JPS58210893A - Treatment of waste water containing phosphoric acid - Google Patents

Treatment of waste water containing phosphoric acid

Info

Publication number
JPS58210893A
JPS58210893A JP9537882A JP9537882A JPS58210893A JP S58210893 A JPS58210893 A JP S58210893A JP 9537882 A JP9537882 A JP 9537882A JP 9537882 A JP9537882 A JP 9537882A JP S58210893 A JPS58210893 A JP S58210893A
Authority
JP
Japan
Prior art keywords
water
treated
salt
waste water
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9537882A
Other languages
Japanese (ja)
Other versions
JPH02994B2 (en
Inventor
Hideki Kamiyoshi
秀起 神吉
Hirayasu Nakagawa
中川 平安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9537882A priority Critical patent/JPS58210893A/en
Publication of JPS58210893A publication Critical patent/JPS58210893A/en
Publication of JPH02994B2 publication Critical patent/JPH02994B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To treat waste water contg. phosphate from a low concn. to a high concn. efficiently by passing the water to be treated through a layer of a filter medium consisting of a granular magnetic material formed with an insoluble Ca salt film in the presence of Ca salt while fixing the downstream part thereof in a magnetic field. CONSTITUTION:Waste water contg. phosphate is introduced into a crystallization tank 3 while said waste water is mixed with Ca salt 2 contg. Ca of reaction equiv. or above in accordance with the content of phosphate through a line 1. A magnet 4 and a metallic screen 5 which excites a magnetic field with said magnet are provided in the tank 3, and a granular filter medium 6 formed of a film of insoluble Ca salt prior to passing of the water to be treated is packed in said tank. Therefore, the phosphates in the waste water, the added Ca salt 2 and the film on the surface of the medium 6 react in the tank 3 and form hydroxy apatite which deposits as a crystal on the surface film of the medium 6. The upper part is fixed by the magnetic field formed by the magnet 4 and the screen 5 in this state, thereby forming a fixed bed 6a and a fluidized bed 6b.

Description

【発明の詳細な説明】 本発明は、上水、下水、し原廃水、工業用水。[Detailed description of the invention] The present invention applies to tap water, sewage, Shihara wastewater, and industrial water.

工業廃水、ボイラー用水など液中に存在するリン酸塩類
を除去する方法に関する。
It relates to a method for removing phosphates present in liquids such as industrial wastewater and boiler water.

一般的に1排水中に存在する無機性のリン酸塩としてオ
ル) IJン酸塩や各種重合リン酸塩。
Inorganic phosphates generally present in wastewater include 1) IJ salts and various polymeric phosphates.

また有機リン酸塩などが閉鎖水域での富栄養化現象を招
くものとされる一力、用水として使用する場合装置配管
内のスライム、スケール生成の原因となって事故発生を
招いている。
Furthermore, organic phosphates are said to cause eutrophication in closed water bodies, and when used as water, they can cause slime and scale formation in equipment piping, leading to accidents.

これらのリン酸塩類を除去する方法としてリン酸塩類を
含む水をカル/ラムの存在下でリン酸カルシウムを含む
鉱石(たとえばリン鉱石。
As a method of removing these phosphates, water containing phosphates is mixed with calcium phosphate-containing ores (for example, phosphate rock) in the presence of Cal/Rum.

骨灰など)と接触させる方法が提案されている( Di
sserpation Abstracts Inte
rnational、 Vol、 3o、 Nn12゜
part T )。 この方法は水中に含1れるリン酸
イオンをヒドロキノアパタイト等のリン酸カルシウム化
合物にして結晶種に晶析させることにより除去するもの
であって、運転方法が従来の凝集方法と比べて簡単で、
処理効率も優れている。
Bone ash, etc.) has been proposed.
sserpation Abstracts Inte
national, Vol, 3o, Nn12゜part T). This method removes phosphate ions contained in water by converting them into calcium phosphate compounds such as hydroquinoapatite and crystallizing them into crystal seeds.
Processing efficiency is also excellent.

