JPS58211654A - Ultrasonic flaw detection - Google Patents

Ultrasonic flaw detection

Info

Publication number
JPS58211654A
JPS58211654A JP57094798A JP9479882A JPS58211654A JP S58211654 A JPS58211654 A JP S58211654A JP 57094798 A JP57094798 A JP 57094798A JP 9479882 A JP9479882 A JP 9479882A JP S58211654 A JPS58211654 A JP S58211654A
Authority
JP
Japan
Prior art keywords
flaw detection
metal strip
rail
pressure water
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57094798A
Other languages
Japanese (ja)
Inventor
Minoru Yamada
実 山田
Shigeo Hosoi
細井 茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KURAUTO KUREEMAA KK
KJTD Co Ltd
Eneos Corp
Original Assignee
NIPPON KURAUTO KUREEMAA KK
Nippon Mining Co Ltd
KJTD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KURAUTO KUREEMAA KK, Nippon Mining Co Ltd, KJTD Co Ltd filed Critical NIPPON KURAUTO KUREEMAA KK
Priority to JP57094798A priority Critical patent/JPS58211654A/en
Publication of JPS58211654A publication Critical patent/JPS58211654A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Abstract

PURPOSE:To achieve a highly reliable ultrasonic flaw detection free from damage for a long time by rocking an oscillating frame base floating on a rail by a high pressure water. CONSTITUTION:As soon as a metal strip 1 is grasped with an upstream pinch roller, actuators 25 and 26 are started to bring flaw detection surfaces 27 of probes A and B into contact with the metal strip 1, setting it at the starting position. A high pressure water is fed to a high pressure water flow port at a water pressure floating position 17 provided on the undersurface of the base frame 16 and as it is jetted from a high pressure water jetting section, a water film is formed between a floating surface and the upper end face of a rail 18 to make an oscillating frame base 4 slide freely on the rail 18. When an oscillating motor 12 is driven, a rotary motion is converted to a linear motion with a rotary disc 13 and a crank 15 so that the frame base oscillates in the direction perpendicular to the running direction of the metal strip 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、走行する金属条の超音波探傷方法に関する。 金属材料の内部欠陥としては、a、鋳込時の気泡発生す
なわち溶解・鋳造時におけるガス成分によるブローホー
ル、b、M込時の介在物すなわち溶解鋳造時の非金属介
在物、などがあげられる。 金属条の圧延Y′、程においては、気泡なども一緒(こ
圧延されるため製品となったあとで、二枚割れなどの非
常に大きな欠陥となって発見される。このように製品と
なった段階の検査により欠陥が発見されることは、製造
コストに大きな影響を与えることになるので、圧延丁程
の途中に超音波探傷装置aを設ける必要がある。 この種の超f5波深傷装置は、振動子が取付けられた探
傷トを被探傷体の走行方向と直交する方向に揺動させる
揺動架台からなる。 この揺動架台は通常100 kg程度の重量があり、傷
検査のためにこの揺動架台を9m/分00m/分の繰り
返し揺動を1サイクル/秒で行うので、揺動架台のスラ
イド面には強いショックが加えられている。 このショックを和らげるために、従来は上記揺動架台の
スライド面にベアリングを用いていた。ところがこうし
た超音波探傷装置は、超音波を伝搬するために水を使用
するので、ベアリングが錆びついたり、強いショックの
ためベアリングが割れてしまうなどの問題があった。 またグリースを介したメタルスライド面とすることも考
えられるが、この場合には水G・使;11するために、
グリースが水で流さfまたり、冬…1にあっては常時水
で冷却されるためにグリース自体が硬化して、架台の動
きが鈍くなってし十つという問題があった。 本発明は、この点に鑑みてなされたもので、走行する金
属条の超音波探傷方法において、探傷子を支持する揺動
架台の下面から、位に条の走行方向に直行するh向に敷
設したレールに高圧水を噴出させて該揺動架台をレール
上に浮」。 させ、かつ前記レールに沿って前記探1Fを支持する揺
動架台を揺動させて探傷を行う走行する金属条の超音波
探傷方法に関する。 これにより従来の問題点を克服し、長期
The present invention relates to an ultrasonic flaw detection method for a running metal strip. Internal defects in metal materials include a. Bubble generation during casting, i.e., blowholes caused by gas components during melting and casting; b. Inclusions during M-filling, i.e., non-metallic inclusions during melting and casting. . During the rolling process of the metal strip, air bubbles are also present (this is why after the product is rolled, very large defects such as splitting into two pieces are discovered. If a defect is discovered during an inspection at this stage, it will have a large impact on manufacturing costs, so it is necessary to install an ultrasonic flaw detector a during the rolling process. The device consists of a swinging mount that swings a flaw detection tool equipped with a vibrator in a direction perpendicular to the traveling direction of the object to be tested.This swinging mount usually weighs about 100 kg and is used for flaw inspection. Since this rocking frame is repeatedly rocked at 9 m/min and 00 m/min at a rate of 1 cycle/second, a strong shock is applied to the sliding surface of the rocking frame. Bearings were used on the sliding surface of the above-mentioned rocking platform.However, since these ultrasonic flaw detection devices use water to propagate ultrasonic waves, the bearings may rust or break due to strong shock. There was a problem.Also, it is possible to use grease on the metal sliding surface, but in this case, in order to use water,
There was a problem in that the grease was washed away by water, and in winter, the grease itself hardened because it was constantly cooled by water, making the movement of the mount slow. The present invention has been made in view of this point, and is used in an ultrasonic flaw detection method for a running metal strip. High-pressure water is jetted onto the rail to float the swinging platform on the rail. The present invention relates to an ultrasonic flaw detection method for a running metal strip, in which flaw detection is performed by swinging a swinging frame supporting the probe 1F along the rail. This overcomes the traditional problems and provides long-term

