JPS58214255A - X-ray tube for rotary anode - Google Patents

X-ray tube for rotary anode

Info

Publication number
JPS58214255A
JPS58214255A JP9486082A JP9486082A JPS58214255A JP S58214255 A JPS58214255 A JP S58214255A JP 9486082 A JP9486082 A JP 9486082A JP 9486082 A JP9486082 A JP 9486082A JP S58214255 A JPS58214255 A JP S58214255A
Authority
JP
Japan
Prior art keywords
anode target
anode
glass bulb
ray
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9486082A
Other languages
Japanese (ja)
Inventor
Tadashi Hayashi
林 肇志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9486082A priority Critical patent/JPS58214255A/en
Publication of JPS58214255A publication Critical patent/JPS58214255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Abstract

PURPOSE:To make the x-ray tube for a rotary anode that has a large capacity to obtain a number of x-rays, compact and capable of resisting to high voltage without increasing the shape of a glass bulb by uniformalizing and reducing the influence of the radiant heat and scattering electrons from an anode target on the glass bulb when the x-rays are generated. CONSTITUTION:The electron flow emitted from the filament (not illustrated) in a focusing electrode 4 is focused and collides with the focal point 10 of an anode target 5 and then generates x-rays. In this case, since the anode target 5 is revolved, the heat generated in the focal point 10 of the anode target 5 is scattered in the whole circumferential direction of the anode target 5 and is not scattered in a specific direction. Besides, since the length between the anode target 5 and an x-ray radiation window section 8 is expanded by providing a glass bulb protrusion 9 at least within the range of a cone of the x-ray radiation window section 8 of a glass tube 1 formed by applicable x-ray beams, the density of the scattering electrons colliding with the inner wall surface of the x-ray radiation window section 8 is reduced and the incident density of the radiant heat can also be reduced.

Description

【発明の詳細な説明】 本発明は回転陽極X線管に係わシ、特に真空外囲器の構
造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating anode X-ray tube, and particularly to an improvement in the structure of a vacuum envelope.

一般に回転陽極X線管は、真空外囲器内の一端部に陰極
体が配置され、他端部には回転陽極体が配置されて構成
され、その真空外囲器は、管内を高真空度に保つととも
に、X線の発生に際し、陽極体に印加される高電圧に耐
え、発生したX線を外部へ利用可能な状態で透過せしめ
る機能が必要とされている。このような機能を果すため
に従来からX綴曾の真空外囲器としてガラスパルプが広
く用いられている。
In general, a rotating anode X-ray tube has a cathode body placed at one end of the vacuum envelope and a rotating anode body placed at the other end. There is a need for a function to maintain the temperature, withstand the high voltage applied to the anode body when generating X-rays, and transmit the generated X-rays in a usable state to the outside. In order to fulfill this function, glass pulp has been widely used as a vacuum envelope for X-rings.

第1図は従来よ)用いられている回転陽極X線管の一例
を示す要部断面図である。同図において、ガラスパルプ
1内の一端には陰極体2が配置され、他端部には回転陽
極体3が配置されている。そして、この陰極体2はその
中心から偏った位置に集束電極4およびフィラメント(
図示せず)を有している。また、回転陽極体3は傘形状
の陽極ターゲット5と、この陽極ターゲット5を支持し
回転軸(図示せず)と一体となって回転可能なロータ6
と、玉軸受を介して回転軸を保持し、端部がガラスパル
プ1の外方に伸びる軸受箱7とヲ肩して構成されている
。また、前記ガラスバルブ1は、はうけい酸ガラスの如
き耐熱性のガラスからなり、その中央部分は陽極ターゲ
ット5の外径状に対応して径大に形成され、さらにその
陰極体2および回転陽極体3側の部分は中央部分よシも
径小に形成され、これらの各部分は同心円筒状となるよ
うに形成されている。
FIG. 1 is a sectional view of a main part showing an example of a conventionally used rotating anode X-ray tube. In the figure, a cathode body 2 is disposed at one end of the glass pulp 1, and a rotating anode body 3 is disposed at the other end. This cathode body 2 has a focusing electrode 4 and a filament (
(not shown). The rotating anode body 3 includes an umbrella-shaped anode target 5 and a rotor 6 that supports the anode target 5 and is rotatable together with a rotating shaft (not shown).
The rotating shaft is supported via a ball bearing, and the bearing box 7 has an end extending outward from the glass pulp 1. The glass bulb 1 is made of heat-resistant glass such as silicate glass, and its center portion is formed to have a large diameter corresponding to the outer diameter of the anode target 5, and the cathode body 2 and rotating The portion on the anode body 3 side is also formed to have a smaller diameter than the central portion, and each of these portions is formed into a concentric cylindrical shape.