しかしこの方法で用いられるリン鉱石は産地によって差
があり1組成が一定せず結晶種として使用できないもの
も多い。即ちリン鉱石そのものがもろくて外力を加えれ
ば微細な粉末となりやすく、被処理水中に懸濁すれば4
、固液分離が極めて難しいという性質がある。従りて当
該鉱石を結晶種として用いるには、結晶種同志の衝突、
摩耗を避けるために固定層の型で被処理水と接触させる
方法がとられている。しかしこの場合でも被処理水の通
水量!(通水量と充填相の比)を増すにつれて処理水中
にリンが除去されないま捷漏出し、定期的に充てん材を
交換しなければならないという欠点がある。また流動状
態で上記鉱石を用いる場合には砕けやすいため結晶種濃
度を高くすることが難しい。このため晶析速度が遅く、
装置規模も大きくなるという欠点がある。この場合の結
晶種濃度は高h2〜10 W/lである。
However, the phosphate rock used in this method varies depending on the production area, and many have inconsistent compositions and cannot be used as crystal seeds. In other words, phosphate rock itself is brittle and easily turns into fine powder when external force is applied, and when suspended in water to be treated,
, it has the property that solid-liquid separation is extremely difficult. Therefore, in order to use the ore as a crystal seed, collisions between the crystal seeds,
In order to avoid wear, a fixed bed type method is used in which the water is brought into contact with the water to be treated. However, even in this case, the amount of water to be treated! As the ratio of the water flow rate to the filling phase increases, phosphorus leaks into the treated water without being removed, and the filling material has to be replaced periodically. Further, when the above-mentioned ore is used in a fluidized state, it is difficult to increase the concentration of crystal seeds because it is easily crushed. Therefore, the crystallization rate is slow,
This has the disadvantage that the scale of the device also increases. The crystal seed concentration in this case is high h2-10 W/l.

本発明は、カルシウム塩の存在下で表面に不溶性カルシ
ウム塩破膜を形成させた粉末状又は粒状の磁性体又は磁
性体を含む固形物からなる時相の層に同濾材層の少なく
とも下流部分を磁場中において固定化させた状態で被処
理水を通過接触せしめ同濾材表面にヒドロキシアパタイ
トの結晶を析出させて被処理水中ノのIIJン酸を、除
去することを特徴とするリン酸含有廃水の処理方法に係
り、その目的とするところは、」−記従来方法の欠点を
解消し、低濃度から高濃度のリン酸塩含有υ1水のいず
れにも適用でき、被処理水の通水量に関係なく、処理水
中のリン酸塩濃度が低レベルで安定して得られ、処理装
置を著しく小型化、簡゛索化できるとともに、スラッジ
の発生が極めて少なく、装置の運転を停止することなく
、充填材の交換ができる処理方法を提案することにある
The present invention provides at least a downstream portion of the filter medium layer in a phase layer made of a powdery or granular magnetic material or a solid material containing a magnetic material on which an insoluble calcium salt rupture film is formed on the surface in the presence of a calcium salt. Phosphoric acid-containing wastewater, characterized in that IIJ acid in the water to be treated is removed by passing through the water to be treated in a fixed state in a magnetic field and causing crystals of hydroxyapatite to precipitate on the surface of the filter medium. The purpose of the treatment method is to eliminate the shortcomings of conventional methods, to be applicable to both low to high concentration phosphate-containing υ1 water, and to improve the flow rate of the water to be treated. As a result, the phosphate concentration in the treated water can be stably maintained at a low level, making it possible to significantly downsize and simplify the treatment equipment, as well as generating extremely little sludge, making it possible to fill the water without stopping the operation of the equipment. The objective is to propose a processing method that allows for the exchange of materials.

次に本発明方法の一実施例を図面に基いて説明する。Next, an embodiment of the method of the present invention will be explained based on the drawings.