【こ渡で破損す
るおそれのない信頼性の高い超音波探傷方法を提供する
ことができた。 次に本発明ノj法を図面にそって説明する。 図中1が圧延J二程に沿って走行する被探傷材(金属条
)であり、その圧延工程の途中に、1−流側からF流側
に向けて順に、光電管などじよる板做い用検知器2と0
、」−流側ピンチローラ3と、複数個の探(m f A
l〜A、、B、〜B、を取付けた揺動架台4と、[、記
I″流側ピンチローラ3と共に上記金属条1に所定の張
力を加える下流側ピンチローラ5と、検出された欠陥部
分に印を記すためのインクジェットなどによるマーキン
グ装[i6ン設置している。 さらに上記板倣い用検知器2と下流側ピンチローラ5の
付近には、それぞれ光電管などによる材料確認検知器7
,8を設け、上記板倣い用検知器2は揺動架台4を揺動
操作する操作架台9と連結させ、該操作架台9と板倣い
用検知器2とは一体に移動する構成とする。 上記操作架台9は金属条1の走行方向と直向する方向に
設けたレール10に沿って移動自在とし、その駆動は油
圧シリンダ11により行う。 この油、圧シリンダ11は制御回路(図示せず)により
、上記板倣い用検知器2が常に板状材lの中心を捕える
ように駆動操作するものである。 さらに上記操作架台9には揺動操作用モータ12が取り
付けられており、このモータI2の回転駆動軸は回転円
盤13と、該回転円盤13の一部に設けられ、回転円盤
13の回転中心から放射方向に移動自在として固定され
た揺動幅設定用調整螺F14と、該螺)14に枢着され
る揺動操作クランク15と、を介して前記揺動架台4の
枢着部4aに連結されている。 前記揺動架台4は架台フレーム16を有しており、この
架台フレーム16の下面には水圧浮上装置17が取付け
られている。上記水圧浮上装置17は、前記金属条lの
走行方向と直交する方向に設けたレール18上に水膜を
介して載置されるようにし、該し0−ルに沿って移動自
在とする。この水圧浮上装置は第6図に示すように断面
路J字形のブロック状とする。また」二記レール18は
断面略逆り字形とし、これによりレール18の一■一部
には外方に突出する突出部18aを形成する。 前記レール18の上端面18bに上記水II:、浮1;
浮型;装置浮上面17aを載置し、上記突出部18aは
水圧浮に装置17のガイド部17b【こ包み込むように
して、該ガイド部17bに係合させる。さらに」〕記浮
浮上面7aには高圧水噴出部19としての四部を形成し
、この高圧水噴出部19は水)+:、浮上装置17内に
形成した流ノ/ 路19aを介して高圧水流人口19<’−’G’−″に
連通させる。一方上記架台フレーム16上にはアーム支
持側部フレーム20を立設する。この側部フレーム20
には支点軸21.22を介して複数本のアーム23.2
4を枢着し、このアーム23゜24の各先端には、前記
探傷F Al−A4.B、 −B4のそれぞれを一個ず
つ取付ける。上記支点軸21.   ・22は互いに平
行に保持し、上方に位置する支点軸21には、複数本の
アーム23を該支点軸21と一体に回動するように固定
すると共に、この支点軸21はエアシリンダなどのアク
子ュエータ25に上り回動操作する。同様に下方に位置
する支点軸22には、複数本のアーム24を該支点軸2
2と一体に回動するように固定すると共に、この支点軸
22はエアシリンダなどのアクチュエータ26により回
動操作する。また」二〃に位置するアーム23の各先端
には、1部探傷子A1〜A、を枢着し、この各探傷F 
Al〜A。 を金属条lの走行Jj向に沿ってげいに等間隔で配置す
る。 一方、下方に位置するアーム2・1の各先端【ごは、上
部探傷f−BI〜B、を枢着し、この下部探傷子B1〜
B4を、」二組」一部探傷:F−Al〜A、と同様に位
属条への走行方向に沿って互いに等間隔で配置斤すると
共に、第3図に示すように上部探傷f Al−A4と互
い違いとなるように配置する。 以上の構成において被探傷材である金属条lが人ってく
ると材料確認検知器7.8がこれを確認し、」二流側ピ
ンチローラ3と下流側ピンチローラ5が金属条1を挾持
して金属条1に適当な張力を加える。 上記上流側ピンチローラ3が金属条lを挟持すると同時
に、板倣い用検知器2が働き、該検知器2が金属条1の
流れ方向と直交する方向の移動に追随するように油圧シ
リンダ11を操作させる。1−記検知42と操作架台と
は一体に移動するので、この操作架台9と徽属条1との
位置関係は常に一定に保たれることになる。この状態で
アクチュエータ25.26を作動させて、探傷子A、B
の探傷面27を金属条1に当接させ、探傷を開始の位置
に設定する。 次に架台フレーム16の下面に設けた水圧浮上位置17
の高圧水流人口19bに高圧水を供給し、高圧水噴出部
19より噴出させると、浮上面17aとレール18の上
端面18bとの間に水膜が形成され、揺動架台4はレー
ル18上を滑動自在の状態となる。ここで揺動操作用モ
ータ12を駆動すると、該モータ】2の回転運動は回転
円盤13及び揺動操作クランク15により直線運動に変
換されて揺動架台は金属条1の走行方向と直交する方向
に揺動する。これにより該揺動架台4に取付けられてい
る探傷子A。 Bは金属条1の両面に第4図に示すような探傷軌跡を描
いて探傷を行う。 以上説明したように、本発明によれば架台を高圧水【こ
より浮上させると共に、その水が潤滑剤として作用する
構成としたので、レールと架台との間の滑動抵抗は極め
て小さくなった。 したがって、これにより相当の重社物である揺動架台が
高速で揺動してもレール及び浮上面などに加わるショッ
クは非常に小さいものとなり、装置の耐久性が飛躍的に
向上すると同時(こ温度などの外的条件による変動は少
なく、信頼性が大巾に向上した。
[We were able to provide a highly reliable ultrasonic flaw detection method that does not cause damage due to passing. Next, the method of the present invention will be explained with reference to the drawings. In the figure, 1 is the material to be tested (metal strip) that runs along the rolling J2 line, and during the rolling process, from the 1- stream side to the F stream side, there are various plates such as phototubes. Detector 2 and 0
, ”-stream side pinch roller 3 and a plurality of probes (m f A
The rocking frame 4 to which l~A, , B, ~B are attached, and the downstream pinch roller 5 that applies a predetermined tension to the metal strip 1 together with the downstream pinch roller 3 are detected. A marking device using an inkjet or the like is installed to mark defective areas.Furthermore, a material confirmation detector 7 using a phototube or the like is installed near the board copying detector 2 and the downstream pinch roller 5, respectively.
