの
に要する時間を1周期として、第7図(A)に示すよう
に1周期ごとに1次元X線センサ26Aの配列方向のX
線透過量を示す信号を信号処理回路34に出力する。尚
、1次元X線センサ26A上を貝殻片が通過した際には
、通過した場所の受光素子(チャンネル)の信号が低下
する。
In FIG. 6, the signals of each light receiving element (n channels ch, l to ch, n) of the one-dimensional X-ray sensor 26A are applied to the multiplexer 32, which sequentially sends the signals of the n channels. , and outputs it to the signal processing circuit 34 . That is, the multiplexer 32 sets the time required to read out the signals of n channels as one cycle, and as shown in FIG. 7(A), the multiplexer 32 adjusts the
A signal indicating the amount of line penetration is output to the signal processing circuit 34. Note that when a shell piece passes over the one-dimensional X-ray sensor 26A, the signal of the light receiving element (channel) at the place where it passes decreases.

信号処理回路34は、個々のチャンネルの信号レベルの
相対的な大小比較を行い、その信号偏差が所定レベル以
上のときに異物(貝殻片)を検出したと判断し、異物検
出信号を出力する。
The signal processing circuit 34 compares the relative magnitudes of the signal levels of the individual channels, determines that a foreign object (shell piece) has been detected when the signal deviation is above a predetermined level, and outputs a foreign object detection signal.

このように、マルチプレクサ方式は、X線源の変動等が
あっても各チャンネル間の相対的な比較を行っているた
め、その影響を受けない利点がある。ただし、貝殻片が
極めて小さい場合には、十分な検出精度は得られない。
In this way, the multiplexer method has the advantage of not being affected by fluctuations in the X-ray source because relative comparisons are made between the channels. However, if the shell fragments are extremely small, sufficient detection accuracy cannot be obtained.

次に、マルチチャンネル方式について説明する。Next, the multi-channel system will be explained.

第6図において、1次元XwAセンサ26Bの各受光素
子(m個のチャンネルch、 l〜ch、 m )の信
号は、それぞれ比較器comp、 1〜comp、 m
 lこ加えられており、各比較器comp、 1〜ca
mρ1mの池の入力にはレベル設定器36から異物検出
用の所定の閾値が加えられている。
In FIG. 6, the signals of each light receiving element (m channels ch, l~ch, m) of the one-dimensional XwA sensor 26B are transmitted through comparators comp, 1~comp, m, respectively.
l has been added, and each comparator comp, 1~ca
A predetermined threshold value for foreign object detection is added from a level setter 36 to the input of the pond mρ1m.

各比較器comp、 l 〜comp、 mは、第7図
(B)に示すようにそれぞれ各チャンネルの信号レベル
と閾値との大小比較を行い、チャンネルの信号レベルが
閾値より小さくなると、異物検出信号をオア回路38を
介して出力する。
Each of the comparators comp, l to comp, m compares the signal level of each channel with the threshold value as shown in FIG. 7(B), and when the signal level of the channel becomes smaller than the threshold value, the foreign object detection signal is is outputted via the OR circuit 38.

このように、マルチチャンネル方式は、1次元X線セン
サ26Bの各受光素子(チャンネル)の信号を経時的に
入力し、この信号レベルと予め設定した閾値との比較に
より異物検出を行うため、リアルタイムで応答性が良く
、小さい金属片や石などの異物検出に有効である。
In this way, the multi-channel method inputs signals from each light-receiving element (channel) of the one-dimensional X-ray sensor 26B over time, and detects foreign objects by comparing the signal level with a preset threshold. It has good responsiveness and is effective in detecting foreign objects such as small metal pieces and stones.

そして、上記信号処理回路34又はオア回路38のうち
少なくとも一方から異物検出信号が出力されると、前述
したように排出弁30 (第1図)を作動させて異物を
含む被検体を排出する。
When a foreign object detection signal is output from at least one of the signal processing circuit 34 or the OR circuit 38, the discharge valve 30 (FIG. 1) is operated as described above to discharge the object containing the foreign object.

