JPS58210862A - Mobile magnetic field type crushing and mixing processing device - Google Patents

Mobile magnetic field type crushing and mixing processing device

Info

Publication number
JPS58210862A
JPS58210862A JP9555482A JP9555482A JPS58210862A JP S58210862 A JPS58210862 A JP S58210862A JP 9555482 A JP9555482 A JP 9555482A JP 9555482 A JP9555482 A JP 9555482A JP S58210862 A JPS58210862 A JP S58210862A
Authority
JP
Japan
Prior art keywords
magnetic field
processing
container
moving magnetic
working piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9555482A
Other languages
Japanese (ja)
Other versions
JPS628216B2 (en
Inventor
渡部 安雄
土井 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9555482A priority Critical patent/JPS58210862A/en
Publication of JPS58210862A publication Critical patent/JPS58210862A/en
Publication of JPS628216B2 publication Critical patent/JPS628216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は固体9粒体、液体等の被処理物と一諸に強磁
性材で作られたワーキ/グピースヲ処理容器内に収容し
、この容器に対して外部より移動磁界を作用させること
により、ワーキングピースに激しいランダム運動を生起
させて、被処理物の粉砕、混合、攪拌等の処理を行う移
動磁界式処理装置         に関する。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a work piece made of a ferromagnetic material is housed together with objects to be processed such as solid particles and liquid in a processing container, and is moved from the outside to the container. The present invention relates to a moving magnetic field type processing apparatus that performs processing such as crushing, mixing, stirring, etc. of a workpiece by applying a magnetic field to cause intense random motion in a working piece.

この種の移動磁界式処理装置として、第1図および第2
図に示すものが既に提案されている。図においで、1は
被処理物2と一諸に強磁性材で作られた多数のワーキン
グピース3を収容した処理容器であり、この容器1を中
央に挾んでその上下には移動磁界発生装置4.5が対向
配置されており、かつその移動磁界はφ1.φ2で示す
ように互に逆方向に定められている。この移動磁界発生
装置4.5はいわゆるリニアモータとしてよく知られで
いるものであって、(以下「移動磁界発生装置」を「リ
ニアモータ」と呼称する。)例えば3相父流巻#6を回
転心機と同じように鉄心7のコイルスロット内に巻装し
て構成され、電源からの給電を受けて移動磁界φ1.φ
2を形成する。
As this type of moving magnetic field type processing device, Figs.
What is shown in the figure has already been proposed. In the figure, reference numeral 1 denotes a processing container that houses an object 2 to be processed and a number of working pieces 3 made of ferromagnetic material.The container 1 is sandwiched in the center, and above and below it are movable magnetic field generators. 4.5 are arranged facing each other, and the moving magnetic field is φ1. As shown by φ2, they are set in opposite directions. This moving magnetic field generating device 4.5 is well known as a so-called linear motor (hereinafter, the “moving magnetic field generating device” will be referred to as a “linear motor”). Like a rotary core machine, it is constructed by being wound in a coil slot of an iron core 7, and receives power from a power source to generate a moving magnetic field φ1. φ
form 2.

かかる構成により、移動磁界φ1.φ2の作用する磁場
の中に置かれたワーキングピース3には移動磁界φ1.
φ2との相互作用に基づく゛電磁力が働き、これによっ
て移動磁界方向への並進力、浮上刃および重心のまわり
で自転する回転トルクを受けるとともに、更にワーキン
グピース同士の衝突、ワーキングピースと容器壁面との
衝突等が加わり、ワーキングピース3は激しいランダム
運動を生起しつつ、全体として矢印Pのように処理容器
1の中を循環する周回運動を行う。そしてこのワーキン
グピースのランダム、周回運動により、被処理物2の粉
砕、混合、攪拌等の処理操作が行われる。
With this configuration, the moving magnetic field φ1. The working piece 3 placed in the magnetic field of φ2 has a moving magnetic field φ1.
An electromagnetic force acts based on the interaction with φ2, which causes a translational force in the direction of the moving magnetic field, a rotational torque that rotates around the floating blade and the center of gravity, and also collision between the working pieces and the collision between the working piece and the container. Due to the collision with the wall surface, etc., the working piece 3 causes a violent random movement, and as a whole, it performs a circulating movement inside the processing container 1 as indicated by an arrow P. Processing operations such as crushing, mixing, and stirring of the object 2 to be processed are performed by the random and circular movement of the working piece.

