JPS5821188Y2 - atomic oscillator - Google Patents

atomic oscillator

Info

Publication number
JPS5821188Y2
JPS5821188Y2 JP1978128596U JP12859678U JPS5821188Y2 JP S5821188 Y2 JPS5821188 Y2 JP S5821188Y2 JP 1978128596 U JP1978128596 U JP 1978128596U JP 12859678 U JP12859678 U JP 12859678U JP S5821188 Y2 JPS5821188 Y2 JP S5821188Y2
Authority
JP
Japan
Prior art keywords
magnetic field
atomic oscillator
gas cell
optical
resonance section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978128596U
Other languages
Japanese (ja)
Other versions
JPS5545272U (en
Inventor
利雄 橋
一治 千葉
睦夫 竹内
義文 中島
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP1978128596U priority Critical patent/JPS5821188Y2/en
Publication of JPS5545272U publication Critical patent/JPS5545272U/ja
Application granted granted Critical
Publication of JPS5821188Y2 publication Critical patent/JPS5821188Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Particle Accelerators (AREA)

Description

【考案の詳細な説明】 本考案は光ポンピング法を用いたガスセル型原子発振器
に関する。
[Detailed Description of the Invention] The present invention relates to a gas cell type atomic oscillator using an optical pumping method.

ガスセル型原子発振器は、ガスセル内に封入されたアル
カリ金属蒸気の超微細構造準位間における特定の遷移周
波数の不変性を利用して、水晶発振器を安定化制御する
形成の高安定発振器である。
A gas cell type atomic oscillator is a highly stable oscillator that stabilizes and controls a crystal oscillator by utilizing the constancy of a specific transition frequency between the hyperfine structure levels of an alkali metal vapor sealed in a gas cell.

しかしこの極めて安定な遷移周波数も磁場の影響を受け
て、わずかながら変動する。
However, this extremely stable transition frequency also fluctuates slightly due to the influence of the magnetic field.

通常この性質は、原子発振器の周波数微細調整に利用さ
れるが、他方、地磁気など原子発振器の使用される環境
における磁場の影響を避けるため、光・マイクロ波共鳴
部に厳重な磁気シールドが必要となる。
This property is normally used for fine tuning the frequency of atomic oscillators, but on the other hand, strict magnetic shielding is required in the optical/microwave resonant part to avoid the influence of magnetic fields in the environment where atomic oscillators are used, such as geomagnetism. Become.

地磁気はだいたい0.5ガラスの大きさがあるので、可
搬型原子発振器では最悪の場合1ガラス程度の周囲磁場
変動を予想しなければならない。
Since the earth's magnetic field has a magnitude of approximately 0.5 glass, in the worst case, a portable atomic oscillator must expect a fluctuation in the surrounding magnetic field of about 1 glass.

このためI X 10−”程度の周波数安定度を得たい
ときは、透磁率の極めて高い磁性材料で普通3重の磁気
シールドを施し、周囲磁場の影響を数十分の1程度に軽
減する必要がある。
For this reason, if you want to obtain frequency stability on the order of I x 10-'', it is necessary to apply three layers of magnetic shielding using a magnetic material with extremely high magnetic permeability to reduce the influence of the surrounding magnetic field to about one tenth. There is.

しかしこのように厳重な磁気シールドを設けることは、
重量。
However, providing such a strict magnetic shield
weight.

容積の増加を伴うから可搬型装置には好ましくない。This is not preferable for portable devices because it involves an increase in volume.

本考案はこのような問題を解決し、軽量、小型、低価格
の原子発振器の実現を可能とする。
The present invention solves these problems and makes it possible to realize a lightweight, compact, and low-cost atomic oscillator.

以下、ガスセル型原子発振器のうち最も広く利用されて
いるガスセル型ルビジウム原子発振器を例に挙げ、説明
する。
Hereinafter, a gas cell type rubidium atomic oscillator, which is the most widely used gas cell type atomic oscillator, will be taken as an example and explained.

第1図はガスセル型ルビジウム原子発振器の中心部であ
る光・マイクロ波共鳴部の最も一般的な構成を示したも
のである。
FIG. 1 shows the most common configuration of the optical/microwave resonance section, which is the central part of a gas cell type rubidium atomic oscillator.

本図において1は磁気シールド、2はC−磁場発生用ソ
レノイド、3はヒータ、4は空胴共振器、5はC−磁場
、6はフィルタセル、7は反射鏡、8はランプセル、9
はランプ励振器、10はガスセル、11は光検出器、1
2は増幅器、Heは地磁気の水平分力である。
In this figure, 1 is a magnetic shield, 2 is a C-magnetic field generation solenoid, 3 is a heater, 4 is a cavity resonator, 5 is a C-magnetic field, 6 is a filter cell, 7 is a reflector, 8 is a lamp cell, 9
is a lamp exciter, 10 is a gas cell, 11 is a photodetector, 1
2 is an amplifier, and He is a horizontal component of the earth's magnetism.

