JPS58213256A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPS58213256A
JPS58213256A JP9707482A JP9707482A JPS58213256A JP S58213256 A JPS58213256 A JP S58213256A JP 9707482 A JP9707482 A JP 9707482A JP 9707482 A JP9707482 A JP 9707482A JP S58213256 A JPS58213256 A JP S58213256A
Authority
JP
Japan
Prior art keywords
acceleration sensor
pedestal
hole diameter
plate
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9707482A
Other languages
Japanese (ja)
Inventor
Norio Hayashi
林 憲男
Noburo Tanii
谷井 信朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Ceramics Corp
Original Assignee
Fuji Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Ceramics Corp filed Critical Fuji Ceramics Corp
Priority to JP9707482A priority Critical patent/JPS58213256A/en
Publication of JPS58213256A publication Critical patent/JPS58213256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0907Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the compression mode type

Abstract

PURPOSE:To execute a measurement with high reliability by adjusting an inherent vibration number with high accuracy, by forming a thin and platelike pedestal to which a piezoelectric element is installed, and piercing one or more holes on this platelike pedestal so that the prescribed number of inherent vibrations is obtained. CONSTITUTION:An aluminum case 204 has an inside diameter of 16mm., a platelike pedestal is formed as one body with the case and has 0.6mm. thickness and four holes whose hole diameter is 1.8mm. are pierced by dividing equally on a pitch circle of 12.5mm. on this platelike pedestal. Subsequently, an inherent vibration number of such an acceleration sensor is measured, and the hole diameter and the vaviation rate of the inherent vibration number in case when said hole diameter is enlarged are measured. As a result, by correcting said hole diameter of said acceleration sensor, the prescribed inherent vibration number can be obtained. In this way, the measurement having high reliability can be executed by adjusting the inherent vibration number with high accuracy.

Description

【発明の詳細な説明】 本発明は加速度センサーに関し、検出素子椙料としてチ
タン酸ジルコン酸釦等の圧電セラミックを用いた加速度
センサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration sensor, and more particularly, to an acceleration sensor using a piezoelectric ceramic such as titanate zirconate button as a detection element material.

加速度センサーは、被検出振動物体の振動が伝播し、該
振動力によって前記圧電セラミックが電気信号を発信す
る。加速度の測定においては、この電気信号を網側する
のである。
In the acceleration sensor, the vibration of a vibrating object to be detected propagates, and the piezoelectric ceramic transmits an electric signal due to the vibration force. When measuring acceleration, this electrical signal is used as a grid.

加速度センサーは圧縮力を与えるためのおもりを備えて
おり、該おもり等によって定まる固有振動数を持ってい
る。加速度を計測する場合には、一般に該国有振動数よ
りも低い周波数の振動を計測するが、本発明は例えば本
出動人による実原11昭56=j71495r加速度セ
ンサー型ノックセンサー」のように加速度センサーの固
有振動数を利用して網側するための加速度センサーの改
良に関するものである。
The acceleration sensor is equipped with a weight for applying compressive force, and has a natural frequency determined by the weight. When measuring acceleration, vibrations with a frequency lower than the national frequency are generally measured, but the present invention uses an acceleration sensor such as the J71495R Acceleration Sensor Type Knock Sensor by the present applicant. This invention relates to the improvement of an acceleration sensor that uses the natural frequency of the net.

711加速度センサーはおもり及び圧型セラミックのバ
ネ常数及び圧電セラミックを増付けている部位の構造、
拐質等によって固有振動数が定まる。従って計測しよう
とする振動の周波数に加速度センサーのb1有振動数を
合せることにより、共振周波数を計測1するためには、
おもり等を前記共振周波数に合せるように設計する必要
かある。
The 711 acceleration sensor has a weight, a spring constant of the piezo-type ceramic, and a structure of the part where the piezoelectric ceramic is added.
The natural frequency is determined by the material etc. Therefore, in order to measure the resonance frequency by matching the b1 frequency of the acceleration sensor to the frequency of the vibration to be measured,
Is it necessary to design a weight or the like to match the resonant frequency?

