JPS58213851A - Microcrystal grain material for stringer of airplane and its manufacture - Google Patents

Microcrystal grain material for stringer of airplane and its manufacture

Info

Publication number
JPS58213851A
JPS58213851A JP21679382A JP21679382A JPS58213851A JP S58213851 A JPS58213851 A JP S58213851A JP 21679382 A JP21679382 A JP 21679382A JP 21679382 A JP21679382 A JP 21679382A JP S58213851 A JPS58213851 A JP S58213851A
Authority
JP
Japan
Prior art keywords
cold
temperature
less
rate
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21679382A
Other languages
Japanese (ja)
Other versions
JPS614904B2 (en
Inventor
Yoshio Baba
馬場 義雄
Teruo Uno
宇野 照生
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP21679382A priority Critical patent/JPS58213851A/en
Publication of JPS58213851A publication Critical patent/JPS58213851A/en
Publication of JPS614904B2 publication Critical patent/JPS614904B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To refine the grains of the structure of a material for the stringers of an airplane and to improve the mechanical properties, elongation, rupture toughness value, etc. by cold working an Al alloy at <=90% working rate and by subjecting it to soln. heat treatment. CONSTITUTION:Stringer members for reinforcing the belly of an airplane are manufactured using an Al alloy contg. 5.1-8.1% Zn, 1.8-3.4% Mg, 1.2-2.6% Cu, <0.2% Ti and 0.18-0.35% Cr. The Al alloy blank is subjected to soln. heat treatment, and it is worked to a prescribed thickness by hot rolling and cold rolling. The worked blank is rapidly heated to 320-500 deg.C at >=11 deg.C/min average heating rate, cold worked in steps at 0-90% different working rates, and subjected to soln. heat treatment. The grains are made as fine as <=100mum, and stringers having superior mechanical properties, elongation, rupture toughness value, chemical sealability and fatigue strength are obtd.

Description

【発明の詳細な説明】 本発明は結晶粒の微細な航空機のストリンガ−用材料お
よびその製造法についてである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a material for an aircraft stringer having fine grains and a method for manufacturing the same.

航空機にお(プるストリンガ−とは第1図に示すように
航空機の胴体1の内部に使用される長手方向および円周
方向の補強材2および3のことであって、その断面形状
は第2図に示す(a)ハツト型、(b)7型あるいは(
C)J型のものである。
Aircraft stringers refer to the longitudinal and circumferential reinforcing members 2 and 3 used inside the aircraft fuselage 1, as shown in Figure 1, and their cross-sectional shape is (a) Hat type, (b) 7 type or (
C) It is of type J.

このストリンガ−の代表的な製造法はつぎのとおりであ
る。
A typical manufacturing method for this stringer is as follows.

J I S 7075合金を約り60℃×約16時間の
均質化熱処理し、約400℃で厚さ61程度に熱間圧延
し、約り10℃×約1時間の中間焼鈍をしたのち炉冷し
、厚さ3〜4II1m板に冷間圧延したのち、8〜12
時間の昇温時間で約410℃に昇温し、その温度で約1
時間加熱軟化したのち、1時間当り25℃の冷却速度で
冷却して7075合金O合金とし、さらに加工度θ〜9
0%の段付冷間圧延をし、溶体化処理してストリンガ−
用材料を製造していた。上記中段付冷間加工は例えば、
第3図に示すような形態にすなわち、長さ方向で圧延加
工度を変え、加工度Oの部分A1比較的低加工度の部分
B1中間の加工度の部分C1高加工度の部分りなどを有
する形態に加工する。
JIS 7075 alloy was subjected to homogenization heat treatment at approximately 60°C for approximately 16 hours, hot rolled at approximately 400°C to a thickness of approximately 61 mm, intermediate annealed at approximately 10°C for approximately 1 hour, and then furnace cooled. After cold rolling into a 3-4II 1m thick plate, 8-12
The temperature is raised to about 410℃ in an hour's heating time, and at that temperature about 1
After being heated and softened for an hour, it is cooled at a cooling rate of 25°C per hour to form a 7075 alloy O alloy, and the working degree is θ ~ 9.
0% stepped cold rolling, solution treatment and stringer
manufactured materials for use. For example, the above-mentioned middle stage cold working is
In other words, in the form shown in Fig. 3, the degree of rolling is changed in the length direction, and a part with a degree of work O is A, a part with a relatively low degree of work B, a part with an intermediate degree of work C, a part with a high degree of work, etc. Process it into the form that it has.

これは強度を要しない部分の肉厚を薄くすることにより
航空機全体の重量を軽減するためのものである。このよ
うにして製造されたストリンガ−用材料をセクシミンロ
ール成形により、例えば第2図に示すハツト型に成形し
、ついでT6テンパー処理を施すことによりストリンガ
−とするものである。
This is to reduce the overall weight of the aircraft by reducing the thickness of parts that do not require strength. The stringer material thus produced is formed into a hat shape, for example, as shown in FIG. 2, by seximine roll molding, and then subjected to T6 tempering to form a stringer.

上記のような工程でストリンガ−を製造する場合にはつ
ぎのような点が問題となる。
When producing stringers using the above process, the following problems arise.

すなわち、従来法によりストリンガ−素材として製造さ
れた7075合金O合金は結晶粒が150〜250μ程
度であり、この素材を10〜30%程度の低加工度の冷
間加工(テーパー圧延)後に溶体化処理を行なう場合に
は素材の結晶粒よりさらに結晶粒が粗大化し、約20%
の加工度の部分が経験上量も粗大化している。勿論この
ような素材を使用する場合でも50%以上の冷間加工を
7 行なった後に溶体化処理を行なう部分では結晶粒径
50μ程度の微細結晶粒が得られるが、1本のストリン
ガ−内には冷間加工度Oから最大90%までの種々の加
工度の部分が存在するため、ストリンガ−の全長的10
m全体にわたって結晶粒を100μ以下にすることは極
めて難しい。
In other words, the 7075 alloy O produced as a stringer material by the conventional method has crystal grains of about 150 to 250μ, and this material is solutionized after cold working (taper rolling) with a low working degree of about 10 to 30%. When processing, the crystal grains become even coarser than the crystal grains of the material, approximately 20%
Based on our experience, the degree of machining has also become coarser. Of course, even when such a material is used, fine crystal grains with a grain size of about 50μ can be obtained in the part that is subjected to solution treatment after 50% or more cold working. Since there are parts with various cold working degrees from 0 to a maximum of 90%, the total length of the stringer is 10%.
It is extremely difficult to reduce the grain size to 100μ or less over the entire length of m.

第4図には既存のストリンガ−素材を種々の加工度で冷
間加工後に溶体化処理した場合の加工度(上段)と結晶
粒径(下段)との関係の1例を示す。加工度の大きいり
、F、G等の部分では結晶粒は微細であるが、加工度の
小さいA。
FIG. 4 shows an example of the relationship between the working degree (upper row) and the crystal grain size (lower row) when existing stringer materials are subjected to solution treatment after cold working at various working degrees. The grains are fine in areas such as F and G where the degree of work is high, but A where the degree of work is small.