この場合のワーキングピース3の運動はりニアモータ4
,5の磁界強さに比例し、巻線6に通じる電流が大であ
る程ワーキングピース3に働<電磁力も大となるが、処
理能力以上に常時余分な電力を消費することは不経済で
あり、したがってできるだけ小さな電力でワーキングピ
ースの十分を運動を維持し、高い処理効率を得ることが
望まれる。
The movement beam of the working piece 3 in this case is the near motor 4
, 5, and the larger the current passing through the winding 6, the greater the electromagnetic force exerted on the working piece 3. However, it is uneconomical to constantly consume excess power beyond the processing capacity. Therefore, it is desirable to maintain sufficient motion of the working piece with as little power as possible and obtain high processing efficiency.

し力)して第1図のように処理容器1を角形容器として
構成したものでは、しはしは運転の途中でワーキングピ
ース3の周回運動が停止し、ワーキングピースが容器1
のリニアモータ4.5と対向する壁面上に整列したまま
停留しでしまう現象が見られる。この現象についで増重
したところ、その原因は次の点にあることが明らカンに
なった。すなわち、処理容器lの内周に沿って周回運動
するワーキングピース3の動きを詳しく観察すると、リ
ニアモータ4に近い部分に散在するワーキングピースは
移動磁界φ2に較べてφ1の影響が大きく、鉄心面の方
へ吸引されながら・電力)ら左の方へ進む並進力を受け
る。一方リニアモータ5゛に近い部分のワーキングピー
スは磁界φ2の作用が大きく働いて鉄心面の方へ吸引さ
れながら左から右の方へ向けて運動する。そして移動磁
界φ1.φ2の下流側に達したところで処理容器lのコ
ーナ一部の直角な壁面に衝突する。ここで先にコーナ一
部に達したワーキングピースは後続のワーキングピース
で後押シサれ、かつワーキングピース自身の自転および
壁cfiとの衝突による反発が加わってl向きを変え、
処理容器1の下側にあるものは上方へ、また上側にある
ものは下方へ移行し、やがてそれぞれ反対側のリニアモ
ータの磁界作用域に入れは再びその移動磁界方向へ並進
する。しかしながら上記コーナ一部分での運動方向の転
換は、第1図の角形容器ではスムーズに行われず、リニ
アモータ4,5の磁界強度か十分大でないと、ワーキン
グピース3は容器の壁面上に吸引されたまま互に重り合
うように整列して停留してし菫う。この場合にリニ。
When the processing container 1 is configured as a rectangular container as shown in Fig. 1, the circular movement of the working piece 3 stops during the operation, and the working piece moves into the container 1.
There is a phenomenon where the linear motor 4.5 stays aligned on the wall facing the linear motor 4.5. After further investigation into this phenomenon, it became clear that the cause was as follows. That is, when observing in detail the movement of the working pieces 3 that circulate along the inner periphery of the processing container l, the working pieces scattered near the linear motor 4 are affected by the moving magnetic field φ1 more than the moving magnetic field φ2, and the iron core surface While being attracted towards , it receives a translational force moving to the left from (electric power). On the other hand, the working piece near the linear motor 5' is strongly influenced by the magnetic field φ2 and moves from left to right while being attracted toward the iron core surface. And moving magnetic field φ1. When it reaches the downstream side of φ2, it collides with the right-angled wall surface of a part of the corner of the processing container l. Here, the working piece that reached a part of the corner first is pushed by the following working piece, and changes its direction due to the rotation of the working piece itself and the repulsion caused by the collision with the wall cfi.
The objects on the lower side of the processing container 1 move upward, and the objects on the upper side move downward, and eventually enter the magnetic field action area of the linear motor on the opposite side and again translate in the direction of the moving magnetic field. However, the change in the direction of motion at the corner part cannot be smoothly performed in the rectangular container shown in FIG. 1, and unless the magnetic field strength of the linear motors 4 and 5 is strong enough, the working piece 3 will be attracted onto the wall of the container. They lined up so that they were on top of each other, and stopped and violet. Rini in this case.

