JPS58210633A - Automatic wafer positioning apparatus - Google Patents

Automatic wafer positioning apparatus

Info

Publication number
JPS58210633A
JPS58210633A JP9380482A JP9380482A JPS58210633A JP S58210633 A JPS58210633 A JP S58210633A JP 9380482 A JP9380482 A JP 9380482A JP 9380482 A JP9380482 A JP 9380482A JP S58210633 A JPS58210633 A JP S58210633A
Authority
JP
Japan
Prior art keywords
wafer
light
signal
flat
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9380482A
Other languages
Japanese (ja)
Inventor
Toshio Miyagawa
敏夫 宮川
Makoto Tani
誠 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9380482A priority Critical patent/JPS58210633A/en
Publication of JPS58210633A publication Critical patent/JPS58210633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To realize automatic positioning with less influence of error in roundness of wafer itself without changing the sensor position in accordance with a size of wafer and any mechanical contact by providing a plurality of light sources and light sensors and by determining positioning operation in accordance with an electrical signal obtained in accordance with the difference of light detected by light sensors. CONSTITUTION:The light emitted from the light source 41 is detected by the light sensors 42, 43, an electrical signal obtained in accordance with difference of light is amplified by a differential amplifier 44 and is recognized as generation of signal 45 to be used actually. This signal is an analog signal but it is converted to a digital signal by the threshold circuit 46. The stop position 48 of orientation flat can be set by processing this digital signal 47. A number of pulses of stepping motor can be set 49 utilizing relation between a number of pulses obtaind by signal processing 47 and a rotating angle and thereby the orieintation flat of wafer can be positioned freely. Following the above processes, automatic positioning of wafer is completed 50.

Description

【発明の詳細な説明】 本発明は、ウェハの自動位置合わせ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic wafer alignment apparatus.

一般にウェハの自動位置合わせの方法には、接触式と非
接触式があシ、第1図及び第2図で示すように、ローラ
による位置合わせとホトセンサによる位置合わせか、代
表的な例として挙げられる。
In general, there are two methods for automatic wafer alignment: a contact type and a non-contact type, and as shown in Figures 1 and 2, alignment using rollers and alignment using a photo sensor are listed as typical examples. It will be done.

ローラによる位置合わせの場合、第1図で示すように、
3個の回転ローラを利用し、丸の部分が当たっていると
きは回転し、オリエンチーシーンフラット部分で停止す
るものである。またホトセンサによる位置合わせの場合
には、第2図に示すように、ウェハのオリエンテーシ田
ンフラットノ回転運動に伴なうホトセンサのオン−オフ
信号によって、ウェハの位置合わせは決定される。
In the case of positioning using rollers, as shown in Figure 1,
It uses three rotating rollers, and rotates when the circle is in contact with the roller, and stops at the flat part of the oriental scene. In the case of positioning using a photosensor, as shown in FIG. 2, the wafer positioning is determined by on-off signals of the photosensor accompanying the rotational movement of the wafer during orientation.

しかしながら、接触式のローラによる位置合ゎせでは、
ウェハの破損・傷と言ったメカニカルな問題点を考慮し
なければならない。また、非接触式のホトセンサに上る
位置合わせでは、各種ウェハの大きさによって、第2図
の(C)の精密位置合わせダイオードの位置を変えなけ
ればならないと言う欠点がある。また、ウェハの形状に
よる該ウェハの真円度に対する誤差から、ホトセンサの
オン−オフ信号に誤信号が加わる可能性がある。
However, in positioning using contact rollers,
Mechanical problems such as wafer damage and scratches must be taken into consideration. Furthermore, positioning using a non-contact photo sensor has the disadvantage that the position of the precision positioning diode shown in FIG. 2(C) must be changed depending on the size of the various wafers. Further, there is a possibility that an erroneous signal is added to the on-off signal of the photosensor due to an error in the roundness of the wafer due to the shape of the wafer.