B、C,E等の部分では結晶粒は非常に大きい。In areas such as B, C, and E, the crystal grains are very large.

A、B、C,E等の結晶粒が100μ以上の部分につい
ては機械的性質、伸び、破壊靭性値、ケミカルミーリン
グ性、疲労強度等が低下すると共にセクションロール成
形時に肌荒が生じたり、割れが発生するICめ、ストリ
ンガ−の製造が極めて難しいばかりでなく、その機能も
低下=5= する。
For areas with crystal grains of 100μ or more, such as A, B, C, and E, mechanical properties, elongation, fracture toughness, chemical milling properties, fatigue strength, etc. decrease, and roughness or cracking occurs during section roll forming. Not only is it extremely difficult to manufacture a stringer for an IC where this occurs, but its functionality is also degraded.

本発明は上記のような問題点を解決せんとするもので、
最大90%までの冷間加工後に溶体化処理を行なって結
晶粒径が100μ以下のストリンガ−用材料およびその
製造法を提供するものである。
The present invention aims to solve the above problems,
The object of the present invention is to provide a stringer material having a crystal grain size of 100 μm or less by performing solution treatment after cold working to a maximum of 90%, and a method for manufacturing the same.

すなわち、本発明の第1発明は、Zn5.1〜8.1%
、Mu 1,8〜3.4%、Cu 1.2〜2.6%、
TiO,2%以下、さらにCr0.18〜0.35%を
含み、残りA1と不純物より構成される組成を有し、段
付冷間加工され、かつ溶体化された材料であって、結晶
粒が100μ…以下であることを特徴とする結晶粒の微
細な航空機ストリンガ−用材料である。
That is, the first invention of the present invention has a Zn content of 5.1 to 8.1%.
, Mu 1.8-3.4%, Cu 1.2-2.6%,
It is a stepped cold-worked and solution-treated material that contains TiO, 2% or less, and 0.18 to 0.35% Cr, and the remainder is A1 and impurities. This is a material for aircraft stringers with fine crystal grains, characterized in that the particle size is 100 μm or less.

本発明ストリンガ−用材料の合金成分の限定理由を以下
に示す。
The reasons for limiting the alloy components of the stringer material of the present invention are shown below.

Zn・・・5.1%未満の場合にはT6処理後の合金の
強度が低く、8.1%を越えると靭性が低下したり、応
力腐食割れの危険がある。
Zn: If it is less than 5.1%, the strength of the alloy after T6 treatment will be low, and if it exceeds 8.1%, there is a risk of decreased toughness or stress corrosion cracking.

M(1・・・1.8%未満の場合にはT6処理後の合金
6− の強度が低く、3.4%を越えると、軟質材の冷間加工
性が悪く、また下6処理後の合金の靭性が低下する。
M(1...If it is less than 1.8%, the strength of Alloy 6- after T6 treatment will be low, and if it exceeds 3.4%, the cold workability of the soft material will be poor, and after the below 6 treatment. The toughness of the alloy decreases.

Cu・・・1.2%未満の場合には下6処理後の合金の
強度が低く、2.6%を越えると合金の靭性が低下する
Cu: If the content is less than 1.2%, the strength of the alloy after the 6th treatment below will be low, and if it exceeds 2.6%, the toughness of the alloy will be reduced.

Ti・・・0.20%以下の添加は鋳造組織の微細化、
紡造時の鋳塊割れの防止に有効であるが、0.20%を
越えると巨大な金属間化合物が晶出する。
Ti...addition of 0.20% or less will refine the casting structure,
It is effective in preventing cracks in the ingot during spinning, but if it exceeds 0.20%, large intermetallic compounds will crystallize.

Or・・・0.18%未満の場合には応力腐食割れの危
険があり、0.35%を越えると巨大な金属間化合物が
晶出するもので好ましくない。
Or... If it is less than 0.18%, there is a risk of stress corrosion cracking, and if it exceeds 0.35%, a huge intermetallic compound will crystallize, which is not preferable.

なお、不純物元素としてのFe、Si、Mnは以下のよ
うに規制する必要がある。
Note that Fe, Si, and Mn as impurity elements need to be regulated as follows.

Fe・・・Feは結晶粒微細化に効果があるが、0.5
0%を越えると合金中の不溶性化合物の量が増加するた
め合金の靭性が低下する。
Fe...Fe is effective in refining crystal grains, but 0.5
If it exceeds 0%, the amount of insoluble compounds in the alloy increases, resulting in a decrease in the toughness of the alloy.

Sl・・・3iは結晶粒の微細化に効果があるが、0.
40%を越えると合金中の不溶性化合物の量が増加する
ため合金の靭性が低下する。
Sl...3i is effective in refining crystal grains, but 0.
When it exceeds 40%, the amount of insoluble compounds in the alloy increases, resulting in a decrease in the toughness of the alloy.

Mn・・・Mnは応力腐食割れの防止に効果があるが、
0.10%を越える°と焼入性や靭性が低下する。
Mn...Mn is effective in preventing stress corrosion cracking, but
If it exceeds 0.10%, hardenability and toughness will decrease.

本発明材料を使用して航空機ストリンガ−を製造する場
合には、全長にわたって結晶粒が100μ以下と微細な
ため、セクションロール成形時に肌荒や割れが全く生じ
ないばかりでなく、機械的性質、伸び、破壊靭性値、ケ
ミカルミーリング性、疲労強度等にすぐれたストリンガ
−を得ることが可能となる。
When manufacturing aircraft stringers using the material of the present invention, since the crystal grains are as fine as 100μ or less over the entire length, not only no roughness or cracks occur during section roll forming, but also mechanical properties and elongation. , it becomes possible to obtain stringers with excellent fracture toughness, chemical milling properties, fatigue strength, etc.

本発明の第2発明は上記第1発明にお(プる航空機スト
リンガ−用材料の製造法であって、上記限定のアルミニ
ウム合金を常法にしたがって均質化処理、熱間圧延およ
び冷間圧延して所定の厚さとした材料を320〜500
℃の温度に平均昇温速度が11℃/分より大きい速度で
急速に加熱することにより軟化し、最大90%までの冷
間加工を行ない、溶体化処理を行なうことを特徴とする
方法である。
A second invention of the present invention is a method for producing a material for an aircraft stringer, which is the same as the first invention, wherein the aluminum alloy as limited above is homogenized, hot-rolled and cold-rolled according to a conventional method. 320 to 500
This method is characterized by softening the material by rapidly heating it to a temperature of 11°C at an average temperature increase rate of more than 11°C/min, performing cold working to a maximum of 90%, and performing solution treatment. .