アモータ4.5の電流を増せは、ワーキングピース3に
働く回転トルクが打勝って書ひワーキングピースの整列
状態をくずしで再び運動を生起するが、このことに常時
力)ら磁界強度を処理IL力以上に高めておくことは、
それだけ余分lこ電力を消費するので運転効率の面で得
策ではない。才た被処理物の処理動作の闇から観察する
と、第1図のものでは、ワーキングピース3の運動が容
器内の隅々まで十分に行き渡らないので処理容器1のコ
ーナ一部、特lこ符号Aで示す移動磁界上流側のコーナ
一部分がワーキングピース3の周回運動の死角となって
十分な処理操作が行われず、このコーナ一部分に処理さ
れないままの被処理が多く滞留するのが見られ、このこ
とが粉砕等の処理効率を低める原因にもなうCいる。特
に渉砕処理する場合には、粉砕が十分に進韮ない粗粉が
多く残り、均一な粒径の砕製物が侍られない。
Increasing the current of the amotor 4.5 overcomes the rotational torque acting on the working piece 3, disrupting the alignment of the working piece and causing it to move again, but this is due to the constant force) that handles the magnetic field strength. What you need to do is increase your strength beyond your strength.
This is not a good idea in terms of operating efficiency since it consumes an extra 100 liters of power. Observing from the perspective of the processing operation of a large object to be processed, in the case of the one shown in Fig. 1, the movement of the working piece 3 does not sufficiently reach every corner of the processing container 1. A part of the corner on the upstream side of the moving magnetic field, indicated by A, becomes a blind spot for the circulating movement of the working piece 3, and sufficient processing operations are not performed, and it is seen that a large amount of unprocessed material remains in this part of the corner. This also causes a reduction in processing efficiency such as pulverization. Particularly in the case of crushing, a large amount of coarse powder remains because the crushing has not progressed sufficiently, making it impossible to obtain a crushed product with a uniform particle size.

この発明は上記の点にかんがみなされたものであり、そ
の目的は上記従来#C置の欠点を除去し、できるだけ少
ない電力でワーキングピースの周回運動か維持でき、し
かも処理操作の死角を作らないようにした処理効率の高
い省エネルギー指向の移動磁界式処理装置を提供するこ
とにある。
This invention was made in consideration of the above points, and its purpose is to eliminate the drawbacks of the conventional #C arrangement, to maintain the circular movement of the working piece with as little power as possible, and to avoid creating blind spots in processing operations. An object of the present invention is to provide a moving magnetic field type processing device which is energy saving-oriented and has high processing efficiency.

力)力)る目的はこの発明により、ワーキングピースの
周回運動に沿った処理容器のコーナ一部の角部を落しで
、該コーナ一部の容器壁面を傾斜あるいは円−51ハ状
壁面で連ねて構成したことにより達成される。
The purpose of this invention is to cut off some of the corners of the processing container along the circumferential movement of the working piece, and to connect the container wall surface of the part of the corner with an inclined or circular wall surface. This is achieved by configuring the

以下この発明を図示実施例に基づい説明する。The present invention will be explained below based on illustrated embodiments.

まず第3図の実施例では、ワーキングピース3の周回運
動経路(矢印P)に沿った処理容器IQ)コーナ一部、
つまりワーキングピース3がその運動方向の向きを変え
る容器1の上下壁面IA。
First, in the embodiment shown in FIG. 3, a part of the corner of the processing container IQ along the circular movement path (arrow P) of the working piece
That is, the upper and lower wall surfaces IA of the container 1 on which the working piece 3 changes its movement direction.

ibと左右fUtl+ml C,I Dとの交叉する四
隅の箇所で角部を落し、代りに内角が90度以上の鈍角
で交叉し合う斜めの壁面IEで上、下、左、右の壁面の
間を連ねるように構成されている。上記の構成によれは
、移動磁界φ1.φ2と平行に壁面IA。
Drop the corners at the four corners where ib intersects left and right fUtl+ml C, I D, and instead create a diagonal wall IE where the interior angles intersect at an obtuse angle of 90 degrees or more between the upper, lower, left, and right walls. It is structured to connect. According to the above configuration, the moving magnetic field φ1. Wall surface IA parallel to φ2.