. The operating stand 9 is movable along a rail 10 provided in a direction perpendicular to the running direction of the metal strip 1, and is driven by a hydraulic cylinder 11. This oil pressure cylinder 11 is driven and operated by a control circuit (not shown) so that the plate copying detector 2 always captures the center of the plate material l. Further, a swinging operation motor 12 is attached to the operation frame 9, and the rotational drive shaft of this motor I2 is provided on the rotating disk 13 and a part of the rotating disk 13, and is connected to the rotation center of the rotating disk 13. Connected to the pivot portion 4a of the swing frame 4 via a swing width setting adjustment screw F14 fixed so as to be movable in the radial direction, and a swing operation crank 15 pivotally mounted to the screw F14. has been done. The swingable pedestal 4 has a pedestal frame 16, and a hydraulic flotation device 17 is attached to the lower surface of the pedestal frame 16. The hydraulic flotation device 17 is placed on a rail 18 provided in a direction perpendicular to the traveling direction of the metal strip 1, with a water film interposed therebetween, and is movable along the 0-rail. This hydraulic flotation device has a block shape with a J-shaped cross section as shown in FIG. Furthermore, the rail 18 has a substantially inverted cross-section, so that a portion of the rail 18 is formed with a protrusion 18a that protrudes outward. Said water II:, float 1 on the upper end surface 18b of said rail 18;
Floating type: The floating surface 17a of the device is placed thereon, and the protruding portion 18a is engaged with the guide portion 17b of the device 17 by wrapping it around the hydraulic float. Furthermore, the floating surface 7a is formed with four parts as high-pressure water spouting parts 19, and these high-pressure water spouting parts 19 are capable of discharging high-pressure water through flow channels 19a formed in the flotation device 17. It communicates with the water flow population 19<'-'G'-''.On the other hand, an arm supporting side frame 20 is erected on the pedestal frame 16.This side frame 20
A plurality of arms 23.2 are connected to each other via a fulcrum shaft 21.22.
4 is pivotally mounted, and the flaw detection F Al-A4. Install one each of B and -B4. The above-mentioned fulcrum shaft 21. 22 are held parallel to each other, and a plurality of arms 23 are fixed to the fulcrum shaft 21 located above so as to rotate together with the fulcrum shaft 21, and this fulcrum shaft 21 is attached to an air cylinder, etc. Climb up to the actuator 25 and perform rotational operation. Similarly, a plurality of arms 24 are attached to the fulcrum shaft 22 located below.
2, and the fulcrum shaft 22 is rotated by an actuator 26 such as an air cylinder. In addition, one part of the flaw detectors A1 to A is pivotally attached to each tip of the arm 23 located at "2", and each of the flaw detectors F
Al~A. are arranged at equal intervals along the running direction Jj of the metal strip l. On the other hand, each tip of the arm 2.1 located below [the upper flaw detector f-BI~B] is pivotally mounted, and the lower flaw detector B1~
