JPS58213624A - Preparation of high purity silicon - Google Patents

Preparation of high purity silicon

Info

Publication number
JPS58213624A
JPS58213624A JP9615082A JP9615082A JPS58213624A JP S58213624 A JPS58213624 A JP S58213624A JP 9615082 A JP9615082 A JP 9615082A JP 9615082 A JP9615082 A JP 9615082A JP S58213624 A JPS58213624 A JP S58213624A
Authority
JP
Japan
Prior art keywords
silicon
reaction tube
particles
reaction
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9615082A
Other languages
Japanese (ja)
Inventor
Nobuo Nakamura
信夫 中村
Juichi Shimada
嶋田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9615082A priority Critical patent/JPS58213624A/en
Publication of JPS58213624A publication Critical patent/JPS58213624A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prepare high purity silicon, in high efficiency, preventing the deposition of silicon to the inner wall of the reaction tube of a fluidized bed apparatus, by ionizing and charging high purity silicon particles, and contacting with a silicon- containing gas to precipitate silicon. CONSTITUTION:A gaseous mixture of trichlorosilane and hydrogen at a molar ratio of 1:1 is introduced through the feed line 4 to the reaction tube 1. Silicon seed particles 8 are introduced through the line 3 into the ionization chamber 5, electrically charged by the exposure to arc discharge generated by the DC source 6, and introduced into the reaction tube 1. The reaction tube 1 is heated at about 1,000 deg.C by the electrical furnace 7, and the silicon seed particle 8 is grown during the descending motion in the tube 1. Since the temperature of the reaction tube is relatively low, the deposition of silicon to the inner wall 2 of the reaction tube can be suppressed, and since the seed particle is activated by arc discharge, a sufficiently high rate of reaction and uniform silicon particles can be obtained.

Description

【発明の詳細な説明】 本発明は流動床法によりシリコン粒子上にシリコンを析
出させて高純度シリコンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high purity silicon by depositing silicon on silicon particles using a fluidized bed method.

半導体デバイスの急激な発展により、半導体級の単結晶
シリコンの需要が増大している。従来、単結晶シリコン
はチョクラルスキー法を用いて製造されているが、単結
晶シリコンの需要増大のためその供給原料である多結晶
シリコンの供給不足又は価格上昇を招いている。特に、
太陽電池の場合コストに占めるシリコン原材料の割合が
高く、コスト低減に関する技術開発が切望されている。
With the rapid development of semiconductor devices, the demand for semiconductor-grade single crystal silicon is increasing. Conventionally, single-crystal silicon has been manufactured using the Czochralski method, but the increasing demand for single-crystal silicon has led to a shortage of supply or an increase in the price of polycrystalline silicon, which is its raw material. especially,
In the case of solar cells, silicon raw materials account for a high proportion of the cost, and there is a strong need for technological development to reduce costs.

従来、多結晶シリコンはノ・四シランガスの水素還元反
応によシリコン棒上に析出して製造されている。この方
法ではトリクロロシラン又はジクロロシランを水素還元
し、電気を通して加熱したシリコン棒上にシリコンを析
出させる。シリコン棒は、抵抗加熱で約1100〜12
00Cに加熱され、石英ガラス製ベルジャ型反応容器は
約300Cに保ってその内壁にシリコンが析出しない様
にしている。しかし、この拳法では析出面積が小さいた
め、時間当りのシリコン析出量が少なく、製造に要する
エネルギー消費量も多いという欠点を有していた。
Conventionally, polycrystalline silicon has been produced by depositing it on a silicon rod through a hydrogen reduction reaction of tetrasilane gas. In this method, trichlorosilane or dichlorosilane is reduced with hydrogen, and silicon is deposited on a silicon rod heated by electricity. The silicon rod is heated to about 1100~1200 by resistance heating.
The quartz glass bell jar type reaction vessel is kept at about 300C to prevent silicon from depositing on its inner wall. However, this method has the disadvantage that the deposition area is small, so the amount of silicon deposited per hour is small, and the energy consumption required for production is large.