しかしながら、前記共振周波数に合せるように各部品を
加工することは、加工n度面の管理を厳密にする必要か
あり、更に、組立上の多少の差異によって同一部屋の部
品で作った加速度センサーの内肩振動数か所ルiの周波
数に自わない場合かあった。
However, processing each part to match the resonant frequency requires strict management of the processing surface, and furthermore, due to slight differences in assembly, acceleration sensors made from parts in the same room may There were some cases where the inner shoulder vibration frequency did not correspond to the frequency of i.

本発明は、かかる欠点を改良するためic提案されるも
のであって、その目的とするところは、ケース内に圧電
素子を装着する台座を設け、該台座におもり及び圧霜°
素子を載僅し同定させて構成さ第1る加速度センサーに
おいて、前記台座は薄肉状で板状台座と17てなり、該
板状台座に1以上の孔を穿孔することによって所定の固
有振動数を得ることを和徴とする加速度センサーを提供
するにある。
The present invention proposes an IC to improve such drawbacks, and its purpose is to provide a pedestal for mounting a piezoelectric element in a case, and to attach a weight and a pressure frost to the pedestal.
In the first acceleration sensor configured by mounting and identifying an element, the pedestal is thin-walled and consists of a plate-shaped pedestal, and one or more holes are bored in the plate-shaped pedestal to obtain a predetermined natural frequency. The purpose of the present invention is to provide an acceleration sensor that has the following characteristics:

さらに穿孔部を板状台座の一部を切欠くことによって設
けた、所定の内肩振動数を得ることを特徴とする前項加
速度センサーを提供するにある。
Another object of the present invention is to provide an acceleration sensor as described above, characterized in that the perforation portion is provided by cutting out a part of the plate-shaped pedestal to obtain a predetermined internal shoulder vibration frequency.

以1、本発明を具体的に、図面及びデータにもとすき詳
細に説明する。
Hereinafter, the present invention will be specifically explained in detail with reference to drawings and data.

加速度センサーは第1図に実願昭56−173495の
例で示す如く、内肩振動数を決定する要因として、おも
り101の賀諏、枦状台厘102の構造及び材η、汁物
セラミック103かあり、基本的には一義的に内肩振動
羨りか決定するのであるが、第1図の如く組み十けた加
速度センサーは所定精度例えば±2チの精m−内の固!
E4振動数が州られるとは限らないのである。組立て誤
差、部品精度差によって、例えば±4%程度はずれるの
である。
As shown in the example of Utility Application No. 56-173495 in Fig. 1, the acceleration sensor uses the weight 101, the structure and material η of the bridge 102, the soup ceramic 103, etc. as the factors that determine the inner shoulder frequency. However, the acceleration sensor assembled as shown in Fig. 1 has a predetermined accuracy, for example, within ±2 cm.
The E4 frequency is not necessarily suppressed. Due to assembly errors and component precision differences, the deviation may be, for example, about ±4%.

本発明は、かかる欠点を改良するための加速度センサー
を提供するものである。第2図に示すようにケース20
4内に板状台座202を設け、該板状台座に孔を設は予
め孔の数、大きさ、位僧によって固有振動数が如伺程変
わるかを計測し、そのデータにもとすいて孔の数を増し
たり、大きさを大きくすることによって所期の固有振動
数精度内の加速反センサーを得ようとするものである。
The present invention provides an acceleration sensor for improving such drawbacks. Case 20 as shown in FIG.
A plate-shaped pedestal 202 is provided in the plate-shaped pedestal, and before making holes in the plate-shaped pedestal, it is necessary to measure in advance how much the natural frequency changes depending on the number of holes, their size, and the priesthood, and use that data as well. By increasing the number of holes or increasing their size, an attempt is made to obtain an acceleration anti-sensor within the desired natural frequency accuracy.