その目的を達成する為、本発明のウェハの自動位置合わ
せ法は、ウェハをはさんで両側に、複数個の発光部と受
光素子を備け、受光素子の光量差による電気信号に基づ
いて、あらかじめその長さと幅を設定された受光素子の
位置を、各種ウェハによって変えることなく、各種ウェ
ハの位置合わせを操作・決定することを特徴とするもの
であシ、以下実施例について詳細に説明する。
In order to achieve this purpose, the automatic wafer alignment method of the present invention includes a plurality of light emitting parts and light receiving elements on both sides of the wafer, and based on electrical signals generated by the difference in light intensity of the light receiving elements, It is characterized by operating and determining the alignment of various wafers without changing the position of the light receiving element whose length and width are set in advance for each type of wafer.Examples will be described in detail below. .

第3図は、本発明の一実施例の図で、ウェハの自動位置
合わせ部分の図であり、31は発光部、32と33は受
光素子、34はステッピングモータ、35はウェハであ
る。発光部31からの光は受光素子32と33によって
感知され、オリエンテーションフラットの位置によって
、受光素子32と33の受光量は、それぞれ変化する。
FIG. 3 is a diagram of an embodiment of the present invention, showing a part for automatically aligning a wafer, in which 31 is a light emitting section, 32 and 33 are light receiving elements, 34 is a stepping motor, and 35 is a wafer. Light from the light emitting section 31 is sensed by the light receiving elements 32 and 33, and the amount of light received by the light receiving elements 32 and 33 changes depending on the position of the orientation flat.

ここで、受光X子32と33は、ウェハのオリエンテー
ションフラットを垂直2等分する線に関して対称となる
位置に設置され、使用する各種ウェハの大きさに対して
、常にウェハのオリエフチーシロンフラット直線部が受
光素子を横切ることを満足するような長さを持ち、オリ
エンテーションフラットの1/2の長さよりも十分に狭
い幅を持った受光素子である。
Here, the light-receiving The light-receiving element has a length that allows the straight portion to cross the light-receiving element, and a width that is sufficiently narrower than 1/2 the length of the orientation flat.

第4図は、本発明の実施例のブロック線図である。発光
部41からの光は、受光素子42.43で感知され、そ
の光量差による電気信号は差動増幅器44で増幅され、
実際に用いられる信号発生45として認識される。この
イキ号はアナログ信号であるが、スレシュホールド回路
46にてデジタル信号に変換される。このデジタル信号
を信号処理47するととKよって、そのオリエンテーシ
ョンフラットの停止位置設定4βが可能である。ステッ
ピングモータのパルス数設定49は、先の信号処理47
から得られるパルス数と回転角との関係を利用して、任
意にウェハのオリエンテーションフラットの位置を決め
ることができる。以上の過程から、ウェハの自動位置合
わせ完了50に至る。
FIG. 4 is a block diagram of an embodiment of the present invention. The light from the light emitting section 41 is sensed by the light receiving elements 42 and 43, and the electrical signal due to the difference in light amount is amplified by the differential amplifier 44.
It is recognized as a signal generation 45 that is actually used. Although this stroke signal is an analog signal, it is converted into a digital signal by the threshold circuit 46. When this digital signal is subjected to signal processing 47, it is possible to set the stop position 4β of the orientation flat. Stepping motor pulse number setting 49 is determined by the signal processing 47 described above.
Using the relationship between the number of pulses and the rotation angle obtained from the above, it is possible to arbitrarily determine the position of the wafer orientation flat. The above process leads to the completion of automatic wafer alignment 50.

第5図は、第4図の信号処理47について具体的に図示
したもので、点aから点C及び点dから点fの期間は、
オリエンテーションフラットによって、受光素子間に受
光量の差が生じ、差動増幅器44を通して電気信号が発
生したものである。
FIG. 5 specifically illustrates the signal processing 47 in FIG. 4, and the periods from point a to point C and from point d to point f are as follows:
The orientation flat causes a difference in the amount of light received between the light receiving elements, and an electrical signal is generated through the differential amplifier 44.