尚、本実施例では、X線発生管の窓部に直接長波長X線
の吸収材を配設したが、これに限らず、X線照射光路の
途中の空間又はパイプライン240表面の一部に吸収材
を配設しても同様な効果が得られる。また、長波長X線
の吸収材としてアルミニウムの薄膜を用いているが、長
波長X線のみを吸収し、短波長X線を透過させるもので
あれば他の材質のものを用いても良い。
In this embodiment, the long-wavelength X-ray absorbing material is provided directly at the window of the X-ray generating tube, but the material is not limited to this, and may be placed in the space in the middle of the X-ray irradiation optical path or a part of the surface of the pipeline 240. A similar effect can be obtained by disposing an absorbent material in the area. Further, although a thin film of aluminum is used as a long-wavelength X-ray absorbing material, other materials may be used as long as they absorb only long-wavelength X-rays and transmit short-wavelength X-rays.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る貝剥身中の異物検査装
置によれば、マルチプレクサ方式とマルチチャンネル方
式の2つの信号処理方式を併用しているため、X線源の
出力変動及び搬送用流体の成分変動に影響されずに異物
の検出ができるとともに、異物の寸法が小さい場合や被
検体の搬送速度が速い場合でも検出洩れを防止すること
ができる。
As explained above, according to the apparatus for inspecting foreign substances in shellfish shells according to the present invention, two signal processing methods, a multiplexer method and a multi-channel method, are used together, so output fluctuations of the X-ray source and the transport fluid It is possible to detect foreign objects without being affected by component fluctuations, and it is also possible to prevent missing detection even when the size of the foreign object is small or when the specimen is transported at a high speed.

また、1つのX線発生源を用いて貝殻片と金属片等の各
材質に合った2種類のエネルギ帯のX線を照射し、且つ
各X線エネルギに有効な蛍光物質をそれぞれ2個の1次
元X線センサに配設するようにしたため、鮮鋭度の高い
信号波形を得ることができ、これにより異物検出率の向
上を図ることができる。
In addition, one X-ray generation source is used to irradiate X-rays with two types of energy bands suitable for each material such as shell pieces and metal pieces, and two fluorescent substances effective for each X-ray energy are used. Since it is disposed in a one-dimensional X-ray sensor, a highly sharp signal waveform can be obtained, thereby improving the foreign object detection rate.

【図面の簡単な説明】[Brief explanation of the drawing]

tJEi図は本発明の実施例を示す全体構成図、竿2図
は第1図のX線検査部の拡大断面図、第3図は第1図の
X線検査部における1次元X線センサの構成を示す斜視
図、第4図はX線エネルギに対する各種の蛍光物質の吸
収特性を示すグラフ、第5図(A)及び(B)はそれぞ
れ第1図のX線検査部におけるパイプラインの横断面図
及び縦断面図、第6図は本発明の信号処理部の概略を示
すブロック図、第7図(A)及び(B)はそれぞれマル
チプレクサ方式及びマルチチャンネル方式の信号処理を
説明するために用いた信号波形図である。 16.24・・・パイプライン、  17・・・ロータ
リーポンプ、 20・・・X線検査部、 22・・・X
線発生器、  22A・・・ベリリウム窓、 22B・
・・吸収材、  26.26A、26B・ 1次元X線
センサ、27A・・・受光素子、 27・・・フォトダ
イオードアレイ、  28.28A、28B・・・蛍光
物質、 32・・・マルチプレクサ、 34・・・信号
処理回路、36−・・レベル設定器、 comp、 l
 〜comp、 m ・−・比較器。
Figure tJEi is an overall configuration diagram showing an embodiment of the present invention, Figure 2 is an enlarged sectional view of the X-ray inspection section in Figure 1, and Figure 3 is an illustration of the one-dimensional X-ray sensor in the X-ray inspection unit in Figure 1. A perspective view showing the configuration, FIG. 4 is a graph showing the absorption characteristics of various fluorescent substances with respect to X-ray energy, and FIGS. 5 (A) and (B) are cross-sectional views of the pipeline in the X-ray inspection section of FIG. 1, respectively. 6 is a block diagram schematically showing the signal processing unit of the present invention, and FIGS. 7(A) and (B) are for explaining signal processing of a multiplexer method and a multichannel method, respectively. It is a signal waveform diagram used. 16.24...Pipeline, 17...Rotary pump, 20...X-ray inspection department, 22...X
Line generator, 22A... Beryllium window, 22B.
... Absorbing material, 26.26A, 26B. One-dimensional X-ray sensor, 27A... Light receiving element, 27... Photodiode array, 28.28A, 28B... Fluorescent material, 32... Multiplexer, 34 ...Signal processing circuit, 36-...Level setting device, comp, l
~comp, m --- Comparator.