本第2発明は上記限定のアルミニウム合金を常法にした
がって均質化処理するが、この均質化処理はアルミニウ
ム合金鋳塊を400〜490℃で2〜48時間十分に加
熱し、7n 、Mg、Cu等の元素を十分に固溶させる
と共にCrを微細な金属間化合物どして析出させるもの
である。温度が低いか時間が短いかして均質化処理が不
十分な場合には、アルミニウム合金鋳塊の熱間加工性が
悪く、耐応力腐食割れ性が低下したり、結晶粒が粗大化
したりする。また、均質化処理温度が490℃よりも高
いと共晶融解を生じるので好ましくない。
In the second invention, the above-described aluminum alloy is homogenized according to a conventional method. In this homogenization treatment, an aluminum alloy ingot is sufficiently heated at 400 to 490°C for 2 to 48 hours, and 7n, Mg, Cu, In this method, elements such as the following are sufficiently dissolved in solid solution, and Cr is precipitated as a fine intermetallic compound. If homogenization treatment is insufficient due to low temperature or short time, hot workability of the aluminum alloy ingot will be poor, stress corrosion cracking resistance will decrease, and crystal grains will become coarse. . Furthermore, if the homogenization treatment temperature is higher than 490° C., eutectic melting occurs, which is not preferable.

均質化処理に続く熱間圧延は、350〜470℃の温度
で開始することが望ましい。350℃未満の場合には変
形抵抗が大きいので圧延加工性が悪く、410℃を越え
ると脆化するので加工割れが生ずるようになり好ましく
ない。
The hot rolling following the homogenization process is preferably started at a temperature of 350-470°C. When the temperature is less than 350°C, the deformation resistance is large, resulting in poor rolling workability, and when it exceeds 410°C, the rolling process becomes brittle, leading to processing cracks, which is not preferable.

9− 熱間圧延終了後、必要に応じて軟化を行なう。9- After hot rolling, softening is performed as necessary.

軟化は300〜460℃の温度に保持後に1時間当り3
0℃以下の冷却速度で260℃程度まで冷却する必要が
ある。この軟化工程はつぎの冷間圧延の加工度を高くと
る場合に特に必要である。
The softening rate is 3 per hour after being maintained at a temperature of 300-460℃.
It is necessary to cool down to about 260°C at a cooling rate of 0°C or less. This softening step is particularly necessary when the subsequent cold rolling is to be performed at a high degree of working.

冷間圧延における加工度は20%以上が望ましく、加工
度が低い場合にはストリンガ−用材料の結晶粒が100
μ以上に粗大化する。
The working degree in cold rolling is preferably 20% or more, and if the working degree is low, the stringer material has crystal grains of 100% or more.
It becomes coarser than μ.

冷間圧延した材料は320〜500℃の温度に平均昇温
速度が11℃/分より大きい速度で急速加熱することに
よる軟化が行なわれるが、この工程は高品質のス1へリ
ンガ−用材料を得る上で特に重要である。
The cold-rolled material is softened by rapid heating to a temperature of 320 to 500°C at an average heating rate greater than 11°C/min. This is particularly important in obtaining

従来から7075合金の軟化の方法は413〜454℃
に加熱し、この温度で2時間保持し、空気中で冷却し、
232℃に再加熱し、この温度に6時間保持し、それか
ら室温まで冷却することによって行なわれている。この
方法は、米国防省のM I L−1−(6088E軍用
規格中5. 2. 7. 2項で推奨する方法であり、
航空機用7075合金の10− 軟化方法はすべて上記方法に準拠しており、当業者の常
識となっている。本発明における上記軟化工程はかかる
当業者の常識を打破ったものである。
Traditionally, the softening method for 7075 alloy is 413-454℃.
heated to , held at this temperature for 2 hours, cooled in air,
This is done by reheating to 232°C, holding at this temperature for 6 hours, and then cooling to room temperature. This method is the method recommended in Section 5.2.7.2 of the U.S. Department of Defense's MIL-1-(6088E military standard),
All softening methods for 7075 alloy for aircraft are based on the above methods and are common knowledge to those skilled in the art. The above-mentioned softening step in the present invention breaks the common sense of those skilled in the art.

この軟化工程において加熱温度が500℃を越えると材
料が溶融したり、異常結晶粒成長が起こり再結晶粒が著
しく粗大化するので好ましくない。
If the heating temperature exceeds 500° C. in this softening step, the material may melt or abnormal crystal grain growth may occur, resulting in significantly coarse recrystallized grains, which is not preferable.

加熱温度が320℃より低い場合には材料が完全に軟化
、再結晶しないため、ス1〜リンガ−を製造する際の段
付き冷間圧延加工(テーパーロール加工)で割れが生ず
る問題がある。
If the heating temperature is lower than 320° C., the material will not be completely softened and recrystallized, so there is a problem that cracks will occur during stepped cold rolling (taper roll processing) when manufacturing slingers.

結局320〜500℃の温度で加熱軟化する場合にのみ
100μ以下の微細な再結晶粒を有するストリンガ−合
金の製造が可能となる。
After all, it is possible to produce a stringer alloy having fine recrystallized grains of 100 μm or less only when the alloy is heated and softened at a temperature of 320 to 500° C.

12温度への昇温速度については、平均11℃/分より
大ぎい速度での急速加熱を行なうことが必須で、この場
合には加熱途上におけるMg−Zn系化合物の析出が少
なく、冷間圧延により導入された転位組織は急速加熱に
よる軟化を行なうことにより均一微細なセル組織に変化
する。このような組織を有する材料を弱加工度のテーパ
ーロール加工(10〜30%)を行なった後に溶体化処
理を行なう場合には均一微細なけル組織を核として再結
晶が進行するため均一微細な再結晶粒が得られる。昇温
速度が11℃/分より小さい場合には所定の軟化温度へ
の加熱中にMg−Zn系の化合物が不均一析出すると共
に転位組織も完全に消滅するかあるいは粗大な不均一な
サイズのセル組織が残留する。このような材料を弱加工
のテーパーロール加工後に溶体化処理を行なう場合には
前記のような均一微細な再結晶粒は得られず、結晶粒は
著しく粗大化する。
Regarding the heating rate to 12°C, it is essential to perform rapid heating at an average rate higher than 11°C/min. In this case, precipitation of Mg-Zn compounds during heating is small, and cold rolling The introduced dislocation structure changes into a uniform fine cell structure by being softened by rapid heating. When a material with such a structure is subjected to a weak taper roll process (10 to 30%) and then subjected to solution treatment, recrystallization proceeds with the uniform fine keratinized structure as the core. Recrystallized grains are obtained. If the temperature increase rate is lower than 11°C/min, Mg-Zn compounds will precipitate non-uniformly during heating to a predetermined softening temperature, and the dislocation structure will either completely disappear or become coarse and non-uniform in size. Cell tissue remains. If such a material is subjected to solution treatment after weak tapered roll processing, the above-mentioned uniform and fine recrystallized grains cannot be obtained, and the crystal grains become extremely coarse.

急速加熱による軟化後の冷却速度については、冷却速度
が1時間当り30℃未満の場合には完全な0材が得られ
るので、素材の冷間加工性は良好であり、1度に90%
程度のテーパーロール圧延が可能である。
Regarding the cooling rate after softening due to rapid heating, if the cooling rate is less than 30℃ per hour, a completely zero material can be obtained, so the cold workability of the material is good, and 90%
It is possible to perform tapered roll rolling to a certain degree.