本発明者らはアルミ製のケース204の内t4ヲ16朋
とし、板状台座をケースと一体型に作り、0、6 j+
1の肉厚とし、該板状台座にピッチ円12.5ml!上
に4等配に孔径1.8闘の孔を穿孔した。
The present inventors made the aluminum case 204 t4 16 mm, made a plate-shaped pedestal integral with the case, and created 0, 6 j+
The wall thickness is 1, and the pitch circle is 12.5ml on the plate-shaped pedestal! Four holes with a diameter of 1.8mm were drilled in the upper part at equal intervals.

I+軍セラミック素子及び板状台座のおもりに関与する
部分を含めたおもりの重さは3.654grとした。圧
市セラミック素子はチタン配ジルコン酸鉛製で外径86
龍、内径5.6 mm 、厚み2iII++のものを用
いた。かかる加速度センサーの固有振動数を計測し、前
記孔径な大きくして行った場合の孔径と固有振動数精度
内を測定した結果は第6図に示した。
The weight of the weight including the I+ ceramic element and the plate-shaped pedestal weight was 3.654 gr. The ceramic element is made of titanium and lead zirconate and has an outer diameter of 86 mm.
A dragon with an inner diameter of 5.6 mm and a thickness of 2iII++ was used. The natural frequency of such an acceleration sensor was measured, and the results of measuring the accuracy of the hole diameter and natural frequency when the hole diameter was increased are shown in FIG.

前記と同じ形状、方法で和み上げられた加速度センサー
で前F孔径を2.5顛としたものは、内肩振動数が7.
9 KH2から8.6 KH2の1iij囲になった。
An acceleration sensor with the same shape and method as above but with a front F hole diameter of 2.5 mm has an inner shoulder frequency of 7.
It went from 9 KH2 to 8.6 KH2.

これらの加速度センサーの前F孔径を第6図に示す関係
を用いて孔径を修正することによって、所定の周波数例
しは18KHzから8.2Kozの範囲内にすることか
できたdすなわち、たとえは8.4KHzの固有振動数
となった加速度センサーは、第6図に孔径2.5龍、固
有振動数8.4 KHzの点を記し、該点から第3図に
示す面線と同じ勾配の直線を引き内肩振躬・数[3,Q
KHzと交わる点の孔径を読みとると6.1闘となるの
で、前記孔径を3.1mとすることによって、妊は8.
 OKHzO同肩振同数振動数ことかできた。
By modifying the diameter of the front F hole of these acceleration sensors using the relationship shown in FIG. For the acceleration sensor that has a natural frequency of 8.4 KHz, a point with a hole diameter of 2.5 KHz and a natural frequency of 8.4 KHz is marked in Fig. 6, and from this point there is a line with the same slope as the plane line shown in Fig. 3. Draw a straight line and inward shoulder swing/number [3, Q
If you read the hole diameter at the point where it intersects with KHz, it will be 6.1 m, so by setting the hole diameter to 3.1 m, the pregnancy will be 8.1 m.
I was able to do the same shoulder oscillation frequency as OKHzO.

つぎに、第2図によって加速度センサーの構成を説明す
る。円筒状ケース204の内部中央例近に、板状台座2
02を設け、それに圧電セラミック203人びおもり2
01をネジ205で固定するための台座206を設ける
Next, the configuration of the acceleration sensor will be explained with reference to FIG. A plate-shaped pedestal 2 is placed near the center of the cylindrical case 204.
02 is provided, and piezoelectric ceramic 203 human weight 2 is provided.
A pedestal 206 for fixing 01 with screws 205 is provided.