Claims (3)

【特許請求の範囲】[Claims] (1)貝の剥身を搬送用流体と共にパイプラインを介し
て連続搬送する搬送手段と、 前記パイプライン中を通過する貝の剥身及び搬送用流体
にX線を照射するX線照射手段と、それぞれ複数の微小
なX線受光素子が前記パイプラインを横断する方向に直
線状に配列され、前記X線照射手段からのX線をパイプ
ラインを介して受光する第1及び第2の1次元X線セン
サと、前記第1の1次元X線センサの個々のX線受光素
子の信号レベルをそれぞれ所定のサイクル時間で順番に
入力し、各々の信号レベルの相対的な大小比較を行うこ
とにより貝剥身中の異物の有無を判別する第1の判別手
段と、 前記第2の1次元X線センサの個々のX線受光素子の信
号レベルをそれぞれ経時的に入力し、該信号レベルと異
物検出用の所定の閾値との大小比較を行うことにより貝
剥身中の異物の有無を判別する第2の判別手段と、 を備えたことを特徴とする貝剥身中の異物検査装置。
(1) A transport means for continuously transporting the shellfish shells together with a transport fluid through a pipeline; and an X-ray irradiation means for irradiating X-rays to the shellfish shells and the transport fluid passing through the pipeline. , first and second one-dimensional structures each having a plurality of minute X-ray receiving elements linearly arranged in a direction crossing the pipeline and receiving X-rays from the X-ray irradiation means via the pipeline; By sequentially inputting the signal levels of the X-ray sensor and the individual X-ray light receiving elements of the first one-dimensional X-ray sensor at a predetermined cycle time, and comparing the relative magnitudes of each signal level. A first discriminating means for determining the presence or absence of a foreign object in the shellfish shellfish, and a signal level of each X-ray receiving element of the second one-dimensional X-ray sensor are respectively input over time, and the signal level and the foreign object are inputted over time. A device for inspecting foreign matter in shellfish shellfish, comprising: second discrimination means for determining the presence or absence of foreign matter in shellfish shellfish by comparing the size with a predetermined threshold value for detection.
(2)貝の剥身を搬送用流体と共にパイプラインを介し
て連続搬送する搬送手段と、 前記パイプライン中を通過する貝の剥身及び搬送用流体
にX線を照射するX線照射手段と、前記X線照射手段と
パイプラインとの間に配設され、X線照射光路内の一部
のX線の長波長成分を吸収する吸収材と、 複数の微小なX線受光素子が前記パイプラインを横断す
る方向に直線状に且つ前記吸収材を通過しないX線を受
光する位置に配列され、その上面に長波長X線に感度を
もつ蛍光物質が配設され、前記X線照射手段からのX線
をパイプラインを介して受光する第1の1次元X線セン
サと、 複数の微小なX線受光素子が前記パイプラインを横断す
る方向に直線状に且つ前記吸収材を通過するX線を受光
する位置に配列され、その上面に短波長X線に感度をも
つ蛍光物質が配設され、前記X線照射手段からのX線を
吸収材及びパイプラインを介して受光する第2の1次元
X線センサと、それぞれ前記第1及び第2の1次元セン
サの信号レベルに基づいて貝剥身中の異物の有無を判別
する判別手段と、 を備えたことを特徴とする貝剥身中の異物検査装置。
(2) A transport means for continuously transporting shellfish shells together with a transport fluid via a pipeline; and an X-ray irradiation means for irradiating X-rays to shellfish shells and the transport fluid passing through the pipeline. , an absorber disposed between the X-ray irradiation means and the pipeline and absorbing long wavelength components of part of the X-rays in the X-ray