IBに沿って並進し、その終端に達したワーキングピー
ス3は従来のように移動磁界φ1.φ2と直角な壁面1
0.11)に直接突き当ることなく、傾斜壁面IEに沿
って容易に流れ、その運動方向の向きが変えられる。か
くして従来のようなワーキングピース3の整列停留現象
が見られな(なり、処理容器に沿ったスムーズな周回運
動が維持できる。
The working piece 3 that has translated along IB and reached its end is subjected to a moving magnetic field φ1. Wall surface 1 perpendicular to φ2
0.11), it easily flows along the inclined wall surface IE, and its direction of movement can be changed. In this way, the alignment and stagnation phenomenon of the working pieces 3 unlike in the prior art is not observed (and smooth circular movement along the processing container can be maintained).

またコーナ一部の角部を洛したことにより仮処理物2の
処理操作に対する死角がなくなり、処理効率も格段に上
昇する。この点について発明者の行った実機テスト結果
によれば、第1図の角形容器と較べ、給電電流、粉砕時
間等、同じ粉砕条件のもとて初期粒度1.19〜1.4
1+mの大理石の砕料を粉砕したところ、砕製物の単位
X量当りの粉体表面積が24 % JW加し、またその
粒径分布は、従来では50011m以上の粒子が重量比
で14%あったのが僅かに3.5%に減少した好結果が
得られた。また傾斜壁面IEの傾き角度を種々変えて行
ったテスト結果でも、力)なり広い角度範囲でほぼ同等
の効果が得られた。
Further, by removing some of the corners, there is no blind spot for the processing operation of the temporarily processed material 2, and the processing efficiency is significantly increased. Regarding this point, according to the actual machine test results conducted by the inventor, compared to the square container shown in Fig. 1, the initial particle size was 1.19 to 1.4 under the same grinding conditions such as power supply current and grinding time.
When crushed marble of 1+m was crushed, the surface area of the powder per unit X amount of crushed product increased by 24%, and the particle size distribution was 14% by weight of particles of 50011m or more. A good result was obtained in which the amount of carbon dioxide was reduced to only 3.5%. Also, in the test results in which the inclination angle of the inclined wall surface IE was varied, almost the same effect was obtained over a wide range of angles.

第4図は先の実施例の変形例であり、処理容器1の各コ
ーナ一部が1円弧状の壁面1 ]”で連なるようζこ構
成されている。この実施例でも第3図の実施例と同様な
効果が得られ、前記と同じテストの結果では、?Jt’
= 1図のものと較べて単位重量当りの粉体表面積は2
5%増加し、また粒径500μm以上の粒子は重量比で
5.1%に減少した。また円弧状壁面IFの曲率半径は
広範囲に変えてもその効果は同じように得られることが
確められでいる。
FIG. 4 shows a modification of the previous embodiment, in which a part of each corner of the processing container 1 is constructed in such a way that one circular arc-shaped wall surface 1 is connected. In this embodiment, the same structure as shown in FIG. The same effect as the example is obtained, and the same test results as above, ?Jt'
= Powder surface area per unit weight is 2 compared to the one in Figure 1.
The amount of particles with a particle size of 500 μm or more decreased to 5.1% by weight. It has also been confirmed that the same effect can be obtained even if the radius of curvature of the arc-shaped wall surface IF is varied over a wide range.