かかる現状技術の欠点を克服するため、流動化した実質
的に析出面積の大きな微細なシリコン粒子上にシリコン
を析出させる方法が提案されてきた。しかし、この流動
床法では、シリコン粒子が反応容器中を流下する間に、
シリコンが粒子表面に析出する反応を利用するものであ
り、反応ガスのかなりの部分は未反応のまま廃ガスとし
て捨てられていた。また、反応管壁もシリコン粒子と同
等の反応性を有するため、反応管内壁にシリコンが析出
し、これが回収できないだけでなく、容器破壊の原因に
もなっていた。
In order to overcome these drawbacks of the current technology, methods have been proposed in which silicon is deposited on fluidized fine silicon particles having a substantially large deposition area. However, in this fluidized bed method, while the silicon particles are flowing down the reaction vessel,
This method utilizes a reaction in which silicon is deposited on the surface of particles, and a large portion of the reaction gas was discarded unreacted as waste gas. Furthermore, since the reaction tube wall also has the same reactivity as silicon particles, silicon precipitates on the reaction tube inner wall, which not only cannot be recovered but also causes the container to break.

本発明の目的は、かかる流動床法の欠点を克服し、より
析出効率の良い方法を提案することにある。
The purpose of the present invention is to overcome the drawbacks of the fluidized bed method and to propose a method with higher precipitation efficiency.

この問題はシリコン粒子の反応ガスとの反応性を向上さ
せ、かつ、粒子同志の接触による粒の大形化を妨げるこ
とにより解決できる。
This problem can be solved by improving the reactivity of the silicon particles with the reactive gas and by preventing the particles from increasing in size due to contact with each other.

このために、粒子を反応ガスであるトリクロロシラン又
はジクロロシランに接触させる前にイオン化させ、活性
な状態で反応させる。シリコン粒子は、正か負のいずれ
かの電荷を有し、反応ガスとの反応性が高まるとともに
、粒子同志は反発し、接触しにくくなシ、粒子上での均
一なシリコンの成長が達成できた。
For this purpose, the particles are ionized and reacted in an active state before being brought into contact with the reaction gas trichlorosilane or dichlorosilane. Silicon particles have either a positive or negative charge, which increases their reactivity with the reactive gas, and the particles repel each other, making it difficult for them to come into contact with each other, making it difficult to achieve uniform silicon growth on the particles. Ta.

実施例 トリクロロシランと水素のモル比1:1から成る混合ガ
スを供給管4よシ送給し、反応管1に入る。混合ガスの
流速は50t/分であった。大きさが0.1〜0.5簡
のシリコン種粒子8を供給管3より導入した。シリコン
種粒子8は反応管1に入る前にイオン化室5に導入され
る。ここで直流電源6によりアーク放電を行ない、シリ
コン種粒子8を帯電させた後反応管1に導入した。反応
管1は電気炉7によってxooocに加熱し、この中を
シリコン種粒子8は下降しながら生長した。比較的反応
管温度が低く、反応管内壁2へのシリコンの析出は少な
く、種粒子はアーク放電によシ活性化されているため十
分な反応速度が得られた。これにより、20時間の連続
反応で4Kfのシリコン粒子を形成できた。
EXAMPLE A mixed gas consisting of trichlorosilane and hydrogen in a molar ratio of 1:1 is fed through the supply pipe 4 and enters the reaction tube 1. The flow rate of the mixed gas was 50 t/min. Silicon seed particles 8 having a size of 0.1 to 0.5 particles were introduced through the supply pipe 3. Silicon seed particles 8 are introduced into the ionization chamber 5 before entering the reaction tube 1. Here, arc discharge was performed using the DC power supply 6 to charge the silicon seed particles 8, which were then introduced into the reaction tube 1. The reaction tube 1 was heated to xoooc by an electric furnace 7, and the silicon seed particles 8 grew while descending therein. Since the reaction tube temperature was relatively low, there was little silicon precipitation on the reaction tube inner wall 2, and the seed particles were activated by arc discharge, a sufficient reaction rate was obtained. As a result, silicon particles of 4Kf could be formed in a continuous reaction for 20 hours.