このように構成された回転陽極X線管において、X線の
発生は、集栗電極4内の図示しないフィラメントから放
出された電子流が陰極体2と陽極体3間に印加された高
電圧によって加速され、陽極ターゲット5に衝突してX
線が発生し、ガラスバルブ1のX線放射窓部8を通過し
矢印A−A’方向の範囲内に放射される。この場合、フ
ィラメントから放出され、陽極ターゲット5に衝突した
電子流のうち、X線に変換されない電子流のエネルギー
は熱となって陽極ターゲット5を赤熱し、またその一部
は散乱電子となって散乱した後に陽極ターゲット5に再
流入するとともに、そのまた一部がガラスバルブ1のX
線放射窓部8の内壁面に衝突する。このため、X線発生
が長時間にわたって行なわれるほど、ガラスバルブ1の
X綜放射窓部8近傍は赤熱した陽極ターゲット5からの
熱輻射と散乱電子を繰シ返し受けることになる。この結
果、多量のX線を得るための大容量X線管の製作の要求
に対してもガラスバルブ1が使用条件に耐、  えられ
ず、ガラスバルブからのガス放出によってX線管の正常
な動作が妨げられるという問題が生じる。
In the rotating anode X-ray tube configured in this manner, X-rays are generated by a high voltage applied between the cathode body 2 and the anode body 3, which generates an electron current emitted from a filament (not shown) in the collecting electrode 4. It is accelerated and collides with the anode target 5, causing
A ray is generated, passes through the X-ray emission window 8 of the glass bulb 1, and is emitted within the range in the direction of the arrow AA'. In this case, among the electron streams emitted from the filament and colliding with the anode target 5, the energy of the electron stream that is not converted into X-rays becomes heat and makes the anode target 5 red-hot, and a part of it becomes scattered electrons. After being scattered, it flows back into the anode target 5, and a part of it also flows into the X of the glass bulb 1.
The radiation collides with the inner wall surface of the radiation window section 8. Therefore, the longer the X-ray generation continues, the more the area near the X-ray radiation window 8 of the glass bulb 1 is repeatedly exposed to thermal radiation and scattered electrons from the red-hot anode target 5. As a result, the glass bulb 1 could not withstand the usage conditions even in response to the demand for manufacturing a large-capacity X-ray tube to obtain a large amount of X-rays, and the normal operation of the X-ray tube due to gas released from the glass bulb. The problem arises that movement is hindered.

このような問題を改善したものとしては、大容量形のX
線管として真空外囲器の中央部分近傍にガラスの代シに
金属を用いたX線管が提案されているが、このような構
成では、X線管外囲器として高電圧を保持する機能が低
下するとともに、外囲器外にX線を透過させるための構
造が複雑となるなどの問題があった。
As a solution to this problem, a large-capacity type X
An X-ray tube that uses metal instead of glass near the center of the vacuum envelope has been proposed as a ray tube, but in such a configuration, the X-ray tube envelope does not have the ability to maintain high voltage. There were problems such as the structure for transmitting X-rays to the outside of the envelope became complicated.

したがって本発明は、前述した従来の欠点に鑑みてなさ
れたものであシ、その目的とするところは、小形にして
耐高電圧特性に優れ、比較的簡単な構造で製作可能にし
た大容量形回転陽極X線管を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned drawbacks of the conventional technology, and its purpose is to provide a large-capacity type that is compact, has excellent high voltage resistance characteristics, and can be manufactured with a relatively simple structure. An object of the present invention is to provide a rotating anode X-ray tube.