これに対し急速加熱による軟化後の冷却速度が速い場合
には焼きが入り時効硬化するため、通常の一般O材より
は強度の高い材料が得られるが、この場合には比較的加
工度の低いストリンガ−材料としては適用が可能である
が、高加工度を必要とするストリンガ−への適用には加
工性の点で問題がある。
On the other hand, if the cooling rate after softening due to rapid heating is fast, quenching occurs and age hardening occurs, resulting in a material with higher strength than ordinary O material, but in this case, the degree of workability is relatively low. Although it can be used as a stringer material, there are problems in terms of workability when it is applied to stringers that require a high degree of workability.

本発明の第3発明はその対策のためのもので、第2発明
において軟化の際の冷却速度が1時間当り30℃以上の
時には、200〜500℃に再加熱して、とりわけ再加
熱温度が200〜350℃未満の場合には空冷するか、
1時間当り30℃以下の速度で冷却し、再加熱温度が3
50〜500℃の場合には1時間当り30℃以下の速度
で冷却することを特徴とする方法である。
The third invention of the present invention is a countermeasure against this problem, and in the second invention, when the cooling rate during softening is 30°C or more per hour, it is reheated to 200 to 500°C, and in particular, the reheating temperature is If the temperature is less than 200-350℃, air cooling or
Cool at a rate of 30℃ or less per hour, and reheat at a temperature of 3
In the case of 50 to 500°C, this method is characterized by cooling at a rate of 30°C or less per hour.

すなわち、再加熱後の冷却速度は再び焼きが入らないよ
うにするため再加熱温度が比較的低温の200〜350
℃未満の場合には空冷するか、冷却速度が1時間当り3
0℃以下の冷却速度で冷却し再加熱温度が比較的高温の
350〜500℃の場合には、冷却速度が1時間当り3
0℃以下の冷13− 却速度で冷却する。このようにすることによって、急速
加熱後の冷却速度が速い場合でも高加工度が可能となる
In other words, the cooling rate after reheating is set at a relatively low temperature of 200 to 350 to prevent reheating.
If the temperature is below ℃, use air cooling or reduce the cooling rate to 3 per hour.
When cooling at a cooling rate of 0°C or less and reheating at a relatively high temperature of 350 to 500°C, the cooling rate is 3 per hour.
Cool at a cooling rate of 13- below 0°C. By doing so, even when the cooling rate after rapid heating is fast, a high degree of processing is possible.

また、再加熱温度は得られた素材の引張強さおよび素材
を段付きテーパーロール加工した後、溶体化処理した材
料(以下W材と呼ぶことがある。)の結晶粒径に影響す
ることが実験により分った。この関係の一例を第5図に
示す。
In addition, the reheating temperature can affect the tensile strength of the obtained material and the grain size of the material (hereinafter sometimes referred to as W material) that is solution-treated after processing the material into a stepped taper roll. I found this out through experiment. An example of this relationship is shown in FIG.

第5図は急速加熱による軟化を行なった材料を各温度で
再加熱したO材の引張強さ及びこのO材を20%冷間加
工後470℃×40分溶体化処理した後、水焼入したW
材の結晶粒径と再加熱温度との関係を示す。
Figure 5 shows the tensile strength of the O material obtained by reheating the material softened by rapid heating at various temperatures, and the tensile strength of the O material after 20% cold working, solution treatment at 470°C for 40 minutes, and water quenching. Did W
The relationship between the crystal grain size of the material and the reheating temperature is shown.

即ち、急速加熱による軟化後空冷し、室温に放置した材
料は焼きが入っているから、引張強さは高く、再加熱す
ることにより引張強さは再加熱温度の上昇とともに低く
なっている。また、再加熱後20%の冷間加工を施した
後に溶体化処理した材料の結晶粒径は、再加熱温度によ
り異なり、再加熱温度200〜350’C未満のときの
結=14− 晶粒径は約25〜35μmで比較的小さく、再加熱温度
350〜440°C未満のときの結晶粒径は35〜50
μmと大きくなり、再加熱温度440〜500℃のとき
の結晶粒径は30〜35μmと再び小さくなる。
That is, a material that is air-cooled after being softened by rapid heating and left at room temperature has a high tensile strength because it is hardened, and when reheated, the tensile strength decreases as the reheating temperature increases. In addition, the crystal grain size of the material subjected to 20% cold working and solution treatment after reheating varies depending on the reheating temperature, and when the reheating temperature is less than 200 to 350'C, the crystal grain size is 14- The diameter is relatively small, about 25 to 35 μm, and the crystal grain size is 35 to 50 μm when the reheating temperature is less than 350 to 440 °C.
When the reheating temperature is 440 to 500° C., the crystal grain size becomes small again to 30 to 35 μm.

実施例1 表1 表1に示した合金N001および4を下記本発明法と従
来法により301℃厚のストリンガ−材料に製造した。
Example 1 Table 1 Alloys No. 001 and No. 4 shown in Table 1 were manufactured into stringer materials having a thickness of 301 DEG C. by the method of the present invention and the conventional method described below.

本発明法; 均質化処理(460℃×161゛))→熱間圧延(40
0℃で300mmより6mmに圧延)→冷間圧延(6→
3ff1m)→急速加熱(450℃に昇温速度215°
C/分で加熱し3分保持)→冷却(5℃/分で冷却)−
>300℃X1hr加熱軟化→20℃/hrの冷却速度
で200℃まで冷却→冷間加工(加工度O〜90%、表
2に表示)→溶体化処理(470℃×40分、ソルトバ
ス使用)→水焼入れ従  来  法: 均質化処理(460℃x16hr)→熱間圧延(400
℃で300−) 6 mmに圧延)−+420℃x 1
 hr加熱後3り℃/h1゛の冷却速度で冷却→冷間圧
延(6−+3ml11)−+軟化(0,5〜b温速度で
420℃に加熱して2hr保持→25℃/11rの冷却
速度で冷却→235℃に6hr保持→空冷)→冷間加工
(加工度O〜90%、表2に表示)→溶体化処理(47
0℃で40分保持、ツル1ヘバス使用)→水焼入れ 上記の方法でlit造した材料(W材という)の諸性能
を結晶粒、溶体化処理前の冷間加工度とともに表2に示
す。
Method of the present invention; Homogenization treatment (460°C x 161°) → Hot rolling (40°C
Rolling from 300mm to 6mm at 0℃) → Cold rolling (6→
3ff1m) → Rapid heating (heating rate 215° to 450°C)
Heating at C/min and holding for 3 minutes) → Cooling (cooling at 5°C/min) -
>Heat softening at 300°C for 1 hr → Cooling to 200°C at a cooling rate of 20°C/hr → Cold working (working degree O ~ 90%, shown in Table 2) → Solution treatment (470°C x 40 minutes, using salt bath) )→Conventional water quenching method: Homogenization treatment (460℃ x 16hr)→Hot rolling (400℃
300-) rolled to 6 mm)-+420°C x 1
After heating for 3 hours, cool at a cooling rate of 3℃/h1゛→cold rolling (6−+3ml11)−+softening (heat to 420℃ at a temperature rate of 0.5~b and hold for 2hr→cooling at 25℃/11r Cooling at a high speed → Holding at 235°C for 6 hours → Air cooling) → Cold working (working degree O ~ 90%, shown in Table 2) → Solution treatment (47
Hold at 0° C. for 40 minutes, use vine 1 heat bath)→Water quenching The various properties of the material (referred to as W material) produced by the above method are shown in Table 2, along with the crystal grains and degree of cold work before solution treatment.