電気信号は圧電セラミックの正極及びゃ極からのリード
線207.2079で耳ソリ出し、外部へはラグ端子2
08.2089によって接続し計測することが可訃であ
る。更に、リード線を取り出し易くするためのラグ端子
209、振動板210、絶縁のための絶縁板211、絶
縁チューブ212、加速度センサーを取付けるための固
定部21ろ、外部へ信号をルり出ずためのラグ端子20
8.208′を固定する蓋214によって構成される。
Electrical signals are output through lead wires 207 and 2079 from the positive and negative electrodes of the piezoelectric ceramic, and externally through lug terminals 2.
It is possible to connect and measure using 08.2089. Furthermore, there is a lug terminal 209 for making it easier to take out the lead wire, a diaphragm 210, an insulating plate 211 for insulation, an insulating tube 212, a fixing part 21 for attaching the acceleration sensor, and a fixing part 21 for preventing the signal from leaking out to the outside. lug terminal 20
8.208' is constituted by a lid 214 that fixes it.

本発明では、かかる加速度センサーの板状台〃202で
おもり201、圧電セラミック206を取付けるための
台座部の外側に孔215を1以上設けてなる構成の加速
度センサーを提供するものである。
The present invention provides an acceleration sensor configured such that the plate-shaped base 202 of the acceleration sensor has one or more holes 215 on the outside of the base portion for attaching the weight 201 and the piezoelectric ceramic 206.

以上水元切者らは、おもり、圧電、セラミックを載梯し
た板状台座はケースと全周に互って接続した構成の板状
台座にて実験したものであるが、前記板状合理はケース
と全周に互って接続しておく必要はなく、例えは第4図
のように構成された板状台座216でもよく、この場合
は、前記固1’&動数調整用の孔を板状台座の側面に切
欠217−1.21.7−2.217−3.217−4
としても同じように固有振動数は調整可能であることは
容易に推定できる。また、孔及び切欠の形状は円形又は
半円形に限定するものではなく、多角形でも有ダ1であ
る。
As mentioned above, Mizumoto Kirisha et al. conducted an experiment using a plate-shaped pedestal with weights, piezoelectrics, and ceramics mounted on it, which was connected to the case around the entire circumference. It is not necessary to connect the case to the entire circumference, for example, a plate-shaped pedestal 216 configured as shown in FIG. Notch 217-1.21.7-2.217-3.217-4 on the side of the plate-shaped pedestal
It can be easily inferred that the natural frequency can be adjusted in the same way. Further, the shapes of the holes and notches are not limited to circular or semicircular shapes, and polygonal shapes are also acceptable.

つぎに本発明の作用について説明する。本加速屋センサ
ーを固定部216のネジを介して被検出振動物体に取付
けることによって、被検出振動物を伝播して来る撮動は
加速度センサーの固定部216、ケース204、板状台
座202へと伝播する。板状台座202には圧電セラミ
ック206かおもり201とともにネジ205にて固定
されるために、圧電セラミック206に被検出振動物体
を伝播して来た振動が伝播し加振し、その結果該振動力
に応じた電気信号を生じる。この電気信号をリード線2
07.207゛等を介して外部に取り出し割注する。か
かる加速度計測システムにおいて、本発明の加速度セン
サーは、被検出振動物体を伝播して来る振動周波数とほ
ぼ同じ固有振動数となるよう構成し共振させ、共振する
ことによって電気信月を増大させて計測しようとするも
のである。しかるに前記固有振動数を被検出振動物体を
伝播して来る振動周波数、特に特定の振動周波数に例え
は±2%の精度内で合せるためには上記加速度センサー
は調整機能が必要である。本発明の加速用センサーは板
状台座で、おもり、圧電セラミックを取付けるための台
座部の外側に孔を1以上設け、該孔の数又は孔径を増大
させることによって前記固有振動数を所期の振動数組曲
内に調整して糾み上げたものである。
Next, the operation of the present invention will be explained. By attaching this accelerometer sensor to the vibrating object to be detected via the screw of the fixing part 216, the image propagating from the vibrating object to be detected is transmitted to the fixing part 216 of the acceleration sensor, the case 204, and the plate-shaped pedestal 202. propagate. Since the piezoelectric ceramic 206 and the weight 201 are fixed to the plate-shaped pedestal 202 with the screws 205, the vibrations propagated from the vibrating object to be detected propagate and excite the piezoelectric ceramic 206, and as a result, the vibration force is Generates an electrical signal according to the Lead wire 2
07. Take it out to the outside via 207゛ etc. and insert it. In such an acceleration measurement system, the acceleration sensor of the present invention is configured so that the vibration object to be detected has a natural frequency that is almost the same as the propagating vibration frequency, and is caused to resonate, thereby increasing the electrical signal and performing measurement. This is what I am trying to do. However, in order to match the natural frequency to the vibration frequency propagating through the vibrating object to be detected, particularly to a specific vibration frequency, within an accuracy of, for example, ±2%, the acceleration sensor requires an adjustment function. The acceleration sensor of the present invention is a plate-shaped pedestal, and one or more holes are provided on the outside of the pedestal portion for attaching a weight and a piezoelectric ceramic, and by increasing the number or diameter of the holes, the natural frequency can be adjusted to the desired value. It has been refined and adjusted within the frequency suite.