リン酸塩類を含する被処理水は、ライン1を経てリン酸
塩含有量に対応して反応当量以上のカルシウムを含むカ
ルシウム塩2と混合しなから晶析槽3に導入される。晶
析槽3には磁石4とそれによって磁界を励起する金属性
のスクリーン5が備えられている。また被処理水を通水
する前に晶析槽3には不溶性カルシウム塩(例えばCa
CO5,Ca5Oa、 CaFy 、好ましくはヒドロ
キンアパタイトCIL!(PO,)s(OH)、フルオ
ロアノ;タイトCa1t(PO4)IF)  の被膜を
形成させた粉末状又は粒状のし薯月6が充填されている
。当該濾材6は粉末状又は粒状の磁性体(たとえばα−
1γ−1δ−Fe*Os、 Fe5Oa、 FeooH
などの難水溶性が適する)。
The water to be treated containing phosphates is introduced into a crystallization tank 3 through a line 1 after being mixed with a calcium salt 2 containing more than the reaction equivalent amount of calcium corresponding to the phosphate content. The crystallization tank 3 is equipped with a magnet 4 and a metallic screen 5 that excites a magnetic field. In addition, before passing the water to be treated, the crystallization tank 3 is filled with insoluble calcium salts (for example, Ca
CO5, Ca5Oa, CaFy, preferably hydroquine apatite CIL! (PO,)s(OH), fluoroano; tight Ca1t(PO4)IF) Powdered or granular Shisatsuki 6 is filled. The filter medium 6 is a powdery or granular magnetic material (for example, α-
1γ-1δ-Fe*Os, Fe5Oa, FeooH
Suitable materials are those with low water solubility such as

磁性体を含む粉末状又は粒状固形物(例えば磁鉄鉱など
)、又は磁性体を担持させた粉末状又は粒状固形物(ポ
リエーチレン、ポリスチレン。
A powdery or granular solid material containing a magnetic material (such as magnetite), or a powdery or granular solid material supporting a magnetic material (polyethylene, polystyrene, etc.).

塩ビなどの固形物表面に磁性体を固着させたものなどが
適する。)である。これらの濾材の粒子径は槽内で流動
させる点から2咽以下が望ましく、これに対応する金属
スクリーン5のメツシュは50〜200meShが適す
る。
A material with a magnetic material fixed to the surface of a solid material such as PVC is suitable. ). The particle size of these filter media is preferably 2 mm or less from the viewpoint of fluidization in the tank, and the corresponding mesh of the metal screen 5 is suitably 50 to 200 meSh.

晶析槽3では被処理水に含まれるリン酸塩類と添加され
たカルシウム2および濾材6の表面被膜と反応し、ヒド
ロキシアパタイトが生成し。
In the crystallization tank 3, the phosphates contained in the water to be treated react with the added calcium 2 and the surface coating of the filter medium 6, and hydroxyapatite is produced.

濾材6の表面被膜に結晶として析出する。このとき濾材
6は被処理水によ゛つて下部および中間部は流動し、」
二部は磁石4およびスフ1ノー75によって形成された
磁場のため固定され、それぞれ固定層68及び流動層6
bを形成する。ヒドロキンアパタイトの結晶析出にとも
ない被処理水中のリン酸塩濃度は低減されて処理水とし
て晶析槽3からライン9に流出する。
It precipitates on the surface coating of the filter medium 6 as crystals. At this time, the lower and middle portions of the filter medium 6 flow due to the water to be treated.
The second part is fixed due to the magnetic field formed by the magnet 4 and the suction layer 75, and the fixed layer 68 and the fluidized layer 6 respectively.
form b. As hydroquinapatite crystals precipitate, the phosphate concentration in the water to be treated is reduced and flows out from the crystallization tank 3 to the line 9 as treated water.

晶析槽内のpHは7〜IOで可能であるが、好ましくは
80〜85に保持される。この理由は。
The pH in the crystallization tank can be between 7 and IO, but is preferably maintained at between 80 and 85. The reason for this is.