本発明材は0〜90%の全加工度にわたってW月の結晶
粒径が100μ以下と微細なため、W材の曲げ性、T6
材の伸び、破壊靭性値等が従来材に比べてすぐれている
The present invention material has a fine grain size of 100μ or less over the entire working degree of 0 to 90%, so the bendability of the W material, T6
The elongation and fracture toughness of the material are superior to conventional materials.

また、本発明材は結晶粒が微細なためケミカルミーリン
グ後の而粗さが従来材より小さく、ケミカルミーリング
後の疲労強度にすぐれている特徴がある。
Furthermore, since the present invention material has fine crystal grains, the roughness after chemical milling is smaller than that of conventional materials, and the material has excellent fatigue strength after chemical milling.

17− 実施例2 (急速加熱の昇温速度の影1i’)表1に示
す合金N051を410℃で24時間の均質化処理後4
40℃Jこり熱間圧延を開始し、350mmより5mm
厚の板に圧延した。熱間圧延の終了温度は340℃であ
った。ついで6mm厚板を3mm厚まで冷間圧延し、こ
れを表3に示す種々の昇温速度で450℃に加熱し、3
分間保持した後に1時間当り25°Cの冷却速度で冷却
し、3mmQ材とした。この板を種々の加工度で冷間加
工後にソルトバスを使用して470℃×40分の溶体化
処理後に水焼入した。これらの材料の結晶粒度と450
℃へのu調速度の関係を表3に示す。
17- Example 2 (Shadow of temperature increase rate of rapid heating 1i') Alloy N051 shown in Table 1 was homogenized at 410°C for 24 hours.
Start hot rolling at 40°C and roll from 350mm to 5mm
Rolled into a thick plate. The finishing temperature of hot rolling was 340°C. Next, the 6 mm thick plate was cold rolled to a thickness of 3 mm, and heated to 450°C at various heating rates shown in Table 3.
After being held for a minute, it was cooled at a cooling rate of 25°C per hour to obtain a 3mmQ material. The plates were cold-worked at various working degrees and then solution-treated at 470° C. for 40 minutes using a salt bath, followed by water quenching. The grain size of these materials and 450
Table 3 shows the relationship of the u-adjustment speed to °C.

表 3   合金1 ※  従来法による昇温時間に相当 衣3に示されるように、450℃への平均昇温速度が平
均11℃/分より大きい場合には合金の結晶粒および冷
間加工後溶体化処理した材料の結晶粒は100μ以下の
均一微細粒であるが、平均昇温速度が11℃/分以下の
場合には結晶粒は著しく粗大化する。ついで表3中の昇
温速度が86℃/分、21℃/分、14℃/分、118
C/分、0.9°C/分のものを代表的に選んでW材お
よび焼入後に 120℃で24時間時効したT6材の諸
性能を表4に示す。平均昇温速度が11°C/分より大
きい材料はストリンガ−材料として良好な性能を有して
いる。
Table 3 Alloy 1 * Equivalent to heating time using conventional method As shown in Figure 3, if the average heating rate to 450°C is greater than 11°C/min, the crystal grains of the alloy and the solution after cold working are The crystal grains of the chemically treated material are uniformly fine grains of 100 μm or less, but when the average temperature increase rate is 11° C./min or less, the crystal grains become extremely coarse. Then, the temperature increase rate in Table 3 is 86°C/min, 21°C/min, 14°C/min, 118
Table 4 shows the various performances of the W material and the T6 material aged at 120°C for 24 hours after quenching, with representative selections of 0.9°C/min and 0.9°C/min. Materials with average heating rates greater than 11°C/min have good performance as stringer materials.

22− 表4 合金1 平均弁部速度   冷間加工度   溶体化処理後  
 W材の曲げ試験結果 ※の結晶粒度    外  観
   割れの(’C/分)  (%)   (μm) 
    有無0      30    1几荒なし 
  な  し10      35 86      20       3530    
  35 50       30 80      27 0      35 10      40 21      20       4730    
  45 50      35 80      30      〃 0       70 10      80 14      20       8530    
  80 50      40 80      35 23− T6材の機械的性質 耐  力   引張強さ  伸  び (kg/m1+2)   (kg/mtn2)    
(%)51.1   57.2   16 52.1   57.5   14 52.6   58.0   14 50.6   57.0   15 50.6   57.4   16 50.3   57.8   17 51.2   57.1   16 52.4   57.4   13 53.2    ’57.1   1351.0   
56.9   14 50.2   57.5   16 50.2   57.2   16 51.1   57.0   16 52.1   57.1   14 52.5   56.8   13 50.6   56.6   14 50.4   57.8   16 50.1   57.6   16 0     110     肌  荒   微少割れ
10      14.0 11       20      17030   
   165 50      40     肌荒なし   な  
し80      40 0      200      胆  荒   割 
 れ10  240 0.9 20  310 30  220 50      50     肌荒なし   な  
し80       40       ’※90’曲
げ、曲げ半径1,5t  (t :板厚)焼入後4時間
接に曲げ試験実施。
22- Table 4 Alloy 1 Average valve speed Cold work degree After solution treatment
Bending test results of W material *Grain size Appearance Crack ('C/min) (%) (μm)
Presence 0 30 1 No roughness
None 10 35 86 20 3530
35 50 30 80 27 0 35 10 40 21 20 4730
45 50 35 80 30 〃 0 70 10 80 14 20 8530
80 50 40 80 35 23- Mechanical properties of T6 material Proof strength Tensile strength Elongation (kg/m1+2) (kg/mtn2)
(%) 51.1 57.2 16 52.1 57.5 14 52.6 58.0 14 50.6 57.0 15 50.6 57.4 16 50.3 57.8 17 51.2 57. 1 16 52.4 57.4 13 53.2 '57.1 1351.0
56.9 14 50.2 57.5 16 50.2 57.2 16 51.1 57.0 16 52.1 57.1 14 52.5 56.8 13 50.6 56.6 14 50.4 57 .8 16 50.1 57.6 16 0 110 Rough skin Micro cracks 10 14.0 11 20 17030
165 50 40 No rough skin
80 40 0 200
10 240 0.9 20 310 30 220 50 50 No rough skin
80 40'*90' bending, bending radius 1.5t (t: plate thickness) Bending test conducted 4 hours after quenching.

