JPS58212094A - High frequency heater - Google Patents

High frequency heater

Info

Publication number
JPS58212094A
JPS58212094A JP9542382A JP9542382A JPS58212094A JP S58212094 A JPS58212094 A JP S58212094A JP 9542382 A JP9542382 A JP 9542382A JP 9542382 A JP9542382 A JP 9542382A JP S58212094 A JPS58212094 A JP S58212094A
Authority
JP
Japan
Prior art keywords
radio wave
leakage prevention
branch path
heating chamber
wave leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9542382A
Other languages
Japanese (ja)
Other versions
JPS6331916B2 (en
Inventor
等隆 信江
楠木 慈
隆 柏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9542382A priority Critical patent/JPS58212094A/en
Publication of JPS58212094A publication Critical patent/JPS58212094A/en
Publication of JPS6331916B2 publication Critical patent/JPS6331916B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、電波漏洩防止機構に改良を癩した高周波加熱
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency heating device with an improved radio wave leakage prevention mechanism.

従来の高周波加熱装置の代表例である電子レンジは、加
熱室と出入れ扉とがつくる間隙からの電波漏洩を防止す
る手段として、導電性がスケ、ノドを用いた接触方式、
電波吸収材を用いた方式、共振を利用したチョーク方式
などが提案され、実用化されている。
A microwave oven, which is a typical example of a conventional high-frequency heating device, uses a contact method using conductive grooves and grooves as a means to prevent radio wave leakage from the gap created between the heating chamber and the door.
Methods using radio wave absorbing materials, choke methods using resonance, etc. have been proposed and put into practical use.

この電波漏洩防止機構を′構成するトで難点の1つに高
調波に対する対策がある。
One of the difficulties in constructing this radio wave leakage prevention mechanism is countermeasures against harmonics.

l二+jL接触方式は、この高調波に対してもその性1
jヒv1原理上十分なものであるが、接触精度を保持さ
せる製造トの精度が必要である。また被加熱物q)(l
i片が付着するとこの接触方式は性能が著しく低下する
欠へがある。
The l2+jL contact method also has the property 1 for this harmonic.
Although this is sufficient in principle, manufacturing precision is required to maintain contact precision. Also, the object to be heated q) (l
This contact method has a drawback in that the performance deteriorates significantly when the i-piece adheres.

一すハ電波吸収材は、所定の帯域内でその性能が1−二
分に発揮されるものがほとんどであり、基本波及びその
高調波いずれにも十分な性能を発揮するものではない。
Most radio wave absorbing materials exhibit only one or two times their performance within a predetermined band, and do not exhibit sufficient performance for both the fundamental wave and its harmonics.

まだ共振を利用したチョーク方式は、共振を利Lllす
るがために、必然的に基本波の波長に関与した溝造・」
−法が必要である。従来のチョーク方式構成を以下に述
べる。第1図に従来の代表的なチョク方式の電波漏洩防
止機構を示す。aは構成図−Cbは槍価回路である。
However, in order to take advantage of the resonance, the choke system that uses resonance inevitably has an effect on the wavelength of the fundamental wave.
- Law is necessary. The conventional choke system configuration will be described below. Figure 1 shows a typical conventional choke-type radio wave leakage prevention mechanism. a is a block diagram, and Cb is a balance circuit.

71″L米のチョーク方式の電波漏洩防止機構は、加鴇
室開[]フランジ1と出入れ扉2とがつくる電波通路3
の入り1人から漏洩電波基本波長の%なZ)長さの所B
から始捷るチョーク空胴6を配し1′、こ[4成となっ
ておりZ方向の・」°法は少なくとも漏洩電波基本波長
の%は心安でありコンパクト化がφ1ト1いのが第1の
欠点。またチョーク空胴6の人IJ ’:::aBから
チョーク空胴6側を見たインピーダンスzBは、基本波
に対しては理想的には無限大になる様に構成されている
ため第一一高調波に対しては右となる。さらに、この電
波漏洩防止機構の終端C7う・ら空間を見たインピーダ
ンスをZL  とすると、この電波漏洩防止機構の等価
回路はb図のように人わされ端子A−A’から見た電波
漏洩防+l゛−n+8の一インビーターンスZA は ここでλgiは漏洩電波波長、eは電波通路長C5−え
17.4゜イ11.6イ:y J’−’Ip7.< u
 41(mイ、ア、1ている。
The choke-type radio wave leakage prevention mechanism of 71″L is based on the radio wave passage 3 created by the flange 1 and the access door 2.
% of the fundamental wavelength of radio waves leaked from one person Z) Length B
A choke cavity 6 is arranged starting from 1', and this is a 4-component structure, and the Z-direction . First drawback. In addition, the impedance zB when looking from the choke cavity 6 side IJ':::aB to the choke cavity 6 side is ideally configured to be infinite for the fundamental wave. It is to the right for harmonics. Furthermore, if the impedance of this radio wave leakage prevention mechanism when looking at the space behind and behind the termination terminal C7 is ZL, then the equivalent circuit of this radio wave leakage prevention mechanism is as shown in figure b. One interference turn ZA of defense+l゛-n+8 is here λgi is the leakage radio wave wavelength, and e is the radio wave path length C5-E17.4°I11.6I:y J'-'Ip7. <u
41 (m, a, 1.