このような目的を達成するために本発明は、ガラスバル
ブのX線放射窓部のみを、バルブ径方向に突出して形成
したものである。すなわち、X線発生の際に@極ターゲ
ットから放出される熱はガラスを透過してX線管外部に
放散されるが、一部はガラスの中に吸収されてガラスの
温度を上昇させ、その上に陽極ターゲットからの散乱電
子が重なって温度上昇および電子衝撃にょシガ)スがら
のガス放出が生ずる。このため、ガラスからのガス放出
が生じない限度で使用しなければならず、一方では多量
のX線を得るのに陽極ターゲットには多くの電子流を流
し込むため熱放散および散乱電子が増加する。そして、
この相反する条件を満足させるため、本発明は陽1ター
ゲットとガラスバルブとの1間の距離を大きくとること
によって、ガラスバルブの単位面積当りに受ける輻射熱
および散乱電子を低く押えるものである。しかも単に距
離を大きくするだけではガラスバルブが大形となってし
まう問題があるので、陽極ターゲットからの散乱電子の
XH放射窓方向の密度が高いことに着目し、X線放射窓
方向のみについて陽極ターゲットとガラスバルブとの距
離が長い、特殊な形状のガラスバルブを用いたものであ
る。
In order to achieve such an object, the present invention is such that only the X-ray emission window of the glass bulb is formed to protrude in the radial direction of the bulb. In other words, the heat emitted from the @polar target during X-ray generation passes through the glass and is dissipated to the outside of the X-ray tube, but some of it is absorbed into the glass and increases its temperature. Scattered electrons from the anode target are superimposed on top of the anode target, causing a temperature rise and outgassing due to electron impact. For this reason, it must be used within a limit that does not cause outgassing from the glass. On the other hand, in order to obtain a large amount of X-rays, a large amount of electron flow is poured into the anode target, which increases heat dissipation and scattered electrons. and,
In order to satisfy these contradictory conditions, the present invention reduces the amount of radiant heat and scattered electrons received per unit area of the glass bulb by increasing the distance between the positive target and the glass bulb. Moreover, simply increasing the distance would result in a large glass bulb, so we focused on the fact that the density of scattered electrons from the anode target is high in the XH emission window direction, and set the anode only in the X-ray emission window direction. This uses a specially shaped glass bulb with a long distance between the target and the glass bulb.

以下図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below using the drawings.

第2図および第3図は本発明による回転陽極X線管の一
例を示す要部断面構成図である。第2図は縦断面図、第
3図は第2図の■−■断面図であシ、第1図と同記号は
同一要素となるのでその説明は省略する。これらの図に
おいて、ガラスバルブ1は、少なくともX線利用線錐(
xg放射範囲A−Aで囲まれて形成される円錐形状)の
範囲を含むX線放射窓部8がX線管の管軸と直交する方
向にガラスバルブ壁を突出させたガラスバルブ突出部9
が一体的に形成されて構成されている。換言すれば、陰
極体2と回転陽極体3との中心軸を偏心させることすく
、ガラスバルブ1のX線放射窓部8のみが管軸と直交す
る方向に突出させた芙出部9が設けられ、このX線放射
窓部8のみが管軸と直交する方向の距離が他の方向よシ
も長くなって構成されている。
FIGS. 2 and 3 are cross-sectional configuration diagrams of essential parts showing an example of a rotating anode X-ray tube according to the present invention. 2 is a longitudinal sectional view, and FIG. 3 is a sectional view taken along the line 2--2 in FIG. 2. Since the same symbols as in FIG. 1 represent the same elements, their explanations will be omitted. In these figures, the glass bulb 1 has at least an X-ray cone (
A glass bulb protrusion 9 in which an X-ray emission window 8 including a conical shape surrounded by an xg emission range A-A protrudes a glass bulb wall in a direction perpendicular to the tube axis of the X-ray tube.
are integrally formed. In other words, in order to prevent the central axes of the cathode body 2 and the rotating anode body 3 from being eccentric, only the X-ray emission window 8 of the glass bulb 1 is provided with the protruding portion 9 that protrudes in a direction perpendicular to the tube axis. Only this X-ray emission window section 8 is configured such that the distance in the direction perpendicular to the tube axis is longer than in the other directions.