24− 270− 50.3   56.4   14 51.7   56.3   13 51.6   57.1   13 50.8   56.8   13 50.4   56.6’    1650.0   
56.0   15 50.2   56.6   11 50.9   56.8   10 50.0   56.9   12 49.9   56.3   12 実施例3(加熱温度の影響) 表1に示した合金N002を実施例2と全く同じ方法で
3mmの冷間圧延上り板に圧延した。この板を320〜
520℃間の各湿度に、種々の昇温速度で加熱し、その
後1分当り 5℃の冷却速度で冷却し、ついで300℃
で1時間加熱し、1時間当り20℃の冷却速度で冷却し
3n+m0IJとした。
24- 270- 50.3 56.4 14 51.7 56.3 13 51.6 57.1 13 50.8 56.8 13 50.4 56.6' 1650.0
56.0 15 50.2 56.6 11 50.9 56.8 10 50.0 56.9 12 49.9 56.3 12 Example 3 (Effect of heating temperature) Alloy N002 shown in Table 1 was carried out. It was rolled into a 3 mm cold rolled plate in exactly the same manner as in Example 2. This board is 320~
Heating at various heating rates to various humidity levels between 520°C, then cooling at a cooling rate of 5°C per minute, and then cooling to 300°C.
The mixture was heated for 1 hour and cooled at a cooling rate of 20°C per hour to 3n+m0IJ.

上記3mm−0材を冷間加工後に、ソルトバスを使用し
て470℃で40分の溶体化処理後に水焼入したW材の
結晶粒度と昇温時間2分で昇温させた加熱温度の関係を
表5に示す。弱加工後に溶体化処理を行なった場合でも
結晶粒の微細な材料の得られるのは、冷間圧延上りの板
を320〜500℃の温度に急速加熱して軟化した材料
のみであり、加熱湿度がこの範囲外の場合には弱電 加工後に溶体化処理しても結晶粒の微細な材料は得られ
ない。
After cold working the above 3mm-0 material, the crystal grain size of the W material was water-quenched after solution treatment at 470°C for 40 minutes using a salt bath, and the heating temperature was increased for 2 minutes. The relationship is shown in Table 5. Even when solution treatment is performed after mild working, materials with fine grains can only be obtained by softening cold-rolled sheets by rapidly heating them to temperatures of 320 to 500°C, and heating humidity If it is outside this range, a material with fine crystal grains cannot be obtained even if solution treatment is performed after mild electric processing.

表5に示した条件で軟化した3mm厚O材のうちの3例
につき、最大80%の冷間圧延をし、470℃で40分
の溶体化処理をしてから水焼入れしたWI!および焼入
れ後に 122℃で25時間時効したT6材についての
試験をした。その結果を表6に示すが、各例ともストリ
ンガ−材#X31として十分な性能を有していた。
Three examples of 3 mm thick O material softened under the conditions shown in Table 5 were cold rolled to a maximum of 80%, solution treated at 470°C for 40 minutes, and then water quenched.WI! Tests were also conducted on T6 material that had been quenched and then aged at 122°C for 25 hours. The results are shown in Table 6, and each example had sufficient performance as stringer material #X31.

表 5  合金2 27− 実施例4(加熱保持時間の影響)          
2表1に示す合金N003を実施例2と全く同じ方法で
3Il111厚の冷間圧延上り板に圧延した。この板を
表7に示す昇温速度で各温度に加熱し、各時間保持した
のち、1分当り5℃の冷却速度で冷却し、ついで300
℃×柚rの加熱後空冷し3mm0Uとした。
Table 5 Alloy 2 27- Example 4 (Effect of heating holding time)
2 Alloy N003 shown in Table 1 was rolled into a cold-rolled plate having a thickness of 3Il111 in exactly the same manner as in Example 2. This plate was heated to each temperature at the heating rate shown in Table 7, held for each time, cooled at a cooling rate of 5°C per minute, and then heated to 300°C per minute.
After heating at °C x Yur, it was air-cooled to a size of 3 mm0U.

このamm Q材を最も結晶粒の粗大化傾向の大きい2
0%の冷間圧延後にソルトバスを使用して470℃で4
0分の溶体化処理後に水焼入れしたW材の結晶粒度と加
熱温度と保持時間の関係を表7に示す。
This amm Q material has the largest tendency to coarsen grains.
4 at 470℃ using a salt bath after 0% cold rolling.
Table 7 shows the relationship between the crystal grain size, heating temperature, and holding time of the W material that was water-quenched after 0 minutes of solution treatment.

この表7から判るとおり、各保持時間にわたって結晶粒
の微細な材料が得られることは明らかである。
As can be seen from Table 7, it is clear that a material with fine crystal grains can be obtained over each holding time.

上記の3mm O材板をO〜90%冷間圧延したのちに
、溶体化処理して水焼入れしたW材の結晶粒は全て 1
00μ以下であり、1,5t  (t・−板厚)の曲げ
半径で 90°曲げを行なった場合にも肌荒れや割れは
全く生ぜず、ストリンガ−用材料29− 272− ヒして好適なものであった。
All the crystal grains of the W material, which was cold rolled from the above 3 mm O material plate by 0 to 90%, and then solution treated and water quenched, were 1.
00μ or less, and even when bent 90° with a bending radius of 1.5t (t・-plate thickness), no roughening or cracking occurs at all, making it suitable for stringer materials 29-272- Met.

=30− 表 7  合金3 実施例5(製造条件の影響) 表1に示した合金N 0.1の400mm厚鋳塊を表8
に示す製造条件の下で2〜5m1ll厚のO材板とした
=30- Table 7 Alloy 3 Example 5 (Influence of manufacturing conditions) The 400 mm thick ingot of alloy N 0.1 shown in Table 1 was
An O material plate having a thickness of 2 to 5 ml was obtained under the manufacturing conditions shown in .

表E3 ソーキング       熱間圧延条件No、   条
   件   開始温度 終了温度 板 厚  ※ 軟
化条件(’C)    (℃)   (、mm)147
0℃x30hr    430  330   6  
  な  し2            4.00  
300    〃370℃x1hr3465℃×161
)r425310〃  なし4475℃X24hr  
             n   3!30℃xlh
r5                       
 n   400℃xlbr7470℃x24hr  
440280 8  なし8            
400  260    〃9           
 440  330   510          
   〃   360   l111   470℃x
16hr    435  325    l112 
  475℃X24hr    415  345  
  n   350℃X11+r13        
          N     290    9 
  400℃×廿1r14             
 〃320   815    470℃×24hr 
  420    〃    10   な  し16
              〃335   8  4
00℃xlhr17                
   〃15※ 軟化終了後1時間当り25℃の冷却速
度で冷却。
Table E3 Soaking Hot rolling condition No. Condition Start temperature End temperature Plate thickness * Softening condition ('C) (℃) (, mm) 147
0℃x30hr 430 330 6
None 2 4.00
300〃370℃×1hr3465℃×161
) r425310〃 None 4475℃X24hr
n 3!30℃xlh
r5
n 400℃xlbr7470℃x24hr
440280 8 None 8
400 260 〃9
440 330 510
〃 360 l111 470℃x
16hr 435 325 l112
475℃×24hr 415 345
n 350℃X11+r13
N290 9
400℃×廿1r14
〃320 815 470℃×24hr
420 〃 10 None 16
〃335 8 4
00℃xlhr17
〃15* After softening is complete, cool at a cooling rate of 25°C per hour.