次に上記実施例を更に発展させた実施例を第5図、第6
図に示す。この実施例では、処理容器内におけるワーキ
ングピース3の運動の死角をできるかぎり形成しないよ
うに工夫したものであり、その処理容器lの形状は、ワ
ーキングピース3の周回運動経路に沿った断面形状が平
行四辺形あるいは菱形としてなり、かつ各コーナ一部は
第4図と同様に円弧状壁面に形成されでいる。しかもこ
の処理容器1ζこ対してリニアモータ4.5の移動値界
φ1.φ2は、その磁界移動方向力、X゛処理容器10
)内角が鉤角をなすコーナ一部Bから鋭角をなすコーナ
一部Cへ向くように定めである。したがって第1図にお
けるA部に対応するコーナ一部分でも死角を形成するこ
となくワーキングピース3が満遍なく通るので、処理容
器全体としてワーキングピース3のスムーズな周回運動
と併せて、容器内での隅々まで処理操作が十分に行われ
ることになる。第5図の処理容器について行ったテスト
結果では、砕製物に含まれる粒径500μm以上の粒子
量当りの表面積は第1図のものと較べて37%も増加さ
せるこ♂ができ、粉砕効果の大幅な向上が見られた。特
に第6図の実施例は処理容器を移動磁界方向に沿って中
仕切りし、複数の室に細分化して構成したものであり、
各処理室11ごとに第5 ′図と同じワーキングピース
3の周回運動が行われ、それだけ被処理物と容器壁面と
の衝突機会が増して、より効果的な処理操作が行われる
。また同時に谷処理室11ごとに異なる処理を行わせる
ことも可能である。
Next, FIGS. 5 and 6 show an embodiment that is a further development of the above embodiment.
As shown in the figure. This embodiment is designed to minimize the formation of blind spots for the movement of the working piece 3 in the processing container, and the processing container l has a cross-sectional shape along the circular movement path of the working piece 3. It has a parallelogram or rhombus shape, and a portion of each corner is formed into an arcuate wall surface as in FIG. 4. Moreover, the moving value field φ1 of the linear motor 4.5 for this processing container 1ζ. φ2 is the magnetic field movement direction force, X゛processing container 10
) The interior angle is directed from the corner part B forming the hooked angle to the corner part C forming the acute angle. Therefore, the working piece 3 passes evenly through the corner corresponding to part A in Fig. 1 without forming a blind spot, so that the working piece 3 can move smoothly throughout the processing container, and the entire processing container can be moved to every corner within the container. Processing operations will be fully performed. Test results conducted on the processing container shown in Figure 5 show that the surface area per amount of particles with a particle size of 500 μm or more contained in the crushed product can be increased by 37% compared to the one in Figure 1, which improves the crushing effect. A significant improvement was seen. In particular, the embodiment shown in FIG. 6 is constructed by partitioning the processing container along the direction of the moving magnetic field and subdividing it into a plurality of chambers.
The same circular movement of the working piece 3 as shown in FIG. 5' is carried out in each processing chamber 11, and the chances of collision between the object to be processed and the container wall surface are increased accordingly, so that more effective processing operations can be performed. Furthermore, it is also possible to simultaneously perform different processing in each valley processing chamber 11.

以上述べたようにこの発明によれは、処理容器の形状に
若干の変更を加えただけで、ワーキングピースの容器内
での周回運動が従来の角形容器に較べて格段にスムーズ
となるとともに、処理操作に対するコーナ一部での死角
かなくなり、かくして少ない電力消費で容器内の被処理
物を?M遍なく処理操作することができ、その処理効率
の大幅な向上を図ることができる。
As described above, the present invention allows the working piece to circulate within the container much more smoothly than the conventional rectangular container by making only slight changes to the shape of the processing container. There is no blind spot in some corners for operation, and thus the material to be processed in the container can be processed with less power consumption. Processing operations can be performed evenly over M, and processing efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来におりる#41J磁界式処理装置の略示構
成図、第2図は第1図の矢印H−n断面図、第3図ない
し第6図はそれぞれこの発明の異なる実施例の略示構成
図である。 1:処理容器、IE:j頃科壁面、IF=円弧状壁面、
2:被処理物、3:ワーキングピース、4゜5:移動磁
界発生装置、φ1.φ2:移動磁芳。
Fig. 1 is a schematic configuration diagram of a conventional #41J magnetic field treatment device, Fig. 2 is a sectional view taken along arrow Hn in Fig. 1, and Figs. 3 to 6 are respectively different embodiments of the present invention. FIG. 1: Processing container, IE: j-shaped wall, IF=arc-shaped wall,
2: Workpiece, 3: Working piece, 4° 5: Moving magnetic field generator, φ1. φ2: Moving magnetic fan.