このように構成された回転陽極X線管において、集束電
極4内のフィラメント(図示せず)から放出された電子
流は、集束されて陽極ターゲット5の焦点10に衝突し
、X線を発生する。この場合、陽極ターゲット5の焦点
10に発生した熱は、隆極ターゲット5が回転するので
、陽極ターゲット5の全周方向に放散され、特定方向に
集中して放散されることはない。しかしながら、焦点1
0の位置が集束電極4の配設位置によって定まるX線管
中心軸から偏心した特定方向にあるため、゛散乱電子の
陽極ターゲット5への再流入が陽極ターゲット5の各方
向で異なシ、集束電極4のある方向では散乱電子が陽極
ターゲット5に再流入せず、ガラスバルブ1に衝突する
ものが多くなる。ここで、X線管の管軸方向でガラスバ
ルブ1に衝突する散乱電子をみると、陽極ターゲット5
の陰極体2に対向した傾斜面の反対側には陽極ターゲツ
ト5自体に遮ぎられて少なくなシ、また陰極体2側にお
いてはその電界に遮られて少なくなる。すなわち、焦点
10からX線管中心軸と直角方向を中心にして陽極ター
ゲット5の傾斜角度を囲んだいわゆるX線利用線錐の範
囲において、ガラスバルブ1への散乱電子が多くなるこ
とから、ガラスバルブ1のX線放射窓部8の少なくとも
Xi利用線錐の範囲においてガラスバルブ突出部9を設
けたことによって、陽極ターゲット5とX線放射窓部8
との距離が拡大されるので、X線放射窓部8の内壁面に
衝突する散乱電孕セ度が低くなシ、また輻射熱の入射密
度も減少させることができる。
In the rotating anode X-ray tube configured in this way, the electron flow emitted from the filament (not shown) in the focusing electrode 4 is focused and impinges on the focal point 10 of the anode target 5, generating X-rays. . In this case, since the ridge target 5 rotates, the heat generated at the focal point 10 of the anode target 5 is dissipated in the entire circumferential direction of the anode target 5, and is not dissipated in a concentrated manner in a specific direction. However, focus 1
0 is located in a specific direction eccentric from the center axis of the X-ray tube determined by the placement position of the focusing electrode 4. In the direction of the electrode 4, scattered electrons do not flow back into the anode target 5, and more of them collide with the glass bulb 1. Here, if we look at the scattered electrons colliding with the glass bulb 1 in the tube axis direction of the X-ray tube, we can see that the anode target 5
On the opposite side of the inclined surface facing the cathode body 2, the electric field is blocked by the anode target 5 itself, and the electric field decreases, and on the cathode body 2 side, the electric field is blocked by the electric field. That is, in the range of the so-called X-ray beam cone that surrounds the inclination angle of the anode target 5 from the focal point 10 to the direction perpendicular to the central axis of the X-ray tube, the number of scattered electrons toward the glass bulb 1 increases. By providing the glass bulb protrusion 9 at least in the range of the Xi utilization beam of the X-ray emission window 8 of the bulb 1, the anode target 5 and the X-ray emission window 8
Since the distance between the X-ray radiation window 8 and the X-ray emission window 8 is increased, the degree of scattering electrons impinging on the inner wall surface of the X-ray emission window section 8 can be reduced, and the incident density of radiant heat can also be reduced.

以上説明したように本発明によれば、ガラスバルブ内に
陰極体と回転陽極体とを同一軸上に配置してなる回転陽
極X線管において、X線発生時におけるガラスバルブへ
の陽極ターゲットからの輻射熱および散乱電子の受ける
影響が平均化されて軽減されるので、ガラスバルブの形
状を大形化することなく、多量のX線が得られる大容量
の回転陽極X線管を小形にしてかつ高電圧に耐え得る性
能で得られ、しかも比較的簡単な構造で製作でき、価格
も低床で実現可能となるなどの種々の優れた効果を有す
る。
As explained above, according to the present invention, in a rotating anode X-ray tube in which a cathode body and a rotating anode body are disposed on the same axis within a glass bulb, the anode target from the anode target to the glass bulb when X-rays are generated. Since the effects of radiant heat and scattered electrons are averaged and reduced, it is possible to downsize a large-capacity rotating anode X-ray tube that can obtain a large amount of X-rays without increasing the size of the glass bulb. It has various excellent effects, such as being able to withstand high voltage, being able to manufacture it with a relatively simple structure, and being inexpensive and low-profile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転陽極X線管の一例を示す要部断面構
成図、第2図および第3図は本発明による回転陽極X線
管の一例を示すための第1図に相当する要部断面図およ
びその■−■断面図である。 1・・・・ガラスバルブ、2・e・・陰極体、3・・・
・回転陽極体、4・・・・集束電極、5・・・・陽極タ
ーゲット、6・φ・・ロータ、7・・・・軸受箱、8・
・・・X線放射窓部、9・・・・ガラスバルブ突出部、
10・・・・焦点。 第1図
FIG. 1 is a sectional configuration diagram of main parts showing an example of a conventional rotating anode X-ray tube, and FIGS. 2 and 3 are main parts corresponding to FIG. 1 showing an example of a rotating anode X-ray tube according to the present invention. They are a partial sectional view and a sectional view taken along ■-■. 1...Glass bulb, 2.e...Cathode body, 3...
・Rotating anode body, 4...Focusing electrode, 5...Anode target, 6...Rotor, 7...Bearing box, 8...
...X-ray emission window part, 9...glass bulb protrusion part,
10...Focus. Figure 1