合金1 冷間圧延条件       急速加熱軟化条件加工度 
板 厚 平均昇温速度  加熱条件   冷却速度  
軟化条件(%)   (mm)    (’C/分)3
3  4    140  450℃×1分  5℃/
分   300℃x 1hr21    450℃×2
分      ノI         l150  3
、   230  470℃×3分17  480℃×
30分 66  2    450  470℃×2分  10
℃/分   230℃x3hr38400℃×35分 
   N    ※  1150  4    230
、  480℃×1分   〃  ※470℃X1hr
24  380℃×40分    〃   ※  〃4
0357430℃×20分  20℃/hr     
な  し140  455℃×2分 50 2.5  1300  470℃×3分40  
400’CX50分  25℃/hr66 3   9
00460℃×4分    n       ll75
  2    440  460℃×15分50  5
    680  470℃×3分63   JJ  
   150  440℃×10分    ll80 
 3    220  450℃×2分  30℃/h
r=33− 表8におけるN011〜17の製造条件で製造したO材
板を最も結晶粒の粗大化傾向の大きい20%冷間圧延し
たのちにソルトバスを使用して470℃で40分の溶体
化処理後に水焼入れし、120℃で24時間時効したT
6材の諸性能の試験結果とを表9に示す。
Alloy 1 Cold rolling conditions Rapid heating softening conditions Workability
Plate thickness Average heating rate Heating conditions Cooling rate
Softening conditions (%) (mm) ('C/min) 3
3 4 140 450℃×1 minute 5℃/
Minutes 300℃ x 1hr21 450℃ x 2
Minutes I 150 3
, 230 470℃×3 minutes17 480℃×
30 minutes 66 2 450 470℃ x 2 minutes 10
℃/min 230℃ x 3hr 38400℃ x 35 minutes
N * 1150 4 230
, 480℃×1 minute 〃 *470℃×1hr
24 380℃ x 40 minutes 〃 * 〃4
0357430℃×20 minutes 20℃/hr
None 140 455℃ x 2 minutes 50 2.5 1300 470℃ x 3 minutes 40
400'CX50 minutes 25℃/hr66 3 9
00460℃×4 minutes nll75
2 440 460℃ x 15 minutes 50 5
680 470℃ x 3 minutes 63 JJ
150 440℃ x 10 minutes ll80
3 220 450℃ x 2 minutes 30℃/h
r=33- After cold-rolling the O material plates manufactured under the manufacturing conditions of N011 to No. 17 in Table 8 by 20%, which has the largest tendency to coarsen grains, it was subjected to solution treatment at 470°C for 40 minutes using a salt bath. T that was water quenched after chemical treatment and aged at 120℃ for 24 hours.
Table 9 shows the test results of various performances of the six materials.

表 9  合金1 ※ 90°曲げ、曲げ半径1.5t  (t  :板厚
)で焼入後4時間後に曲げ試験実施。
Table 9 Alloy 1 *Bending test conducted 4 hours after quenching with 90° bending and bending radius of 1.5t (t: plate thickness).

表9より明らかなように本発明の条件により製造したス
トリンガ−材料の結晶粒径は100μ以下であり、冷間
加工後に焼入れした材料についても結晶粒径は100μ
以下と粗大化せず、またW材、T6材共にストリンガ−
材料として良好な性能を示している。
As is clear from Table 9, the crystal grain size of the stringer material manufactured under the conditions of the present invention is 100μ or less, and the crystal grain size of the material quenched after cold working is also 100μ.
It does not become coarse as below, and both W and T6 materials can be used as stringers.
It shows good performance as a material.

なお、表9には加工度20%の場合の結果のみ示したが
、0〜80%の冷間加工を行なう場合についても溶体化
処理後の結晶粒径は全て100μ以下であり、W材、T
6材共にストリンガ−用材料として十分な性能を有して
いた。
Although Table 9 shows only the results for the case of 20% working degree, the grain size after solution treatment is all 100 μ or less even when cold working is performed from 0 to 80%. T
All six materials had sufficient performance as stringer materials.

実施例6(合金組成の影響) 表1に示した合金No、1−4の400mm厚鋳塊を4
70℃で25時間均質化処理したのち、400℃より熱
間圧延を開始し、6t+un厚の板に圧延した。
Example 6 (Influence of alloy composition) A 400 mm thick ingot of alloy No. 1-4 shown in Table 1 was
After homogenization treatment at 70° C. for 25 hours, hot rolling was started at 400° C. and rolled into a plate having a thickness of 6t+un.

熱間圧延終了温度は300℃であった。ついで、13m
m厚板を3mm厚まで冷間圧延し、平均昇温速度220
℃/分で460℃に加熱し、5分間その温度に保持した
のち、1分当り10℃の冷却速度で冷却し、その後30
0℃で1時間加熱後空冷し3Ill36− □1 rrlO材とした。
The hot rolling end temperature was 300°C. Then, 13m
m-thick plate was cold rolled to 3mm thickness, and the average heating rate was 220.
°C/min to 460 °C, held at that temperature for 5 minutes, then cooled at a cooling rate of 10 °C per minute, then 30 °C per minute.
After heating at 0° C. for 1 hour, the material was cooled in air to obtain a 3Ill36-□1rrlO material.

化較のため表1に示した合金N005並びにNo、6の
ものも同じ方法でO材板とした。
For comparison, alloys No. 005, No. 6, and No. 6 shown in Table 1 were also made into O material plates in the same manner.

これらのO材板のストリンガ−材料としての性能をみる
ため、各0材板をθ〜75%冷間圧延したのち、470
℃で40分溶体化処理し水焼入れしたW材および焼入れ
後に 120℃で24時間時効したT6471について
の試験をした。その諸性能を表10に示す。
In order to examine the performance of these O material plates as stringer materials, each O material plate was cold rolled by θ~75%, and then 470
Tests were conducted on W material that had been solution treated at 120°C for 40 minutes and water quenched, and T6471 that had been aged at 120°C for 24 hours after quenching. Its various performances are shown in Table 10.

各合金共に結晶粒は全加工度にわたって100μ以下で
ある。
In each alloy, the crystal grain size is 100 μm or less over the entire working degree.

表11には最も結晶粒径の粗大化傾向が大きい20%加
工の場合について、冷間加工後にソルトバスを使用して
470℃×40分の溶体化処理後に焼入れした材料の諸
性能を示す。
Table 11 shows the various performances of materials obtained by cold working, solution treatment at 470° C. for 40 minutes using a salt bath, and quenching, for the case of 20% working, which has the greatest tendency to coarsen the grain size.