ヒドロキシアパタイトの生成反応はpH7以上で起き、
 pHI 0以上になると金属水酸化物が発生しヒドロ
キシアパタイト以外のスケールが生成されて余剰汚泥祉
を増大させるからである。また放流水のpHの規制値が
通常58〜86であるところから予じめ晶析反応のpH
を80〜85とすれば晶析反応後pH調整しなくてもす
むという利点がある。
Hydroxyapatite production reaction occurs at pH 7 or higher,
This is because when the pHI becomes 0 or more, metal hydroxides are generated and scales other than hydroxyapatite are generated, increasing excess sludge welfare. In addition, since the pH regulation value of effluent water is usually 58 to 86, the pH of the crystallization reaction must be adjusted in advance.
If it is set to 80 to 85, there is an advantage that there is no need to adjust the pH after the crystallization reaction.

被処理水の通水倍量が増加するに伴ない、処理水中のリ
ン酸塩濃度が増加する可能性がある場合は新しい濾材を
ライン7から補充しながら槽内の濾材を連続的又は断続
的にライン8から制用する。
As the flow rate of treated water increases, if there is a possibility that the phosphate concentration in the treated water will increase, the filter media in the tank will be continuously or intermittently replenished with new filter media from line 7. It will be used from line 8.

晶析槽内の濾材の濃度は50〜200 ?/lの範囲で
調整する。
Is the concentration of the filter medium in the crystallization tank between 50 and 200? Adjust within the range of /l.

このような方法において濾材の表面被膜上で被処理水の
リン酸塩は次のように反応する。
In such a method, phosphates in the water to be treated react on the surface coating of the filter medium as follows.

■ (:aCOm被膜の場合  初期反応は次のとおり
である。
(: In the case of aCOm film The initial reaction is as follows.

5Ca(、Os+70H−+3HtPO4−−Cas 
(OH) (P(L)s + 6HtO+5COs’−
(生成結晶) ■ CaSO4被膜の場合  初期反応は次のとおりで
ある。
5Ca(,Os+70H-+3HtPO4--Cas
(OH) (P(L)s + 6HtO+5COs'-
(Produced crystals) ■ In the case of CaSO4 film The initial reaction is as follows.

5C1lSO1+ 70H−+3H,P04″″→Ca
s、(OH)(PO4)、+ 6H10−4−5SOa
”−(生成結晶) ■ CaF、被膜の場合   初期反応は次のとおりで
ある。
5C1lSO1+ 70H-+3H, P04″″→Ca
s, (OH)(PO4), +6H10-4-5SOa
”-(Crystal produced) ■ In case of CaF, film The initial reaction is as follows.

5CaFt+60H−+3114’0<−→Ca*(P
O4)sF+611+O+9F−(生成結晶) ついで上記のヒドロキンアパタイトCa5(OH)(P
64)3結晶又はフロオロアパタイトcaw (PO4
匹Fは表面被膜上で種晶として作用し。
5CaFt+60H-+3114'0<-→Ca*(P
O4)sF+611+O+9F- (produced crystal) Then, the above hydroquine apatite Ca5(OH)(P
64) Tricrystalline or fluoroapatite caw (PO4
F acts as a seed crystal on the surface coating.

5 Ca” +70H−+ 3 lit P Oa″−
→Ca5(0n)(PO4)s + 6HtOで代表さ
れる被処理水からのヒドロキシアバターr ト晶析反応
を促進し9表1nJ被膜上にヒドロキンアパタイト結晶
群を発生せしめる。
5 Ca" +70H-+ 3 lit P Oa"-
→Promotes the crystallization reaction of hydroxy avatar represented by Ca5(0n)(PO4)s + 6HtO from the water to be treated, and generates hydroquine apatite crystal groups on the coating.

濾材の表面′破膜が既にヒドロキシアパタイトで覆われ
ている場合は上記■、■、■、の初期反応はなく、直ち
にヒドロキンアパタイト結晶群が表面被膜上に析出する
If the ruptured membrane on the surface of the filter medium is already covered with hydroxyapatite, the initial reactions described in (1), (2), and (2) do not occur, and hydroxyapatite crystals immediately precipitate on the surface film.