Claims (1)

【特許請求の範囲】[Claims] ガラスバルブ内に陰極体と回転陽極体とを同一管軸軸上
に対向配置してなる回転陽極X線管において、前記ガラ
スバルブの少なくともX線利用隷錐の範囲を前記管軸と
直交する方向に突出させたバルブ突出部を設け、前記回
転陽極体のターゲットとガラスパルプ間の間隔を他の方
向よシも長くしたことを特徴とする回転陽極X線管。
In a rotating anode X-ray tube in which a cathode body and a rotating anode body are arranged facing each other on the same tube axis within a glass bulb, at least the range of the X-ray utilization cone of the glass bulb is directed in a direction orthogonal to the tube axis. 1. A rotary anode X-ray tube, characterized in that a bulb protruding portion is provided, and the distance between the target of the rotary anode body and the glass pulp is longer than in other directions.
JP9486082A 1982-06-04 1982-06-04 X-ray tube for rotary anode Pending JPS58214255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9486082A JPS58214255A (en) 1982-06-04 1982-06-04 X-ray tube for rotary anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9486082A JPS58214255A (en) 1982-06-04 1982-06-04 X-ray tube for rotary anode

Publications (1)

Publication Number Publication Date
JPS58214255A true JPS58214255A (en) 1983-12-13

Family

ID=14121780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9486082A Pending JPS58214255A (en) 1982-06-04 1982-06-04 X-ray tube for rotary anode

Country Status (1)

Country Link
JP (1) JPS58214255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563367A1 (en) * 1991-10-18 1993-10-06 Varian Associates Improved metal center x-ray tube.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563367A1 (en) * 1991-10-18 1993-10-06 Varian Associates Improved metal center x-ray tube.
EP0563367A4 (en) * 1991-10-18 1994-03-16 Varian Associates, Inc.

Similar Documents

Publication Publication Date Title
US3795832A (en) Target for x-ray tubes
US4184097A (en) Internally shielded X-ray tube
US7978824B2 (en) X-ray tube having transmission anode
US6252933B1 (en) X-ray generating apparatus
JP2747295B2 (en) Radiation source that produces essentially monochromatic X-rays
JPH06162972A (en) X-ray tube provided with transmission-type anode
US3900751A (en) Rotating anode x-ray tube
JPH09171788A (en) Microfocus x-ray tube and apparatus using it as well as its usage method
US3018398A (en) X-ray generator
JPH0235417B2 (en)
JP2013051165A (en) Transmission x-ray generator
US4472827A (en) Universal limiter for limiting secondary radiation in an X-ray tube provided with said limiter
GB1232160A (en)
JPH0415981B2 (en)
US4637042A (en) X-ray tube target having electron pervious coating of heat absorbent material on X-ray emissive surface
JP2002528878A (en) X-ray tube providing variable imaging spot size
USH312H (en) Rotating anode x-ray tube
CN110942967B (en) X-ray tube
CN111430204A (en) X-ray tube and medical imaging apparatus
JP4134000B2 (en) Electron gun
JPS58214255A (en) X-ray tube for rotary anode
US7668298B2 (en) System and method for collecting backscattered electrons in an x-ray tube
US3851204A (en) Rotatable anode for x-ray tubes
JP2003257347A (en) Rotary anode type x-ray tube
US2229152A (en) Rotary anode X-ray tube