周波数の基準として利用するのは、空胴共振器4に収容
されたガスセル10の中のルビジウムRb87原子の遷
移周波数であり、ランプセル8、フィルタセル6はその
遷移を効率よく検出するための部品である。
The transition frequency of rubidium Rb87 atoms in the gas cell 10 housed in the cavity resonator 4 is used as a frequency reference, and the lamp cell 8 and filter cell 6 are components for efficiently detecting the transition. be.

ガスセル部10には特定の遷移を選択し、かつ遷移周波
数の微調整を行うため、0.1〜0.2ガウス程度の一
様な静磁場(通常C−磁場と呼ばれる)が円筒形空胴共
振器の軸方向に形成されている。
In order to select a specific transition and fine-tune the transition frequency, a uniform static magnetic field (usually called a C-magnetic field) of about 0.1 to 0.2 Gauss is applied to the gas cell section 10 in a cylindrical cavity. It is formed in the axial direction of the resonator.

このC−磁場は、0.1ミリガウス程度の変動に押えな
ければならない 光・マイクロ波共鳴部は通常円柱形又は角柱形の形状を
もち、C−磁場はその軸方向にかける。
This C-magnetic field must be suppressed to fluctuations of about 0.1 milligauss. The optical/microwave resonant section usually has a cylindrical or prismatic shape, and the C-magnetic field is applied in the axial direction.

従来の光・マイクロ波共鳴部はC−磁場方向に長い構造
にならざるを得ないため、これを周波数制御用電子回路
部と組み合せて原子発振器を構成する場合、C−磁場が
水平になるように設置されていた。
Conventional optical/microwave resonators have to have a long structure in the C-magnetic field direction, so when combining this with a frequency control electronic circuit to configure an atomic oscillator, the C-magnetic field must be horizontal. It was installed in

この様な原子発振器では、C−磁場変動の最大要因は地
磁気の水平分力であり、これをHeと書けば、水平面上
で゛原子発振器の向きを変えた場合、最大2Heの磁場
変動を蒙ることになる。
In such an atomic oscillator, the largest factor in C-magnetic field variation is the horizontal component of the earth's magnetism, and if we write this as He, then if we change the direction of the atomic oscillator on the horizontal plane, we will experience a maximum of 2He magnetic field variation. It turns out.

従って0.1ミリガウス/2Heという高いシールド率
を持つ多重磁気シールドケースが必要となり、そのため
に、重量、容積とも著しく増大する。
Therefore, a multiple magnetic shielding case with a high shielding rate of 0.1 milligauss/2He is required, which significantly increases both the weight and volume.

本考案は上記欠点を除去するためにガスセルと空胴共振
器を有する光マイクロ波共鳴部と該共鳴部における原子
の遷移モード選択用のC磁場発生手段を有し、上記C磁
場が該空胴共振器の軸方向に形成されて成る装置におい
て、上記C磁場の方向が地磁気の水平分力に対して略鉛
直になるように上記光マイクロ波共鳴部を設置したもの
である。
In order to eliminate the above-mentioned drawbacks, the present invention includes an optical microwave resonance section having a gas cell and a cavity resonator, and a C magnetic field generating means for selecting a transition mode of atoms in the resonance section, and the C magnetic field is generated in the cavity. In a device formed in the axial direction of a resonator, the optical microwave resonance section is installed so that the direction of the C magnetic field is approximately perpendicular to the horizontal component of earth's magnetism.

本考案によれば、地磁気の水平分力はC−磁場に寄与し
ないので、原子発振器の向きを水平面上で変えた場合の
地磁気の影響は従来の約りに軽減され、簡単な1重磁気
シールドによってI X 10−11程度の周波数安定
度が得られる。
According to the present invention, since the horizontal component of the earth's magnetic field does not contribute to the C-magnetic field, the influence of the earth's magnetic field when the direction of the atomic oscillator is changed on the horizontal plane is reduced to the same level as before, and a simple single magnetic shield is used. Accordingly, a frequency stability of about I x 10-11 can be obtained.

また同時に可搬型原子発振器に重要な小形化、軽量化を
図る上で、極めて有利となる。
At the same time, it is extremely advantageous in reducing the size and weight of a portable atomic oscillator.

本考案の実施例を第2図に示す。An embodiment of the present invention is shown in FIG.

本図において番号は第1図に付したものと同一である。In this figure, the numbers are the same as those given in FIG. 1.

本考案はフィルタセルを使わない光・マイクロ波共鳴部
を用いたものを示した。
The present invention uses an optical/microwave resonator without using a filter cell.

また、ただ1個のセルでランプセル、フィルタセル、ガ
スセルの働きをする集積セルで構成された光・マイクロ
波共鳴部に対して特に有効である。
Moreover, it is particularly effective for optical/microwave resonant sections constructed of integrated cells in which only one cell functions as a lamp cell, a filter cell, and a gas cell.