``Two sets'' of B4 were placed at equal intervals from each other along the direction of travel to the subordinate strip in the same way as ``two sets'' of partial flaw detection: F-Al~A, and as shown in Fig. 3, - Arrange so as to alternate with A4. In the above configuration, when the metal strip 1, which is the material to be inspected, comes, the material confirmation detector 7.8 confirms this, and the second-stream pinch roller 3 and the downstream pinch roller 5 pinch the metal strip 1. Apply appropriate tension to the metal strip 1. At the same time as the upstream pinch roller 3 pinches the metal strip 1, the plate copying detector 2 operates, and the hydraulic cylinder 11 is activated so that the detector 2 follows the movement of the metal strip 1 in the direction perpendicular to the flow direction. Let it operate. 1- Since the detection unit 42 and the operating stand move together, the positional relationship between the operating stand 9 and the control strip 1 is always kept constant. In this state, operate the actuators 25 and 26 to
The flaw detection surface 27 is brought into contact with the metal strip 1 and the flaw detection is set at the starting position. Next, the hydraulic floating position 17 provided on the underside of the gantry frame 16
When high-pressure water is supplied to the high-pressure water flow population 19b and ejected from the high-pressure water jetting part 19, a water film is formed between the floating surface 17a and the upper end surface 18b of the rail 18, and the swinging frame 4 is moved onto the rail 18. It will be in a state where it can slide freely. When the swing operation motor 12 is driven, the rotational motion of the motor 2 is converted into a linear motion by the rotating disk 13 and the swing operation crank 15, and the swing mount is moved in a direction perpendicular to the running direction of the metal strip 1. to sway. As a result, the flaw detector A is attached to the swing frame 4. B conducts flaw detection by drawing flaw detection trajectories on both sides of the metal strip 1 as shown in FIG. As explained above, according to the present invention, the pedestal is floated by high-pressure water and the water acts as a lubricant, so that the sliding resistance between the rail and the pedestal is extremely small. Therefore, even if the swinging platform, which is a fairly heavy asset, swings at high speed, the shock applied to the rails and floating surface will be extremely small, and the durability of the equipment will be dramatically improved. There is little variation due to external conditions such as temperature, and reliability has been greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る方法に使用する装置の一実施例を示す
ものであり、第1図は同装置の下面[ffi、第2図は
同装置における操作架台の部分を示す正面図、第3図は
同装置の要部側面図、第4図は探傷子の被探傷体上の軌
跡を示す説明図、第5図は探傷r−架台を示す側面図、
第6図は第5図の■−■線における断面図である。
The figures show one embodiment of the apparatus used in the method according to the present invention, and FIG. 1 is a bottom view of the apparatus [ffi, FIG. The figure is a side view of the main parts of the device, Figure 4 is an explanatory diagram showing the locus of the flaw detector on the object to be tested, and Figure 5 is a side view showing the flaw detection r-mount.
FIG. 6 is a sectional view taken along the line ■--■ in FIG. 5.