irradiation optical path; and a plurality of minute X-ray receiving elements installed in the pipe. A fluorescent substance sensitive to long wavelength X-rays is disposed on the upper surface of the fluorescent material, which is arranged in a straight line in a direction across the line and at a position to receive X-rays that do not pass through the absorbing material, a first one-dimensional X-ray sensor that receives X-rays via a pipeline; and a plurality of minute X-ray receiving elements that receive X-rays that pass through the absorbing material in a straight line in a direction that crosses the pipeline. a fluorescent substance sensitive to short wavelength X-rays is disposed on the upper surface thereof, and a second one receives the X-rays from the X-ray irradiation means through an absorbing material and a pipeline. A peeled shellfish medium comprising: a dimensional X-ray sensor; and a determining means for determining the presence or absence of foreign matter in the shellfish based on the signal levels of the first and second one-dimensional sensors, respectively. foreign matter inspection equipment.
(3)前記判別手段は、前記第1の1次元X線センサの
個々のX線受光素子の信号レベルを所定のサイクル時間
で順次入力し、各々の信号レベルの相対的な大小比較を
行うことにより貝剥身中の異物の有無を判別する第1の
判別手段と、前記第2の1次元X線センサの個々のX線
受光素子の信号レベルをそれぞれ経時的に入力し、該信
号レベルと異物検出用の所定の閾値との大小比較を行う
ことにより貝剥身中の異物の有無を判別する第2の判別
手段と、から成ることを特徴とする請求項(2)に記載
の貝剥身中の異物検査装置。
(3) The determining means sequentially inputs the signal levels of the individual X-ray light receiving elements of the first one-dimensional X-ray sensor at a predetermined cycle time, and compares the relative magnitudes of each signal level. The signal levels of the first discriminating means for discriminating the presence or absence of foreign matter in the shellfish shellfish and the individual X-ray receiving elements of the second one-dimensional X-ray sensor are respectively input over time, and the signal level and The method of peeling shellfish according to claim 2, further comprising a second determining means for determining the presence or absence of a foreign object in the shellfish by comparing the size with a predetermined threshold value for foreign object detection. A device for inspecting foreign substances in the body.
JP1143458A 1989-06-06 1989-06-06 Foreign body inspection device during shelling Expired - Fee Related JP2595352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143458A JP2595352B2 (en) 1989-06-06 1989-06-06 Foreign body inspection device during shelling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143458A JP2595352B2 (en) 1989-06-06 1989-06-06 Foreign body inspection device during shelling