以上のごとく本発明の加速度センサーは、計測しようと
する振動周波数に合った固有振動数を持つか故に共振状
態で振動周波数か測定できるので高出力の電気信号を外
部に取り出し開側できる効果かある。更に、固有振動数
を高鞘度に調整できるので、信頼性の高い計測ができる
効果かある。
As described above, the acceleration sensor of the present invention has a natural frequency that matches the vibration frequency to be measured, so it can measure the vibration frequency in a resonant state, so it has the effect of being able to take out high-output electrical signals to the outside. . Furthermore, since the natural frequency can be adjusted to a high sheath degree, highly reliable measurements can be made.

かかる加速度センサーであるので、例えば自動車エンジ
ンのノッキング現象を検出するセンサーとしては非常に
肩効に利用できるのである。
Such an acceleration sensor can be used very effectively, for example, as a sensor for detecting the knocking phenomenon of an automobile engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本出願人による実願昭56−173495の
例で示す本発明の改良前の加速度センサーの断面図。第
2図は、本発明の加速度センサー 。 の断面図。第6図は、第2図に示す本発明の結果を示す
加速度センサーに設けた孔の孔径な変化させた場合の加
速度センサーの固有振動数の変化を示すグラフ。第4図
は、本発明の別の実施例を示す板状台座の底面図っ 102.202・・・・・・・・・板状台座103.2
113・・・・・・・・・圧電セラミック204・・・
・・・・・・ケース 206・・・・・・・・・台座 216・・・・・・・・・固定部 215.215・・・・・・・・・孔 216・・・・・・・・・板状台座 217−1.217−2・・・・・・・・・切欠217
−3.217−4・・・・・・・・・切欠特許出願人 株式会社富士セラミックス 第  1  図 第  2  図 第6図 孔     径 第4図 17−4
FIG. 1 is a cross-sectional view of an acceleration sensor before improvement of the present invention, as shown in Utility Model Application No. 173495/1985 filed by the present applicant. Figure 2 shows the acceleration sensor of the present invention. Cross-sectional view. FIG. 6 is a graph showing changes in the natural frequency of the acceleration sensor when the hole diameter of the hole provided in the acceleration sensor is changed, showing the results of the present invention shown in FIG. FIG. 4 is a bottom view of a plate-shaped pedestal showing another embodiment of the present invention.
113...Piezoelectric ceramic 204...
..... Case 206 ..... Pedestal 216 ..... Fixed part 215.215 ..... Hole 216 .... ...Plate pedestal 217-1.217-2...Notch 217
-3.217-4...Notch Patent Applicant Fuji Ceramics Co., Ltd. Figure 1 Figure 2 Figure 6 Hole Diameter Figure 4 17-4

Claims (2)