なお鉄などの磁性体成分は、」―記の晶析反応vc t
ニーtまったく関与せず、(鉄が水中に溶解してリン酸
塩と反応することはなく。)上記不溶性カル/ラム塩の
担体として作用している。
In addition, magnetic components such as iron undergo the crystallization reaction vc t
Nit is not involved at all (the iron is dissolved in the water and does not react with the phosphate) and acts as a carrier for the insoluble Cal/Rum salt.

このように本方法によれば、晶析槽下部および中間部で
は濾材が流動しながら、上illでは磁場により固定さ
れるため1種晶としての濾材濃度を著しく高められると
ともに、晶析槽」:部が固定層となってCaFt微結晶
を逃さず濾過できる。
In this way, according to the present method, the filter medium flows in the lower and middle parts of the crystallization tank, while being fixed by the magnetic field in the upper illumination, so that the concentration of the filter medium as a seed crystal can be significantly increased. part becomes a fixed layer and can filter CaFt microcrystals without escaping.

さらに晶析槽下部および中間部では濾材が流動してbる
のT、@材の排出および補充が被処理水を通水中でも可
能である。
Furthermore, the filter material flows in the lower and middle portions of the crystallization tank, making it possible to discharge and replenish the material even while the water to be treated is flowing.

以上実施例で詳述したように1本発明方法によれば1次
のような長所がある。
As described in detail in the embodiments above, the method of the present invention has the following advantages.

lit  ヒドロキンアパタイトの晶析速度は次式で表
わされる。
lit The crystallization rate of hydroquinapatite is expressed by the following formula.

一−=K(C−C”)”       ・・・・・・・
・・・・・・・・(IIt ココにに:晶析速度定数(t/m9−n)l(は種晶表
面積Aと種晶濃度Cd K比例する。即ち K (CA 、  A 6eCd 、’、 COCCd
t:経過時間 (H) C:t=tのときのF濃度(ダ/1) C”:L二ωのときのF濃度(Ill&#)−上記(1
)式で判るように晶析速度は種晶濃度と種晶表面積に比
例する。′Z)捷り種晶固有の表面積が大きいもの程、
即ち粒子径が小であればある程有利で、種晶濃度か高け
れば高い程有利である。本発明では種晶固有の表面積を
大きくとれるとともに、種晶濃度を従来方法にくらべて
5〜20倍高めることができるので、装置の小型化が計
れる。
1-=K(C-C")"
・・・・・・・・・(IIt Here: Crystallization rate constant (t/m9-n) l( is proportional to seed crystal surface area A and seed crystal concentration Cd K. That is, K (CA , A 6eCd ,' , COCCd
t: Elapsed time (H) C: F concentration when t=t (da/1) C": F concentration when L2ω (Ill&#) - above (1
), the crystallization rate is proportional to the seed crystal concentration and the seed crystal surface area. ′Z) The larger the specific surface area of the broken seed crystal, the more
That is, the smaller the particle size is, the more advantageous it is, and the higher the seed crystal concentration is, the more advantageous it is. In the present invention, the specific surface area of the seed crystal can be increased, and the seed crystal concentration can be increased by 5 to 20 times compared to the conventional method, so that the device can be made smaller.

また低1度IJ 7酸塩含有廃水でも晶析速度を1もめ
ることができ、不溶性リン酸塩と種晶との接触頻度が高
いので1種晶上に析出しやすく。
In addition, the crystallization rate can be reduced by 1 even in wastewater containing a low 1 degree IJ 7-salt salt, and since the insoluble phosphate salt comes into contact with the seed crystals frequently, it is easy to precipitate on the 1-seed crystal.

液中を浮遊する微細なヒドロキンアパタイトを生成せし
めることが少ない。
It is less likely to generate fine hydroquine apatite floating in the liquid.