Claims (1)

【特許請求の範囲】[Claims] 1)磁性材で作られた多数のワーキングピースを収容し
た処理容器、および該容器を中央に挾んでその両側に対
向配置されたその移動磁界方向が互に逆向きな一対の移
動磁界発生装置からなり、移動磁界との相互作用に基づ
く電磁力で処理容器内を移動磁界方向に沿って循環する
ワーキングピースの周回運動によって、処理容器内に投
入された被処理物の粉砕、混合等の処理操作を行う電磁
式処理装置においで、ワー・キングピースの周回運動経
路に旧った処理容器のコーナ一部の角部を洛して、該コ
ーナ一部の容器壁面を傾斜あるいは円弧2、特許請求の
範囲第1項記載の処理装置においで、ワーキングピース
の周回運IIdJ経路と平行な面での処理容器の断面形
状を平行四辺形とし、かっこの処理容器に対する移動磁
界の移動方向を前記平行四辺形の鈍角コーナ一部から鋭
角コーナ一部へ向けて定めたことを特徴とする移動磁界
式粉砿混合等処理装置。
1) From a processing container containing a large number of working pieces made of magnetic material, and a pair of moving magnetic field generators whose moving magnetic field directions are opposite to each other and which are placed opposite to each other on both sides of the container with the container in the center. Processing operations such as pulverization and mixing of the materials put into the processing container are performed by the circular motion of the working piece, which circulates along the direction of the moving magnetic field within the processing container using electromagnetic force based on the interaction with the moving magnetic field. In an electromagnetic processing device that performs the above-mentioned processing, a part of the corner of the old processing container is placed in the circulating movement path of the working piece, and the container wall surface of the part of the corner is tilted or arcuated. In the processing apparatus according to item 1, the cross-sectional shape of the processing container in a plane parallel to the circular movement IIdJ path of the working piece is a parallelogram, and the moving direction of the moving magnetic field with respect to the processing container of the bracket is set to the parallelogram. A moving magnetic field type powder mixing and other processing device characterized in that the shape is directed from a part of an obtuse corner to a part of an acute corner.
JP9555482A 1982-06-03 1982-06-03 Mobile magnetic field type crushing and mixing processing device Granted JPS58210862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9555482A JPS58210862A (en) 1982-06-03 1982-06-03 Mobile magnetic field type crushing and mixing processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9555482A JPS58210862A (en) 1982-06-03 1982-06-03 Mobile magnetic field type crushing and mixing processing device

Publications (2)

Publication Number Publication Date
JPS58210862A true JPS58210862A (en) 1983-12-08
JPS628216B2 JPS628216B2 (en) 1987-02-21

Family

ID=14140791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9555482A Granted JPS58210862A (en) 1982-06-03 1982-06-03 Mobile magnetic field type crushing and mixing processing device

Country Status (1)

Country Link
JP (1) JPS58210862A (en)

Also Published As

Publication number Publication date
JPS628216B2 (en) 1987-02-21

Similar Documents

Publication Publication Date Title
JPH01171627A (en) Mixing and dispersing treatment device
JPS5876150A (en) Electromagnetic type apparatus for crushing, mixing and stirring treatments
US4601431A (en) Traveling magnetic field type crusher
JPS58210862A (en) Mobile magnetic field type crushing and mixing processing device
JPS61204047A (en) Electromagnetic type crushing and stirring apparatus
JPS6136451B2 (en)
JPS61153130A (en) Electromagnetic crushing and mixing apparatus
JPS5952540A (en) Electromagnetic type crushing and mixing apparatus
JPS6443337A (en) Continuous medium-type dispersing and stirring machine
JPS628219B2 (en)
JPS58214359A (en) Electromagnetic type crushing and mixing processing device
JPS59145056A (en) Electromagnetic crushing and mixing apparatus
Maiboroda et al. Features of the powder movement in magnetoabrasive polishing of small parts of complex configuration
JPS628221B2 (en)
JPS5946148A (en) Electromagnetic type crushing mixing treating device
JPS6048129A (en) Operation system of treating device basing on shifting magnetic field device
JPS58214358A (en) Extraction system of material to be treated of mobile magnetic field type crushing and mixing device
JPS58210837A (en) Electromagnetic treating device for grinding, mixing, agitation or the like
JPH0225481Y2 (en)
JPS58210838A (en) Electromagnetic processing device for grinding, mixing, agitating etc.
JPS628222B2 (en)
JPH0565214B2 (en)
JPS5946147A (en) Electromagnetic type crusher
JPS58214353A (en) Crusher
JPS59145054A (en) Operation piece of electromagnetic type crushing and mixing apparatus