なお、本発明の放電方法は、アーク放電に限るものでな
く、コロナ放電あるいは低圧下でのグロー放電でも同様
の効果があった。
Note that the discharge method of the present invention is not limited to arc discharge, and similar effects were obtained with corona discharge or glow discharge under low pressure.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を実施する装置の縦断面図である
。 1・・・反応管、2・・・反応管内壁、3・・・シリコ
ン粒子供給管、4・・・反応ガス供給管、5・・・イオ
ン化室、゛」1≦二;1 膏葱ニ ー1α 1、            シ9)コン舷チ4: −1 ↑ H5jXs+H1 −
The figure is a longitudinal sectional view of an apparatus implementing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Reaction tube inner wall, 3... Silicon particle supply pipe, 4... Reaction gas supply pipe, 5... Ionization chamber, ゛''1≦2;1 Plaster knee 1α 1, C9) Connaught 4: -1 ↑ H5jXs+H1 -

Claims (1)

【特許請求の範囲】[Claims] 1、流動床式反応器を用い高純度シリコン粒子上にシリ
コン含有ガスからシリコンを析出させる高純度シリコン
製造方法において、前記高純度シリコン粒子をイオン化
し、帯電させ、前記シリコン含有ガスと接触させてシリ
コンを析出させることを特徴とする高純度シリコンの製
造方法。
1. In a high-purity silicon production method in which silicon is deposited from a silicon-containing gas on high-purity silicon particles using a fluidized bed reactor, the high-purity silicon particles are ionized, charged, and brought into contact with the silicon-containing gas. A method for producing high-purity silicon, characterized by precipitating silicon.
JP9615082A 1982-06-07 1982-06-07 Preparation of high purity silicon Pending JPS58213624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9615082A JPS58213624A (en) 1982-06-07 1982-06-07 Preparation of high purity silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9615082A JPS58213624A (en) 1982-06-07 1982-06-07 Preparation of high purity silicon

Publications (1)

Publication Number Publication Date
JPS58213624A true JPS58213624A (en) 1983-12-12

Family

ID=14157343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9615082A Pending JPS58213624A (en) 1982-06-07 1982-06-07 Preparation of high purity silicon

Country Status (1)

Country Link
JP (1) JPS58213624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287644A1 (en) * 1986-10-15 1988-10-26 Kennecott Corporation Method and apparatus to produce a hot fluidizing gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287644A1 (en) * 1986-10-15 1988-10-26 Kennecott Corporation Method and apparatus to produce a hot fluidizing gas

Similar Documents

Publication Publication Date Title
JP4064918B2 (en) Method for producing silicon
US4377564A (en) Method of producing silicon
CN102557038B (en) Preparation method of polycrystalline silicon
JP2004043301A (en) Process of preparing polysilicon using exothermic reaction
JPS6126774A (en) Apparatus for forming amorphous silicon film
US20100189926A1 (en) Plasma deposition apparatus and method for making high purity silicon
CN103213989A (en) Polysilicon granule preparation system and preparation method
JP2004018370A (en) Apparatus and method of manufacturing silicon
JPS58213624A (en) Preparation of high purity silicon
JPS5945917A (en) Continuous preparation of polycrystalline silicon
CN101186299A (en) Technique for producing high purity silicon by fluidized bed device
CN114180580B (en) Method and reaction system for continuously producing disilane
CN214570782U (en) System for continuous production disilane
KR101640286B1 (en) Apparatus and method for producing polysilicon using streamer discharge
CN107473228A (en) A kind of nanoscale crystalline silicon and preparation method thereof
CN114132933A (en) Granular silicon production method and system
JPH0694365B2 (en) Silicon manufacturing method and manufacturing apparatus
JPH02279513A (en) Production of high-purity polycrystal silicon
Jain et al. Rice husk ash as a potential source of silicon and its varied applications
JPS58185426A (en) Preparation of high-purity silicon
CN103626184B (en) A kind of preparation method of high-purity liquid polysilicon
CN102092718A (en) Method for preparing solar-grade polycrystalline silicon
JPS6150372B2 (en)
WO2010067842A1 (en) Silicon manufacturing method
JPS60247917A (en) Manufacture of amorphous silicon thin film