Claims (1)

【特許請求の範囲】[Claims] 走行する金属条の超音波探傷ノj法(こおいて、探傷F
を支持する揺動架台の下面から、金属条の走行方向シこ
直行する方向に敷設したレールに高)E水を噴出させて
該揺動架台をレール上に浮上させ、かつ前記レールに沿
って前記探傷rを支持する揺動架台を揺動させて探傷を
行う走行する金属条の超音波探傷方法。
Ultrasonic flaw detection method for running metal strips (here, flaw detection F)
Water is jetted from the bottom of the swinging platform that supports the rails, which are laid in a direction perpendicular to the running direction of the metal strip, to float the swinging platform above the rails, and An ultrasonic flaw detection method for a running metal strip, which performs flaw detection by swinging a swinging frame supporting the flaw detection r.
JP57094798A 1982-06-04 1982-06-04 Ultrasonic flaw detection Pending JPS58211654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57094798A JPS58211654A (en) 1982-06-04 1982-06-04 Ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57094798A JPS58211654A (en) 1982-06-04 1982-06-04 Ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS58211654A true JPS58211654A (en) 1983-12-09

Family

ID=14120077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57094798A Pending JPS58211654A (en) 1982-06-04 1982-06-04 Ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS58211654A (en)

Similar Documents

Publication Publication Date Title
CN100362344C (en) Steel rail on-line ultrasonic flaw detecting method and apparatus thereof
JPH10160713A (en) Ultrasonic device for detecting and/or measuring internal defect of rail
US3028751A (en) Means for ultrasonic inspection of rail
CN110412131A (en) A kind of steel rail ultrasonic flaw detecting scanning equipment
KR100485431B1 (en) Apparatus for acoustic flaw detection in a moving strip
JPS58211654A (en) Ultrasonic flaw detection
US3413843A (en) Transducer for ultrasonic testing of pipe
US3442119A (en) Ultrasonic search wheel assembly
US3596503A (en) Method and apparatus for manipulating and testing railway wheels
CN112730793A (en) Intelligent metal plate online detection equipment
KR100514801B1 (en) An apparatus for detecting the surface of a rolling roll
KR101195344B1 (en) Film peeling device
JPH10288610A (en) Surface traveling flaw detecting device of large steel structure
US3608360A (en) Method and means for checking wheel set tires in rolling stock
JPS58211655A (en) Ultrasonic flaw detection
JP2003194784A (en) Method of inspecting flaws of polyamide resin molded body and inspecting device thereof
JPS5981553A (en) Automatic magnetizer
JPS58211656A (en) Ultrasonic flaw detector
JPS6150254B2 (en)
CN216525595U (en) Ultrasonic flaw detector for detecting precision steel pipe
KR200328852Y1 (en) Crop cutting apparatus of scarfing utility
CN117085892A (en) Defect position detection identification device for steel pipe production
JPH07156055A (en) Automatic grinding device for surface flaw of steel plate
JP7259943B2 (en) Mobile inspection device, mobile inspection method, and steel manufacturing method
JPH04321986A (en) Mechanism for inverting disk chuck