高周波加熱装置の代表例であるマグネトロンQ1その発
振用波数が負荷に応じて2460150MH2を変動す
ることから、電波〕市路長では等制約に漏7匁される。
Since the oscillation wave number of the magnetron Q1, which is a typical example of a high-frequency heating device, fluctuates within 2460150 MH2 depending on the load, the radio wave length is limited to 7 monme due to the same restriction.

よ−・て基本波に対してはZB −== j =:>−
v 、鵬βe9keC’y:)よりZA  Oとなり第
二高調波に灯してはZBo。
Therefore, for the fundamental wave, ZB −== j =:>−
v, Peng βe9keC'y:), it becomes ZA O, and the second harmonic becomes ZBo.

1entβC夕OよりZA  ZLとなる。From 1entβC to O, ZA becomes ZL.

基本波においては、ZLの変化すなわち、加熱室797
2部1と出入れ扉2との組立により生ずるC端部の隙間
の変動を(−分吸収できるが、第二高調波に対しては、
その余裕度が少ないのが第2の欠−1−である。
In the fundamental wave, the change in ZL, that is, the heating chamber 797
Although the variation in the gap at the C end caused by the assembly of the second part 1 and the door 2 can be absorbed by (-), for the second harmonic,
The second lack -1- has less margin.

(・発明はこのような事情に鑑み、電波の伝送に用いら
tする平行伝送線路を電波漏洩防止機構に導入し、その
伝送線路の一部にT分岐線路を結合して新規7,7,9
4機構をよ、よ昌1、高調θkに対して基本波と比肩で
きる↑゛分全余裕ある性tl: S5−有する機構を付
加した電波漏洩防止機構を提供することを−)El−J
的とするものである。
(・In view of these circumstances, the invention introduces a parallel transmission line used for radio wave transmission into a radio wave leakage prevention mechanism, and connects a T-branch line to a part of the transmission line to create a new 7, 7, 9
To provide a radio wave leakage prevention mechanism with a mechanism that has ↑゛ which can be compared with the fundamental wave for harmonics θk of 4 mechanisms: S5-)El-J
The target is

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

第2図は、本発明の電波漏洩防止機構であり、aが購成
図、bがその等価回路である。
FIG. 2 shows the radio wave leakage prevention mechanism of the present invention, in which a is a purchase diagram and b is an equivalent circuit thereof.

図中第1図と照合するところは同−k >4で・)、−
4゛。
The parts in the figure that are compared with Figure 1 are -k > 4.), -
4゛.

加熱室開口フランジ1に対向して近接する伝M =i路
とSなるすきま間隔にて配列された幅Wなる11、送線
路6群が形成されている。この伝送線路6(,1電波通
路3の人7J端Aから佑なる長さのところBに分岐路7
を有し、その深さは漏洩電波波長への約%である。この
ような伝送線路の等画回路Q↓マイクロ波工学において
周知のようにb図のように衣わされる。
A group of 6 transmission lines 11 having a width W and arranged at a gap S with a transmission line M=i which are adjacent to and opposite to the heating chamber opening flange 1 are formed. This transmission line 6 (,1) A branch line 7 is placed at a certain length from end A of radio wave path 3.
, and its depth is approximately % of the leakage radio wave wavelength. The isometric circuit Q of such a transmission line is shown in figure b, as is well known in microwave engineering.