点す及び点eはオリエンテーションフラットによって、
受光素子間に商量の光量が当たる所である。
Points and points e are based on the orientation flat,
This is where a commercial amount of light hits between the light receiving elements.

点Cから点dの期間は、オリエンテーションフラット以
外の部分、即ち、ウェハの円弧周辺が、両受光素子上に
かかっている期間である。波形1は、1、m2値のスレ
シュホールド回路を通して波形2に変換される。波形1
で見られる波形のゆらぎは、主にウェハ自身の真円度に
対する誤差であるが、A−D変換操作によシ、この真円
度の誤差の5− 影響を少なくすることができる。また、点gから点i又
は点りから点1間の時間とパルス数を測定することによ
って、ステッピングモータの1パルス分の弧度が求めら
れる。これらの測定から、オリエンテーションフラット
の停止位置設定48゜ステッピングモータのパルス数の
設定49、それによるウェハの自動位置合わせ完了50
が可能となる。
The period from point C to point d is a period during which the portion other than the orientation flat, ie, the periphery of the circular arc of the wafer, extends over both light receiving elements. Waveform 1 is converted to waveform 2 through a 1, m2 value threshold circuit. Waveform 1
The waveform fluctuations seen in the wafer are mainly due to errors in the roundness of the wafer itself, but the influence of this roundness error can be reduced by performing an A/D conversion operation. Furthermore, by measuring the time and number of pulses from point g to point i or from point 1 to point 1, the degree of arc for one pulse of the stepping motor can be determined. From these measurements, it was possible to set the stop position of the orientation flat 48, set the number of pulses of the stepping motor 49, and complete automatic wafer alignment 50.
becomes possible.

以上説明したように、本発明は、ウェハの大きさによっ
てセンサの位置を変えることなく、ウェハにメカニカル
な接触を伴なうことなく、そしてまたウェハ自身の真円
度に対する誤差による影響の少ないウェハの自動位置合
わせ装置である。
As explained above, the present invention can be applied to a wafer without changing the position of the sensor depending on the size of the wafer, without mechanical contact with the wafer, and with less influence of errors on the roundness of the wafer itself. This is an automatic alignment device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はローラによるウェハの位置合わせの図である。 ra)は位置合わせ中であ!D、(b)は位置合わせ完
了の図である。第2図はホトセンサによるウェハの位置
合わせの図である。第3図(a) 、 (b)は、本発
明の実施例の、ウェハ自動位置合わせ部分の6− 図であシ、第4図は、本発明の実施例のブロック線図で
ある。第5図(a) 、 tb)は、第4図での信号発
生45から信号処理47に至る波形の、A−D変換を具
体的に示した図である。 21・・・・・・ダイオード、31・・・・・・発光部
、32゜33・・・・・・受光素子、34・・・・・・
ステッピングモータ、35・・・・・・ウェハ、である
。 (c>                  (#ll
〕薬I閃 、32. J、3 桑3 図
FIG. 1 is a diagram of wafer alignment using rollers. ra) is being aligned! D, (b) is a diagram showing the completion of alignment. FIG. 2 is a diagram of wafer alignment using a photosensor. 3(a) and 3(b) are six-dimensional diagrams of the automatic wafer positioning portion of the embodiment of the present invention, and FIG. 4 is a block diagram of the embodiment of the present invention. 5(a) and 5(tb) are diagrams specifically showing the A-D conversion of the waveform from the signal generation 45 to the signal processing 47 in FIG. 4. 21... Diode, 31... Light emitting part, 32° 33... Light receiving element, 34...
Stepping motor, 35...wafer. (c>(#ll
]Yaku Isen, 32. J, 3 Mulberry 3 Figure

Claims (1)