また地磁気には伏角による鉛直成分があるが、水平面上
の回転に関する限り、これは周波数変動の原因にはなら
ない。
Earth's magnetism also has a vertical component due to the angle of inclination, but as far as rotation on the horizontal plane is concerned, this does not cause frequency fluctuations.

なお、ルビジウム原子発振器を例に挙げたが、本発明は
これに限定されるものではない。
Note that although a rubidium atomic oscillator is taken as an example, the present invention is not limited thereto.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子発振器の光・マイクロ波共鳴部の構
成を、また第2図は本考案の実施例を示す。 図において、1は磁気シールド、2はC−磁場発生用ソ
レノイド、3はヒータ、4は空胴共振器、5はC−磁場
、7は反射鏡、8はランプセル、9はランフ励振器、1
0はガスセル、11は光検出器、12は増幅器、Heは
地磁気の水平分力である。
FIG. 1 shows the configuration of an optical/microwave resonance section of a conventional atomic oscillator, and FIG. 2 shows an embodiment of the present invention. In the figure, 1 is a magnetic shield, 2 is a C-magnetic field generation solenoid, 3 is a heater, 4 is a cavity resonator, 5 is a C-magnetic field, 7 is a reflector, 8 is a lamp cell, 9 is a lamp exciter, 1
0 is a gas cell, 11 is a photodetector, 12 is an amplifier, and He is a horizontal component of earth's magnetism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガスセルと空胴共振器を有する光マイクロ波共鳴部と該
共鳴部における原子の遷移モード選択用のC磁場発生手
段を有し、上記C磁場が該空胴共振器の軸方向に形成さ
れて戊る装置において、上記C磁場の方向が地磁気の水
平分力に対して略鉛直になるように上記光マイクロ波共
鳴部を設置したことを特徴とする原子発振器。
It has an optical microwave resonance section having a gas cell and a cavity resonator, and a C magnetic field generating means for selecting a transition mode of atoms in the resonance section, and the C magnetic field is formed in the axial direction of the cavity resonator. An atomic oscillator, characterized in that the optical microwave resonance section is installed so that the direction of the C magnetic field is substantially perpendicular to the horizontal component of earth's magnetism.
JP1978128596U 1978-09-19 1978-09-19 atomic oscillator Expired JPS5821188Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978128596U JPS5821188Y2 (en) 1978-09-19 1978-09-19 atomic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978128596U JPS5821188Y2 (en) 1978-09-19 1978-09-19 atomic oscillator

Publications (2)

Publication Number Publication Date
JPS5545272U JPS5545272U (en) 1980-03-25
JPS5821188Y2 true JPS5821188Y2 (en) 1983-05-04

Family

ID=29092442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978128596U Expired JPS5821188Y2 (en) 1978-09-19 1978-09-19 atomic oscillator

Country Status (1)

Country Link
JP (1) JPS5821188Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692865B2 (en) * 1986-09-12 1994-11-16 三洋電機株式会社 Doors such as refrigerators
JPH0765842B2 (en) * 1993-03-25 1995-07-19 三洋電機株式会社 Doors such as refrigerators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4426443Y1 (en) * 1966-02-28 1969-11-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4426443Y1 (en) * 1966-02-28 1969-11-06

Also Published As

Publication number Publication date
JPS5545272U (en) 1980-03-25

Similar Documents

Publication Publication Date Title
US7239135B2 (en) NMR gyroscope
US7852163B2 (en) Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock
US5387881A (en) Atomic frequency standard
US4661782A (en) Integrated microwave cavity resonator and magnetic shield for an atomic frequency standard
US20100259334A1 (en) Atomic clock
US5371591A (en) Triaxial split-gain ring laser gyroscope
Cutler Fifty years of commercial caesium clocks
CN103856215A (en) Low-power-consumption chip level atomic clock physical packaging device
Riley The physics of the environmental sensitivity of rubidium gas cell atomic frequency standards
JPS5821188Y2 (en) atomic oscillator
JP2008522411A (en) Method and system for operating a self-modulated laser with hyperfine vibrations of alkali metal atoms
US3714552A (en) Method of reducing errors arising from the radio frequency oscillator system of optically pumped magnetometers
US3727151A (en) Integrated circuit for electronic timepieces
JPH01223787A (en) Ring laser gyro
Riley The physics of the environmental sensitivity of rubidium gas cell atomic frequency standards
US3310757A (en) Decoupling mounting plates for tuning fork oscillators
Cantor et al. Clock technology
JPH0964735A (en) Rubidium atom oscillator
JP2587620B2 (en) Hydrogen maser device
RU2099854C1 (en) Gyromagnetic shf crossmultiplier
Cash et al. Ultrastable oscillators for space applications
WO1981000455A1 (en) Nuclear magnetic resonance gyro
US3221487A (en) Electric pocket or wrist-watch
JPS6041275A (en) Atomic oscillator
JP2000193457A (en) Vibration gyro