ここで第1図との大きな差違は、伝送線路・、9幅がW
と制約されているが故に分岐点に誘導t<L 、 ?=
1、′L性のバラ7 タが゛介在することである。この
II帯パラメータを考慮して分岐路7の深さをA波長と
じZAO値を計神すると、elが短いほとZA t、+
零に近つき本発明の小波漏洩βb止機構の1′1.能か
1f、4する結堅を得た1、こ)[を実証すべくelを
30問。
Here, the big difference from Figure 1 is that the width of the transmission line is W.
Because it is constrained by t<L, ? =
1. The presence of L-type rosettes. Considering this II band parameter and calculating the ZAO value by adjusting the depth of the branching path 7 to the A wavelength, the shorter el is, the ZA t, +
1'1 of the mechanism for preventing small wave leakage βb of the present invention as it approaches zero. Noh or 1f, I got the solidity to do 4, 1, 30 questions of EL to prove [this].

12緒として実測するとeに12朋の方かe+−30J
IIと比較してμ〜晃低い電波漏洩tit結果を得、七
光四の電波漏洩防止機構を理論的にかつ実験的に説明す
ることができた。この結禾従来周知の事J−として用い
られていたチョ フカ式における電波1由路入り目から
チョ り空111111に至る・J′法を’A波IKと
する事実が、本発明に示すようにすきまSを/1″して
なるT分岐からなる伝送線路を周期的に配91]した電
波漏洩防止機構を用いることによりその分岐点に至るま
での長さelを%波長よりも十分小さい1法にすること
ができるためZ方向の電波漏、1(1≦)J重機tf#
 ・j’法を従来のチョーク方式に比してもよりコンパ
クトに構成することができる特長が示−\#1だ。
When measured as 12 o'clock, e is 12 ho or e+-30J
We were able to obtain a radio wave leakage tit result that is μ~Akira lower than that of II, and were able to theoretically and experimentally explain the radio wave leakage prevention mechanism of Shikou 4. This conclusion is well-known in the past.The fact that the radio wave 1 route in the Chofuka method, which was used as J-, reaches Chori-ku 111111, and the fact that the J' method is 'A wave IK,' is as shown in the present invention. By using a radio wave leakage prevention mechanism in which a transmission line consisting of T branches with a gap S of /1" is periodically arranged, the length el up to the branch point can be made sufficiently smaller than the % wavelength. Radio wave leakage in the Z direction, 1 (1 ≦) J heavy equipment tf#
-\#1 shows the feature that the j' method can be configured more compactly than the conventional choke method.

そしてこの′「に波漏洩防+ト機溝は、分岐路の深さに
一11t:洩市波l皮長のほぼ%にとればよいことから
、この分岐路の深さ−J′法を高調波に対して実効的に
V4波長ならしめればよい。
Since the depth of this ``wave leakage prevention + machine groove can be set to approximately % of the depth of the branching path, the depth of this branching path - J'' method is It is only necessary to effectively set the V4 wavelength to harmonics.

第3図は本発明−実姉例を示す高周波加熱装置の市波漏
洩防11一手段構成図である。
FIG. 3 is a block diagram of a means for preventing leakage of city waves 11 of a high-frequency heating apparatus according to a practical example of the present invention.

分岐路8a 、8b 、Bo 、8d 、Beには、相
互に所定の誘電率を有する誘電体9を充てんし、この誘
電体を充てんした分岐路の深さを電波的に漏洩電波の基
本波に対して偽波長となる様に構IJkし、誘電体のな
い分岐路を高調波に対して一一、波長となる様に構成し
たものである。
The branch paths 8a, 8b, Bo, 8d, and Be are filled with a dielectric material 9 having a predetermined dielectric constant, and the depth of the branch path filled with this dielectric material is adjusted to the fundamental wave of the leakage radio wave. In contrast, a branch path without a dielectric is constructed so as to have a false wavelength with respect to harmonics, and a branch path without a dielectric is constructed so as to have a false wavelength with respect to harmonics.

第4図は本発明他の実施例を示す電波漏洩防11手段の
断面構成図である。
FIG. 4 is a sectional view of a radio wave leakage prevention means 11 showing another embodiment of the present invention.

これは同一の深さを有する分岐路10a、10b。These branch paths 10a and 10b have the same depth.