(2)被処理水の通水を停止することなく、肥大化した
種晶を連続的又は断続的に入れ換えることができ、これ
によって被処理水の通水量に関係なく、処理水中のリン
酸塩濃度が低レベルで安定して得られる。
(2) Enlarged seed crystals can be replaced continuously or intermittently without stopping the flow of water to be treated, and as a result, phosphates in the water to be treated can be Stable concentrations are obtained at low levels.

なお下流側に形成される固定層では被処pH水の通水中
に4ζ材を入れかえることは回部でちるが、固定層は薄
いゾーンであるので、全体に占める割合はごく少ない。
Note that in the fixed layer formed on the downstream side, the 4ζ material may be replaced in the flow of pH water to be treated, but since the fixed layer is a thin zone, its proportion to the whole is very small.

(3)ヒドロキノアパタイト結晶は、ちW)な固形物質
であるためスラッジの発生像が極めて少ない。
(3) Since hydroquinoapatite crystals are solid substances, there is very little sludge formation.

(4)4IIJ内の緒過作用によりヒドロキシアノ(・
タイト微結晶が生成しても処理水中に漏出することを防
止できる。それによって被処理水のリン酸塩濃度が安定
して得られる。塘た後処理が不要である。
(4) Hydroxyano(・
Even if tight microcrystals are formed, they can be prevented from leaking into the treated water. Thereby, the phosphate concentration of the water to be treated can be stably obtained. No post-treatment is required.

従来のリン鉱石接触法と本発明の処理比較1+11を第
1表17C示した。なお本発明方法では、ヒドロキシア
パタイトの被膜をマグネタイト−、hに形成せしめるに
は、60〜200メツシユのマグ坏タイトを被処理水(
PO4’−5pp)にCaCl2140p−を添加しな
がら接触させ調整した。目視上マグネタイトの表面が黒
色から白色となったものを種晶として使った。
A treatment comparison 1+11 between the conventional phosphate rock contact method and the present invention is shown in Table 1, 17C. In addition, in the method of the present invention, in order to form a hydroxyapatite film on magnetite, 60 to 200 meshes of magnetite are added to the water to be treated (
It was adjusted by contacting PO4'-5pp) with CaCl2140p- while adding it. A magnetite whose surface visually changed from black to white was used as a seed crystal.

第  1  表 10011jN11に調整。添加Ca塩はCaC1yで
140ppH1とした。
Adjusted to Table 1 10011jN11. The added Ca salt was CaC1y and was adjusted to 140 ppH1.

2)150〜200メツシユ ヨルダン産。水の滞留時
間は20分間(空間速度5v−3r7h )。
2) 150-200 metsushi from Jordan. Water residence time is 20 minutes (space velocity 5v-3r7h).

3)60〜20t+メツシユ マダイ・タイト(Fes
O+)にヒドロ−キシアパタイトの被膜を形成せしめた
もの。磁界の強さは0,5〜+(Oe)。水の滞留時間
は5分間(SV= 121/h)。
3) 60~20t + Metsuyu Red sea bream tight (Fes
O+) on which a hydroxyapatite film is formed. The strength of the magnetic field is 0.5 to + (Oe). Water residence time was 5 minutes (SV = 121/h).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示すフローチャートで
ある。 3・・・晶析槽、4・・・磁石、5・・・金属スクリー
ン。 fi a・・固定層、6b・・・流動層。 爲1閃
FIG. 1 is a flowchart showing one embodiment of the method of the present invention. 3... Crystallization tank, 4... Magnet, 5... Metal screen. fi a...Fixed bed, 6b...Fluidized bed. 1 flash

Claims (1)