【特許請求の範囲】[Claims] ウェハをはさんで両側に複数個の発光部と受光素子の対
を配置し、前記ウェハのオリエンチーシーンフラットを
検出する鄭エバの自動位置合わせ装置において、前記オ
リエンテーク1ンフラツトを垂直2等分する線に関して
対称となる位置に設置され、使用する各種ウェハの大き
さに対して、常に前記ウェハのオリエンチーシーンフラ
ット直線部が前記受光素子を横切ることを満足するよう
な長さを持ち、前記オリエンチーシーンフラットの1/
2の長さよシも十分に狭い幅を持った受光素子を備え、
前記ウェハの回転によシ生ずる前記複数個の受光素子の
光量差を電気信号に変換する差動増幅器と、該差動増幅
器の出力信号によシ前記オリエンテーシ璽ンフラットの
位置を検出し前記オリエンチーシーンフラットの停止位
置を決定する制御回路を具備することを特徴とするウェ
ハの自動位置合わせ装置。
In Zheng Eva's automatic alignment system, which detects the orientation scene flat of the wafer by arranging a plurality of pairs of light emitters and light receiving elements on both sides of the wafer, the orientation plane flat is vertically divided into two equal parts. The sensor is installed at a symmetrical position with respect to a line that Oriental scene flat 1/
Equipped with a light-receiving element that has a sufficiently narrow width and length,
a differential amplifier that converts a difference in light intensity between the plurality of light receiving elements caused by rotation of the wafer into an electrical signal; and a differential amplifier that detects the position of the orientation plane flat based on the output signal of the differential amplifier; An automatic wafer positioning device characterized by comprising a control circuit for determining a stop position of an orientation sheet flat.
JP9380482A 1982-06-01 1982-06-01 Automatic wafer positioning apparatus Pending JPS58210633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9380482A JPS58210633A (en) 1982-06-01 1982-06-01 Automatic wafer positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9380482A JPS58210633A (en) 1982-06-01 1982-06-01 Automatic wafer positioning apparatus

Publications (1)

Publication Number Publication Date
JPS58210633A true JPS58210633A (en) 1983-12-07

Family

ID=14092596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9380482A Pending JPS58210633A (en) 1982-06-01 1982-06-01 Automatic wafer positioning apparatus

Country Status (1)

Country Link
JP (1) JPS58210633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206847A (en) * 1986-03-06 1987-09-11 Mimasu Handotai Kogyo Kk Method and apparatus for positioning semiconductor wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115665A (en) * 1973-03-07 1974-11-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115665A (en) * 1973-03-07 1974-11-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206847A (en) * 1986-03-06 1987-09-11 Mimasu Handotai Kogyo Kk Method and apparatus for positioning semiconductor wafer

Similar Documents

Publication Publication Date Title
US6275742B1 (en) Wafer aligner system
JPS61134814A (en) Positioning device of circular substrate
CN209868587U (en) Rail robot positioning system and rail robot
JP2611251B2 (en) Substrate transfer device
JPS6449915A (en) Shaft run-out insensitive type optical rotary encoder
JPS58210633A (en) Automatic wafer positioning apparatus
JP2000012657A (en) Positioning device for semiconductor wafer
JP2874795B2 (en) Orientation flat detector
JPH0641855B2 (en) Absolute unit encoder
JP2988594B2 (en) Wafer center detection device
JPH09166420A (en) Measuring device for outer diameter of circular member
JPS60102520A (en) Rotary encoder
JPS6370436A (en) Wafer positioning device
JP3533789B2 (en) Paper thickness detector
JPH01292203A (en) Length measuring apparatus
JPS6213617B2 (en)
JPS63171304A (en) Measuring apparatus for dimension
JPS6245039A (en) Angle positioning device of circular sheet element
JPS61268035A (en) Positioning method for orientation flat for wafer
JPS62205560A (en) Sensor for traveling position of magnetic tape
JPS6425006A (en) Optical method for detecting distance
JPS5980980A (en) Mounting method of light emitting element
JPH10116878A (en) Photoelectric sensor and wafer detecting device
SU934217A1 (en) Device for inspection of moving object shape
JP2002158275A (en) Wafer prealignment device and its wafer presence-and- absence judgment method, and wafer edge position detection method