100.10d、10eに対し相互に分岐路内へ光て/
(する同一材料の誘電体の鷲を変え、等制約に基4、波
と高調波に対してそれぞれ偽波長なる分岐路の深さを形
成さぜたものである。なお第2〜4図において1.2は
分岐路の終端短絡面である。
100. Shine mutually into the branch path for 10d and 10e/
(The eagle of the dielectric material of the same material is changed, and the depth of the branch path which is a false wavelength is formed for each base wave and harmonic wave based on the same constraint. In Figs. 2 to 4, 1.2 is the terminal short-circuit surface of the branch path.

第3図に示す構成においては、誘電材の比誘電率に基つ
いてT分岐路長が決められるのに対し7、第4図の構成
は、適当な比誘電率を有する誘市伺を用いて、分岐路内
への誘電材の充てん率を適当に構成することにより、基
本波、高調波に対し−Cそれぞれ等制約に偽波長とした
ものであり、誘1に体拐料の選択が広範囲である利点を
有する。
In the configuration shown in Fig. 3, the T-branch path length is determined based on the dielectric constant of the dielectric material,7 while in the configuration shown in Fig. 4, the T-branch path length is determined based on the dielectric constant of the dielectric material. By configuring the filling rate of the dielectric material in the branch path appropriately, the fundamental wave and harmonics are made to have false wavelengths with equal constraints on -C, and the selection of the dielectric material is wide. It has the advantage of being

なお基本波に対する分岐路には誘電材を完全に光でんす
る必要はないが、′分岐路のコンパクト化に関しては、
完全光てんが最もコンパクトになることは明らかである
Note that it is not necessary to completely illuminate the dielectric material in the branch path for the fundamental wave, but in order to make the branch path more compact,
It is clear that the complete light beam will be the most compact.

また第4図においては誘電体を個別化した場合を小して
いるが厚みを周期的に変えた1体型の誘電体を分岐路に
挿入する構成でもよい。
Although FIG. 4 shows a case in which the dielectrics are individualized, a structure in which a one-piece dielectric whose thickness is periodically changed may be inserted into the branch path may be used.

またこの電波漏洩防止手段は出入れ扉に構成しても加熱
室側へ構成してもかまわない。
Further, this radio wave leakage prevention means may be arranged on the access door or on the heating chamber side.

以−L本発明は、終端が短絡された分岐路を有する断面
がT字状の伝送線路を周期的に配列した新規な電波漏洩
防止手段を有する高周波加熱装置に1、・いて、分岐路
内へ充てん干る誘′市体層の充てん率を相74.異なら
しめた電波漏洩防止手段を提供するものであり、 (1)高調波に対する対策が解析的に設計できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a high-frequency heating device having a novel radio wave leakage prevention means in which transmission lines having a T-shaped cross section and having a branch line whose terminal end is short-circuited are arranged periodically. The filling rate of the dry city layer is 74. (1) Countermeasures against harmonics can be analytically designed.

(2)誘電体層の充で1′ん率を変えるのみで基本波お
よび高調波対策が可能となり、設計が容易であるととも
に誘電体材料の選択が容易である。
(2) Measures against the fundamental wave and harmonics can be taken simply by changing the 1' ratio by filling the dielectric layer, making the design easy and the selection of the dielectric material easy.

(3)電波漏洩防止手段のコンパクト化がはかFする。(3) The radio wave leakage prevention means can be made more compact.

(4)分岐路の深さは一定でよく製造管理が容重である
(4) The depth of the branch path is constant and manufacturing control is easy.

等の効果を奏する。It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチョーク方式の電波漏洩μm月1°+寿
構であり、aが構成図、bが等価回路図、第2図は本発
明の電波漏洩防止機構であり、aが構成図。 bが等価回路図、第3図は本発明の一実施ψ11を71
<す高周波加熱装置の電波漏洩防止手段構成図、第4図
は本発明他の実施例を示す電波漏洩防止手段手段の断面
構成図である。 1・・・・・・加熱室フランジ、2・・・・・・出入れ
扉、3・・・・・・電波通路、6・・・・・・伝送線路
、7.8&、8b。 ac、sa 、86,101L、10b、IC1゜10
d、106・・・・・・分岐路、9,11・・・・・・
誘電体12・・・・・・短絡面。    − 代哩人の氏名 弁理士 中 尾 敏 男 ほか18第 
1 図 、9 第2図 第3図 OL 第4図
Fig. 1 shows the radio wave leakage μm month 1° + life structure of the conventional choke method, a is the configuration diagram, b is the equivalent circuit diagram, and Fig. 2 is the radio wave leakage prevention mechanism of the present invention, a is the configuration diagram. . b is an equivalent circuit diagram, and FIG. 3 shows one implementation of the present invention ψ11 at 71
Fig. 4 is a sectional view of a radio wave leakage prevention means showing another embodiment of the present invention. 1... Heating chamber flange, 2... Access door, 3... Radio wave passage, 6... Transmission line, 7.8 &, 8b. ac, sa, 86,101L, 10b, IC1゜10
d, 106... Branch road, 9, 11...
Dielectric 12... Short circuit surface. − Name of representative Patent attorney Toshio Nakao et al. 18th
1 Figure, 9 Figure 2 Figure 3 OL Figure 4

Claims (1)

【特許請求の範囲】[Claims] 被加熱物を収容する加熱室と、前記加熱室に前記被加熱
物を出入れする出入れ扉と、前記加熱室と前記出入れ扉
とが作る電波通路に設けられた電波漏洩防止手段とを具
備し、前記電波漏洩防止手゛  段は、終端が短絡され
た分岐路を有する断面がT字状の伝送線路の周期配列構
成とし、前記分岐路は相斤に充てん率の異なる誘電体層
を有する高周波加熱装置。
A heating chamber for accommodating an object to be heated, an access door for taking the object into and out of the heating chamber, and a radio wave leak prevention means provided in a radio wave passage formed by the heating chamber and the access door. The radio wave leakage prevention means has a periodic arrangement of transmission lines each having a T-shaped cross section and having a branch path whose terminal end is short-circuited, and the branch path includes dielectric layers having different filling factors. High frequency heating device.
JP9542382A 1982-06-03 1982-06-03 High frequency heater Granted JPS58212094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9542382A JPS58212094A (en) 1982-06-03 1982-06-03 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9542382A JPS58212094A (en) 1982-06-03 1982-06-03 High frequency heater

Publications (2)

Publication Number Publication Date
JPS58212094A true JPS58212094A (en) 1983-12-09
JPS6331916B2 JPS6331916B2 (en) 1988-06-27

Family

ID=14137281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9542382A Granted JPS58212094A (en) 1982-06-03 1982-06-03 High frequency heater

Country Status (1)

Country Link
JP (1) JPS58212094A (en)

Also Published As

Publication number Publication date
JPS6331916B2 (en) 1988-06-27

Similar Documents

Publication Publication Date Title
US3714608A (en) Broadband circulator having multiple resonance modes
US2984802A (en) Microwave circuits
Ishak et al. Tunable microwave resonators using magnetostatic wave in YIG films
US3681716A (en) Tunable microminiaturized microwave filters
US4254318A (en) Door seal arrangement for high-frequency heating apparatus
US2890422A (en) Electrically resonant dielectric body
Helszajn et al. Design data for radial-waveguide circulators using partial-height ferrite resonators
KR890004507B1 (en) Device for preventing electromagnetic wave in microwaves range
Abdalla et al. Compact metamaterial coplanar waveguide ferrite tunable resonator
El-Sharawy et al. Coplanar waveguide and slot line on magnetic substrates: Analysis and experiment
Zhang et al. A novel self‐packaged DBBPF with multiple TZs for 5G sub‐6 GHz applications
US2476034A (en) Conformal grating resonant cavity
JPS58212094A (en) High frequency heater
Ayres Broad-band quarter-wave plates
Zhang et al. A compact substrate integrated coaxial line bandpass filter with extended rejection bandwidth
Pregla General formulas for the method of lines in cylindrical coordinates
Li et al. A narrow‐band overmoded rectangular waveguide filter for high‐power microwaves (HPMs)
Mehrshahi et al. Waveguide filter with improved stopband response using transversal slots
Shen et al. Tunable dielectric resonators with dielectric tuning disks in cylindrical enclosures
Zeisberg et al. Experimental investigation of a quasi-optical slab resonator
JPS58212095A (en) High frequency heater
JPS58221501A (en) Dielectric transmission line of low loss
JPS63964B2 (en)
Deleniv et al. Modeling gap discontinuity in coplanar waveguide using quasistatic spectral domain method
Griemsmann et al. Miniature strip transmission line for microwave applications