【特許請求の範囲】[Claims] カルシウム塩の存在下で表面に不溶性力ルノウム塩被膜
を形成させた粉末状又は粒状の磁性体又は磁性体を含む
固形物からなる濾材の層に同纏拐層の少なくとも下流部
分を磁場中において同定化させた状態で被処理水を通過
接触せしめ開−材表面にヒドロキシアパタイトの結晶を
析出させて被処理水中のリン酸を除去することを特徴と
するリン酸含有廃水の処理方法。
In a magnetic field, at least the downstream part of the entrained layer is identified in a layer of a filter medium made of a powdered or granular magnetic material or a solid material containing a magnetic material, on which an insoluble salt film is formed on the surface in the presence of a calcium salt. 1. A method for treating phosphoric acid-containing wastewater, characterized in that phosphoric acid in the water to be treated is removed by allowing the water to be treated to pass through and come into contact with the water in an oxidized state to precipitate crystals of hydroxyapatite on the surface of the opening material.
JP9537882A 1982-06-03 1982-06-03 Treatment of waste water containing phosphoric acid Granted JPS58210893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9537882A JPS58210893A (en) 1982-06-03 1982-06-03 Treatment of waste water containing phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9537882A JPS58210893A (en) 1982-06-03 1982-06-03 Treatment of waste water containing phosphoric acid

Publications (2)

Publication Number Publication Date
JPS58210893A true JPS58210893A (en) 1983-12-08
JPH02994B2 JPH02994B2 (en) 1990-01-10

Family

ID=14135976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9537882A Granted JPS58210893A (en) 1982-06-03 1982-06-03 Treatment of waste water containing phosphoric acid

Country Status (1)

Country Link
JP (1) JPS58210893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048947A1 (en) * 1999-02-19 2000-08-24 Japan Science And Technology Corporation Method of removing phosphoric acid contained in wastewater
JP2003275774A (en) * 2002-03-25 2003-09-30 Mitsubishi Materials Corp Method for regenerating phosphorus recovering material and method for recovering phosphorus
CN104478056A (en) * 2014-12-31 2015-04-01 桂林市世环废气处理设备有限公司 Sewage disposal agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048947A1 (en) * 1999-02-19 2000-08-24 Japan Science And Technology Corporation Method of removing phosphoric acid contained in wastewater
US6716357B1 (en) 1999-02-19 2004-04-06 Japan Science And Technology Corporation Method of removing phosphoric acid containting wastewater
JP2003275774A (en) * 2002-03-25 2003-09-30 Mitsubishi Materials Corp Method for regenerating phosphorus recovering material and method for recovering phosphorus
CN104478056A (en) * 2014-12-31 2015-04-01 桂林市世环废气处理设备有限公司 Sewage disposal agent

Also Published As

Publication number Publication date
JPH02994B2 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
US4028237A (en) Method and apparatus for treatment of fluorine-containing waste waters
US4713177A (en) Process for mitigating scale formation in tube reaction apparatus
JP2005246249A (en) Method for recovering phosphorus and its apparatus
JPS58210893A (en) Treatment of waste water containing phosphoric acid
JP4647640B2 (en) Crystallization reactor and crystallization reaction method
JPS6331593A (en) Removal of phosphate ion in water
JP2002292204A (en) Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP4368159B2 (en) Method for treating wastewater containing phosphate
JPS6097091A (en) Treatment of fluoride ion-containing water
JPS62250990A (en) Treatment of waste water containing phosphate ion
JP4842450B2 (en) Crystallization reactor equipped with turbidity measuring means and crystallization treatment method using the same
JPH02993B2 (en)
JPS5813230B2 (en) Treatment method for water containing fluoride ions
JP2005254053A (en) Method and apparatus for recovering phosphorus
JP2002292205A5 (en)
JPS60168587A (en) Fluidized bed type catalytic dephosphorization
JP2002292202A (en) Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
JPH0318957B2 (en)
JP3341639B2 (en) How to remove phosphorus
JP4104874B2 (en) Crystallization method using calcium hydroxide
JPS59142894A (en) Process for removing phosphate in liquid
JPS6044999B2 (en) Treatment method for phosphoric acid-containing wastewater
JPS605283A (en) Treatment of phosphate ion-containing water
JPS59156489A (en) Phosphate-contg. water disposal