37− i 表10 合金NO,1〜4はストリンガ−材として良好な性能を
有しているが、No、5合金は強度が低く、No、6合
金は応力腐食割れの危険があるためストリンガ−材とし
ての使用には問題がある。
37-i Table 10 Alloys No. 1 to 4 have good performance as stringer materials, but alloy No. 5 has low strength, and alloy No. 6 has the risk of stress corrosion cracking, so it is not suitable for stringers. There are problems with its use as a material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は航空機胴体内部の一部斜視図、第2図はストリ
ンガ−の断面形状の例、第3図はストリンガ−素材の加
工状態を示す斜視図、第4図は加工度と結晶粒径との関
係の1例を示す説明図、第5図は素材の引張強さとW材
の結晶粒径と再加熱温度との関係を示すグラフである。 1・・・・・・・・・胴体 2.3・・・補強材(ストリンガ−、ストリンガ−フレ
ーム) 特許出願人 住友軽金属工業株式会社 代理人  弁理士  小 松 秀 岳 41− 才 2 図
Figure 1 is a partial perspective view of the interior of the aircraft fuselage, Figure 2 is an example of the cross-sectional shape of a stringer, Figure 3 is a perspective view showing the processing state of the stringer material, and Figure 4 is the degree of processing and grain size. FIG. 5 is a graph showing the relationship between the tensile strength of the material, the crystal grain size of the W material, and the reheating temperature. 1...Body 2.3...Reinforcement material (stringer, stringer frame) Patent applicant Sumitomo Light Metal Industries Co., Ltd. Agent Patent attorney Hide Komatsu 41-years old 2 Figure

Claims (1)

【特許請求の範囲】 [11Zn5,1〜8.1%、MOl、8〜3.4%、
Cu1.2〜2.6%、’l io、2%以下、Oro
、18〜0.35%を含み、残りAIと不純物より構成
される組成を有し、段付冷間加工されかつ溶体化された
材料であって、結晶粒が100μm以下であることを特
徴とする結晶粒の微細な航空機ストリンガ−用材料。 (21Zn5.1〜8.1%、Mol、8〜3.4%、
Cu1.2〜2.6%、Ti0.2%以下、Oro、1
8〜0.35%を含み、残りA1と不純物より構成され
る合金を常法にしたがって均質化処理、熱間圧延および
冷間圧延して所定の厚さとした材料を、320〜500
℃温度に平均11℃/分より大きい昇温速度で急速に加
熱することにより軟化し゛、0〜90%の異なる加工度
で冷間段付加圧をした後、溶体化処理を行なうことを特
徴とする結晶粒の微細な航空機ストリンガ−用材料の製
造法。 (31Zn5.1〜8.1%、Mol、8〜3.4%、
Cul、2〜2.6%、T io、2%以下、CrO,
IB 〜0.35%を含み、残りA1と不純物より構成
される合金を常法にしたがって均質化処理、熱間圧延お
よび冷間圧延して所定の厚さとした材料を、320〜5
00℃温度に平均11℃/分より大きい昇温速度で急速
に加熱することにより軟化し、この軟化の際の冷却速度
が1時間当り30℃以上のときに200〜500℃に再
加熱して、再加熱温度が200〜350℃未満の場合に
は空冷又は1時間当り30℃以下の速度で冷却し、又再
加熱温度が350〜500℃の場合には1時間当り30
℃以下の速度で冷却し、0〜90%の異なる加工度で冷
間段付加工をした後、溶体化処理を行なうことを特徴と
する結晶粒の微細な航空機ストリンガ−用材料の製造法
[Claims] [11Zn5, 1 to 8.1%, MOI, 8 to 3.4%,
Cu1.2-2.6%, 'l io, 2% or less, Oro
, 18 to 0.35%, with the remainder consisting of AI and impurities, the material is stepped cold-worked and solution-treated, and has crystal grains of 100 μm or less. A material for aircraft stringers with fine grains. (21Zn5.1-8.1%, Mol, 8-3.4%,
Cu1.2-2.6%, Ti0.2% or less, Oro, 1
An alloy containing 8 to 0.35% and the remaining A1 and impurities is homogenized, hot rolled and cold rolled to a predetermined thickness according to a conventional method.
It is characterized by being softened by rapidly heating to a temperature of 11°C/min at an average temperature increase rate of more than 11°C/min, and after applying cold stage pressure at different degrees of working from 0 to 90%, solution treatment is performed. A method for manufacturing a material for aircraft stringers with fine grains. (31Zn5.1-8.1%, Mol, 8-3.4%,
Cul, 2-2.6%, Tio, 2% or less, CrO,
An alloy containing ~0.35% IB and the remainder A1 and impurities is homogenized, hot rolled, and cold rolled to a predetermined thickness according to a conventional method.
It is softened by rapid heating to a temperature of 00°C at an average heating rate of more than 11°C/min, and when the cooling rate during this softening is 30°C or more per hour, it is reheated to 200-500°C. If the reheating temperature is less than 200 to 350°C, cool by air or at a rate of 30°C or less per hour, and if the reheating temperature is 350 to 500°C, cool at a rate of 30°C per hour.
A method for producing an aircraft stringer material with fine grains, which comprises cooling at a rate of 0.degree.
JP21679382A 1982-12-13 1982-12-13 Microcrystal grain material for stringer of airplane and its manufacture Granted JPS58213851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21679382A JPS58213851A (en) 1982-12-13 1982-12-13 Microcrystal grain material for stringer of airplane and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21679382A JPS58213851A (en) 1982-12-13 1982-12-13 Microcrystal grain material for stringer of airplane and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16569679A Division JPS5690949A (en) 1979-09-29 1979-12-21 Material for airplane stringer with fine crystal grain and its manufacture

Publications (2)

Publication Number Publication Date
JPS58213851A true JPS58213851A (en) 1983-12-12
JPS614904B2 JPS614904B2 (en) 1986-02-14

Family

ID=16693958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21679382A Granted JPS58213851A (en) 1982-12-13 1982-12-13 Microcrystal grain material for stringer of airplane and its manufacture

Country Status (1)

Country Link
JP (1) JPS58213851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512876A (en) * 2018-11-12 2022-02-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 7XXX series aluminum alloy products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512876A (en) * 2018-11-12 2022-02-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 7XXX series aluminum alloy products
US11879166B2 (en) 2018-11-12 2024-01-23 Novelis Koblenz Gmbh 7XXX-series aluminium alloy product

Also Published As

Publication number Publication date
JPS614904B2 (en) 1986-02-14

Similar Documents

Publication Publication Date Title
KR890001448B1 (en) Method for producing fine-grained high strength alluminum alloy material
US5496426A (en) Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
US4927470A (en) Thin gauge aluminum plate product by isothermal treatment and ramp anneal
JP5068654B2 (en) High strength, high toughness Al-Zn alloy products and methods for producing such products
EP0826072B1 (en) Improved damage tolerant aluminum 6xxx alloy
US20180023174A1 (en) Aluminum alloy sheet
JP2008516079A5 (en)
EP0030070A1 (en) Method for producing aircraft stringer material
US4699673A (en) Method of manufacturing aluminum alloy sheets excellent in hot formability
WO2016190409A1 (en) High-strength aluminum alloy plate
US4799974A (en) Method of forming a fine grain structure on the surface of an aluminum alloy
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
US4410370A (en) Aircraft stringer material and method for producing the same
US6159315A (en) Stress relieving of an age hardenable aluminum alloy product
KR19990082538A (en) Diffusion Bonded Sputtering Target Assembly with Precipitation Hardened Backplate and Method of Manufacturing the Same
EP0990058B1 (en) Process of producing heat-treatable aluminum alloy sheet
JPS6136065B2 (en)
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
EP0848073B1 (en) Stress relieving of an age hardenable aluminium alloy product
JPS58213851A (en) Microcrystal grain material for stringer of airplane and its manufacture
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JPS6136064B2 (en)
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPS5941434A (en) Material having fine crystal grain useful as stringer of airplane and its manufacture