Publications (2)

Publication Number Publication Date
JPH039252A true JPH039252A (en) 1991-01-17
JP2595352B2 JP2595352B2 (en) 1997-04-02

Family

ID=15339174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143458A Expired - Fee Related JP2595352B2 (en) 1989-06-06 1989-06-06 Foreign body inspection device during shelling

Country Status (1)

Country Link
JP (1) JP2595352B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017361A1 (en) * 1999-09-08 2001-03-15 Nichirei Corporation Method and device for detecting/removing crustacean with untorn shell
JP2005257423A (en) * 2004-03-11 2005-09-22 Toshiba Corp Defect detection device
JP2007199058A (en) * 2005-12-28 2007-08-09 Sapporo Breweries Ltd X-ray inspection apparatus
WO2009041339A1 (en) * 2007-09-27 2009-04-02 Ishida Co., Ltd. X-ray line sensor module and x-ray foreign material inspecting apparatus
JP2010505397A (en) * 2006-10-06 2010-02-25 ノルデイシェル・マシーネンバウ・ルド・バアデル・ゲーエムベーハー・ウント・コンパニ・カーゲー Method and apparatus for processing fish, chicken or other meat products conveyed along a processing line
CN106455594A (en) * 2014-04-24 2017-02-22 莱特拉姆有限责任公司 Shrimp processing system and methods
WO2019229038A3 (en) * 2018-05-28 2020-01-09 Gea Food Solutions Bakel B.V. Method for foreign object detection
US12004552B2 (en) 2018-05-28 2024-06-11 Gea Food Solutions Bakel B.V. Mould member with foreign object detection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017361A1 (en) * 1999-09-08 2001-03-15 Nichirei Corporation Method and device for detecting/removing crustacean with untorn shell
US6808448B1 (en) * 1999-09-08 2004-10-26 Nichirei Corporation Method and device for detecting/removing crustacean with untorn shell
JP2005257423A (en) * 2004-03-11 2005-09-22 Toshiba Corp Defect detection device
JP2007199058A (en) * 2005-12-28 2007-08-09 Sapporo Breweries Ltd X-ray inspection apparatus
JP2010505397A (en) * 2006-10-06 2010-02-25 ノルデイシェル・マシーネンバウ・ルド・バアデル・ゲーエムベーハー・ウント・コンパニ・カーゲー Method and apparatus for processing fish, chicken or other meat products conveyed along a processing line
WO2009041339A1 (en) * 2007-09-27 2009-04-02 Ishida Co., Ltd. X-ray line sensor module and x-ray foreign material inspecting apparatus
CN106455594A (en) * 2014-04-24 2017-02-22 莱特拉姆有限责任公司 Shrimp processing system and methods
WO2019229038A3 (en) * 2018-05-28 2020-01-09 Gea Food Solutions Bakel B.V. Method for foreign object detection
US12004552B2 (en) 2018-05-28 2024-06-11 Gea Food Solutions Bakel B.V. Mould member with foreign object detection

Also Published As

Publication number Publication date
JP2595352B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US5247560A (en) Apparatus and method of measuring bone mineral density and bone strength
CN1252464C (en) Method and apparatus for measuring multiphase flows
ATE101739T1 (en) PROCEDURE FOR OPERATING AN OPTICAL SMOKE DETECTOR AND SMOKE DETECTOR FOR IMPLEMENTING THE PROCEDURE.
ATE202846T1 (en) METHOD FOR DETERMINING THE DENSITY PROFILE OF A DISK-SHAPED MATERIAL
RU2006140158A (en) METHOD AND DEVICE FOR DETERMINING THE COMPOSITION OF MULTI-PHASE FLOW OF WELL PRODUCTS
JPH039252A (en) Inspecting device for foreign matter in sliced raw shellfish
US4916719A (en) On-line analysis of ash containing slurries
CA1088679A (en) Method of and apparatus for ascertaining the volume components of a three-component mixture
US7912177B2 (en) X-ray radiographic method of recognition of materials and device for its realization
CA1160364A (en) Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines
JP2591171B2 (en) Inspection device for foreign substances in food
US3859525A (en) Method and apparatus for fluorescent x-ray analysis
GB2083618A (en) A method and apparatus for analysis of heavy element content of ore
US4591723A (en) Optical egg inspecting apparatus
AU680962B2 (en) Method and apparatus for the classification of particulate matter
RU2000124921A (en) DETECTION METHOD OF DIAMONDS ON A CONVEYOR, IN A STREAM OR SAMPLE OF DIAMOND BEARING
CA2093347A1 (en) Imaging method for defining the structure of objects
CA1144660A (en) Analysis of gold-containing materials
NO843712L (en) REAL ESTIMATE REAL ESTIMATE APPLIANCES
SE8207180L (en) PROCEDURE AND DEVICE FOR SEATING THE CONTENT OF SUSPENDED SUBSTANCES IN A FLOWING MEDIUM
KR100640251B1 (en) X-ray inspection system and method thereof
GB2087550A (en) Apparatus for measurement of volume and related parameters
US2860252A (en) Coal testing method
RU2154537C1 (en) Method of roentgenoradiation separation of mineralized mass
SU971525A1 (en) Separator for concentrating mineral raw material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees