JPS58221501A - Dielectric transmission line of low loss - Google Patents

Dielectric transmission line of low loss

Info

Publication number
JPS58221501A
JPS58221501A JP57104535A JP10453582A JPS58221501A JP S58221501 A JPS58221501 A JP S58221501A JP 57104535 A JP57104535 A JP 57104535A JP 10453582 A JP10453582 A JP 10453582A JP S58221501 A JPS58221501 A JP S58221501A
Authority
JP
Japan
Prior art keywords
dielectric
space
outer cylindrical
transmission line
cylindrical dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57104535A
Other languages
Japanese (ja)
Inventor
Hisanori Nakai
中居 久典
Toshihide Tokunaga
徳永 利秀
Koichi Mikoshiba
御子柴 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57104535A priority Critical patent/JPS58221501A/en
Publication of JPS58221501A publication Critical patent/JPS58221501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Abstract

PURPOSE:To realize the transmission of a low loss over a frequency range from a microwave through a light region, by providing concentrically inner and outer cylindrical dielectric matters via a space part and then specify the thickness of the inner and outer cylindrical dielectric matters and the width of the space part. CONSTITUTION:The inner and outer dielectric matters 1 and 3 are made of glass, etc., and air or other gas is filled into space parts 2 and 4. The thickness of dielectric matters 1 and 3 are set at t1 and t3 rspectively, and the width of the part 2 is set at t2. At the same time, transmission constants of radius directions of parts 1, 2 and 3 are set at K1, K2 and K3 respectively along with m1, m2 and m3 set as odd numbers respectively. Under such conditions, t1, t2 and t3 are set so as to satisfy K1t1=pim1/2, K2t2=pim2/2 and K3t3=pim3/2.

Description

【発明の詳細な説明】 本発明は、マイクロ波から光に至る周波数領域での低損
失伝送を実現できる誘電体伝送線路に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dielectric transmission line that can realize low-loss transmission in a frequency range from microwaves to light.

上記周波数領域で使用される誘電体伝送線路の代表的な
ものとしてはOガイドが知られている。、0ガイドは筒
状の屈折率分布の大なる部分に伝送パワーを集中するも
のであり、筒状誘電体の材料の損失が伝送損失を決定し
、本質的に低損失伝送の実現は不可能といえる。
An O guide is known as a typical dielectric transmission line used in the above frequency range. , 0 guide concentrates the transmission power in a large part of the cylindrical refractive index distribution, and the loss of the material of the cylindrical dielectric determines the transmission loss, so it is essentially impossible to achieve low-loss transmission. It can be said.

本発明は」二記に基いてなされたものであって、マイク
ロ波から光領域に至る周波数範囲での低損失伝送を実現
できる誘電体伝送線路の提供を目的とするものである。
The present invention has been made based on the above two points, and an object of the present invention is to provide a dielectric transmission line that can realize low-loss transmission in a frequency range from microwave to optical.

すなわち、本発明の誘電体伝送線路は、内外筒状誘電体
を空間部を介して同心状に配置し、内外筒状誘電体の肉
厚および空間部の幅を特定したものである。
That is, in the dielectric transmission line of the present invention, inner and outer cylindrical dielectrics are arranged concentrically with a space between them, and the thicknesses of the inner and outer cylindrical dielectrics and the width of the space are specified.

第1図は本発明の誘電体伝送線路の一例を示したもので
あり、1は内側筒状誘電体、2は空間部、6は外側筒状
誘電体、4は内側筒状誘電体1によって形成される内部
空間部である。
FIG. 1 shows an example of a dielectric transmission line of the present invention, in which 1 is an inner cylindrical dielectric, 2 is a space, 6 is an outer cylindrical dielectric, and 4 is an inner cylindrical dielectric 1. This is the internal space that is formed.

内外筒状誘電体1,6はガラス等の材料により形成され
、空間部2.4には空気あるいはその他の気体といった
ものが充填されている。
The inner and outer cylindrical dielectric bodies 1 and 6 are made of a material such as glass, and the space 2.4 is filled with air or other gas.

ここで、内側、筒状誘電体1の肉厚′f:t1、空間部
2の幅をt2、外側筒状誘電体2の肉厚をt8とし、各
部1,2.3での半径方向伝搬定数をそれぞれに1.に
2.に8とし、またml + m!l + m sをそ
れぞれ奇数とすると、 K 1 t 1 = 十m l K 12t 11  2 m 2 に、t 8°!” 8 を満足するとき低損失伝送が可能となる。
Here, the thickness 'f of the inner cylindrical dielectric 1 is t1, the width of the space 2 is t2, the thickness of the outer cylindrical dielectric 2 is t8, and the radial propagation in each part 1, 2.3 is 1 for each constant. 2. to 8, and ml + m! If l + m s are each an odd number, then K 1 t 1 = 10 m l K 12t 11 2 m 2 and t 8°! ” 8, low-loss transmission is possible.

この理由について、第2図を参照して説明する。The reason for this will be explained with reference to FIG.

第2図は空気中に多層誘電体板を置いた場合を示したも
のである。
FIG. 2 shows a multilayer dielectric plate placed in air.

ここで、空気5および誘電体6,7.8の誘電率△  
△  △  △ X をそれぞれε 0.ε 1+ ! 9+ ε 8方向伝
搬定数△ 定数をそれぞれk。I kll k’l+ kllとし
、また各部の寸法をt。+ tin t2+ tBとす
る。
Here, the dielectric constants △ of air 5 and dielectrics 6, 7.8
△ △ △ X respectively with ε 0. ε 1+! 9+ ε 8 direction propagation constant △ constant k respectively. I kll k'l+ kll, and the dimensions of each part are t. + tin t2+ tB.

X方向伝搬定数K。、に1.に2.に8は全て、その虚
部が小さいのでこれを無視し、実数にて近似すると、次
式が成立する。
X direction propagation constant K. , to 1. 2. The imaginary parts of all 8 are small, so if we ignore this and approximate it using real numbers, the following equation holds true.

kO’−に♂=kI−KIL=に、しに晶−kj−に♂
=β2=にδ(1−t’)          (1)
ml なお、t=T−である(m:奇数、λ:空気5中での波
長)。
kO'-ni♂=kI-KIL=ni, Shini Akira-kj-ni♂
=β2=toδ(1-t') (1)
ml Note that t=T- (m: odd number, λ: wavelength in air 5).

(1)式より K O=k ot この時、K1 t1==T1711+ K2 t2 7
m2+に3t3”” 2  ” 8(m1+ ” ’J
+ m8は奇数)となるように” l+  t2e・i
′t3を設定すると、基本波の減衰定数αは次式で与え
られる。
From equation (1), KO=kot At this time, K1 t1==T1711+ K2 t2 7
3t3”” 2 ” 8 (m1+ ” 'J
+ m8 is an odd number)" l + t2e・i
When 't3 is set, the attenuation constant α of the fundamental wave is given by the following equation.

tは非常に小さいので、(4式は一般に次式で近似でき
る。
Since t is very small, (Equation 4 can generally be approximated by the following equation.

ここで、誘電体7を空気でおきかえると、ε、=1とな
ることから(4)式は次式で表わされる。
Here, if the dielectric material 7 is replaced with air, ε=1, so the equation (4) can be expressed as the following equation.

すなわち、誘電体7を空気あるいはそれに近似した誘電
率の物質でおきかえることにより、低損失化が実現され
る。
That is, by replacing the dielectric 7 with air or a substance with a dielectric constant similar to air, loss can be reduced.

(5)式よりλ=1o、6μmでの伝送損失を求めると
次の通りとなる。
The transmission loss at λ=1o and 6 μm is calculated from equation (5) as follows.

t 、=0.4mのとき a = 1.14 x 10
−”dB/n1t 、:0,2m+111のときα==
1.78x10−’aB/mt 、=0.3cmのとき
a=1.55x10″d B/mt 、=0.4mのと
きa=2.22x 10−sa B/m以上のように、
本発明によって低損失伝送が可能となるのであるが、筒
状誘電体1での損失があり、これによって発熱する。従
って第6図に示すように筒状誘電体1の内外空間部4,
2に冷却空気を循環させ、発熱をおさえることが好まし
い。
When t = 0.4m, a = 1.14 x 10
−”dB/n1t, :0.2m+111 when α==
1.78x10-'aB/mt, when = 0.3cm, a = 1.55x10''d B/mt, when = 0.4m, a = 2.22x 10-sa B/m or more,
Although the present invention enables low-loss transmission, there is loss in the cylindrical dielectric 1, which generates heat. Therefore, as shown in FIG. 6, the inner and outer spaces 4,
2. It is preferable to circulate cooling air to suppress heat generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の誘電体伝送線路の一例の説明図、第2
図は本発明の詳細な説明するだめの多層誘電体板のスラ
ブガイド、第6図は本発明の他の例の説萌図である。 1:内側筒状誘電体、2:空間部、 6:外側筒状誘電体。
FIG. 1 is an explanatory diagram of an example of the dielectric transmission line of the present invention, and FIG.
The figure is a slab guide of a multilayer dielectric plate for detailed explanation of the present invention, and FIG. 6 is an explanatory drawing of another example of the present invention. 1: Inner cylindrical dielectric, 2: Space, 6: Outer cylindrical dielectric.

Claims (1)

【特許請求の範囲】 1、 内側筒状誘電体の外周に空間部を介して外側筒状
誘電体を同心状に配置してなり、内外筒状誘電体の肉厚
をt □+ tBとし、また空間部の幅をt2とすると
き、 K 1t 1= +m□ 2 9  2  m2 KRtB”” 8 m B を満足するようにt 1.  t Q+ taを設定し
て構成したことを特徴とする低損失誘電体伝送線′路。 ここで、k1+ K2+ KRはそれぞれ内側筒状誘電
体、空間部、外側筒状誘電体での半径方向伝搬定数、m
1+ ” 2+ ” 8はそれぞれ奇数である。 2、内側筒状誘電体の内部空間部および内外筒状誘電体
間の空間部には冷却媒体が循環されるよう構成したこと
を特徴とする特許請求の範囲第1項記載の低損失誘電体
線路。
[Claims] 1. An outer cylindrical dielectric is arranged concentrically around the outer periphery of the inner cylindrical dielectric with a space therebetween, and the thickness of the inner and outer cylindrical dielectrics is t □ + tB; Further, when the width of the space is t2, t1. A low-loss dielectric transmission line characterized in that it is configured by setting tQ+ta. Here, k1+ K2+ KR are the radial propagation constants in the inner cylindrical dielectric, the space, and the outer cylindrical dielectric, and m
1+"2+"8 are odd numbers. 2. The low-loss dielectric according to claim 1, characterized in that a cooling medium is circulated in the internal space of the inner cylindrical dielectric and the space between the inner and outer cylindrical dielectrics. line.
JP57104535A 1982-06-17 1982-06-17 Dielectric transmission line of low loss Pending JPS58221501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104535A JPS58221501A (en) 1982-06-17 1982-06-17 Dielectric transmission line of low loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104535A JPS58221501A (en) 1982-06-17 1982-06-17 Dielectric transmission line of low loss

Publications (1)

Publication Number Publication Date
JPS58221501A true JPS58221501A (en) 1983-12-23

Family

ID=14383183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104535A Pending JPS58221501A (en) 1982-06-17 1982-06-17 Dielectric transmission line of low loss

Country Status (1)

Country Link
JP (1) JPS58221501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067939A1 (en) * 2002-02-06 2003-08-14 Tokyo Electron Limited Plasma processing equipment
JP2010080902A (en) * 2008-08-29 2010-04-08 Nippon Germanium Kenkyusho:Kk Fiber type light emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067939A1 (en) * 2002-02-06 2003-08-14 Tokyo Electron Limited Plasma processing equipment
CN1309280C (en) * 2002-02-06 2007-04-04 东京毅力科创株式会社 Plasma processing equipment
US7430985B2 (en) 2002-02-06 2008-10-07 Tokyo Electron Limited Plasma processing equipment
JP2010080902A (en) * 2008-08-29 2010-04-08 Nippon Germanium Kenkyusho:Kk Fiber type light emitting element

Similar Documents

Publication Publication Date Title
Miller Integrated optics: An introduction
US3386787A (en) Macroscopic optical waveguides
Shubert et al. Optical guided-wave focusing and diffraction
US3583786A (en) Optical waveguide formed of cylinders with optically smooth interfaces therebetween
Ignat Toroidal effects on propagation, damping, and linear mode conversion of lower hybrid waves
GB1409796A (en) Multilayer integrated waveguide structue with directional coupling and a method of manufacturing such structures
Ivanov et al. Approximate approach to the design of shielded dielectric disk resonators with whispering-gallery modes
US3831038A (en) Periodic dielectric waveguide for backward parametric interactions
JPS58221501A (en) Dielectric transmission line of low loss
Mullett et al. A theoretical and experimental investigation of anisotropic-dielectric-loaded linear electron accelerators
US3787787A (en) Circular waveguide mode filter
Yajima Theory and applications of dielectric branching waveguides
Rimmer et al. An RF Cavity for the B-factory
Chou Comment on ‘‘Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN (100) films’’[J. Appl. Phys. 6 6, 536 (1989)]
Parriaux et al. Propagation in Circular Waveguide Loaded with an Azimuthally Magnetized Ferrite Tube (Short Papers)
Zaki et al. Complex modes in dielectric loaded waveguides
Kagawa et al. Regular boundary integral formulation for the analysis of open dielectric/optical waveguides
Song et al. Design of transmittarray feed by filtering dielectric antenna for 5G
Vorst et al. On the accuracy obtained when using variational techniques for asymmetrically loaded waveguides
Marcuse et al. Tube waveguide for optical transmission
GB891219A (en) Improvements in or relating to electromagnetic wave transmission paths
Love et al. Generalized Fresnel power transmission coefficients for curved graded-index media
Decréton et al. Computer optimization of E-plane resonance isolators
Zeisberg et al. Experimental investigation of a quasi-optical slab resonator
Wang et al. Eigenmode analysis of wave propagation in optical waveguides deposited on gyrotropic and anisotropic substrates