【特許請求の範囲】[Claims] (1)ケース内に圧電素子を装着する台座を設け、該台
座におもり及び圧電素子を載置し固定させて構成される
加速度センサーにおいて、前記台座は  。 薄肉状で板状台座としてなり、該板状台座に1以上の孔
を穿孔することによって所定の固有振動数を得ることを
特徴とする加速度センサー。
(1) In an acceleration sensor configured by providing a pedestal on which a piezoelectric element is mounted in a case, and placing and fixing a weight and a piezoelectric element on the pedestal, the pedestal has the following features. An acceleration sensor characterized in that it is a thin plate-shaped pedestal, and that a predetermined natural frequency is obtained by punching one or more holes in the plate-shaped pedestal.
(2)7孔部を板状台座の一部を切欠くことによって設
けた所定の固有振動数を得ることを特徴とする特許請求
の範囲第1項記載の加速度センサー。
(2) The acceleration sensor according to claim 1, wherein a predetermined natural frequency is obtained by cutting out a part of the plate-shaped pedestal to provide the seven holes.
JP9707482A 1982-06-07 1982-06-07 Acceleration sensor Pending JPS58213256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9707482A JPS58213256A (en) 1982-06-07 1982-06-07 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9707482A JPS58213256A (en) 1982-06-07 1982-06-07 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPS58213256A true JPS58213256A (en) 1983-12-12

Family

ID=14182487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9707482A Pending JPS58213256A (en) 1982-06-07 1982-06-07 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS58213256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246249U (en) * 1985-09-10 1987-03-20
JPH01142862U (en) * 1988-03-28 1989-09-29
JPH01292259A (en) * 1988-05-19 1989-11-24 Mitsubishi Electric Corp Vibration detector
JPH0283430U (en) * 1988-12-15 1990-06-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246249U (en) * 1985-09-10 1987-03-20
JPH01142862U (en) * 1988-03-28 1989-09-29
JPH01292259A (en) * 1988-05-19 1989-11-24 Mitsubishi Electric Corp Vibration detector
JPH0283430U (en) * 1988-12-15 1990-06-28

Similar Documents

Publication Publication Date Title
WO2018223852A1 (en) Charge output element and annular shear-type piezoelectric acceleration sensor
GB2125213A (en) Piezoelectric transducer notably for pressure measurement
US9226079B2 (en) Microelectromechanical sensing structure for a capacitive acoustic transducer including an element limiting the oscillations of a membrane, and manufacturing method thereof
WO2015178821A1 (en) Sensor and method for detecting acoustic emission from a bearing
JPS58213256A (en) Acceleration sensor
US11371904B2 (en) Sensor module and sensor system with improved abnormality detection and abnormality determination method for an inertial sensor
JP7061559B2 (en) Ultrasonic sensor
JPS58213255A (en) Acceleration sensor
JPS6117286B2 (en)
US3206626A (en) Accelerometer
RU2743633C1 (en) Piezoelectric pressure sensor
EP2639564A1 (en) Pressure sensor
JP2856748B2 (en) Method of measuring vibration propagating in a substance and vibration pickup
JPS59192937A (en) Measuring device for characteristics of fluid
JP2001108442A (en) Excitation method for vibration type angular velocity sensor, and vibration type angular velocity sensor
JP3624411B2 (en) Knock detection device
JPH02116299A (en) Ultrasonic sensor
JPS6298233A (en) Density measuring instrument
SU756239A1 (en) Device for determining inertia moments of components
RU2553422C1 (en) Adjustment method of conversion coefficient of piezoelectric accelerometer
SU1490616A1 (en) Piezoelectric element for ultrasonic measurements
JPH0629705Y2 (en) Compound tuning fork pressure sensor
JPS62112032A (en) Vibration type transducer
RU2020115228A (en) A method for assembling a sensitive element of a solid-state wave gyroscope and a multifunctional installation for assembling a sensitive element of a solid-state wave gyroscope, measuring and monitoring its acoustic and dynamic parameters
SU935728A1 (en) Pressure pickup