JPS58209168A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS58209168A
JPS58209168A JP57091332A JP9133282A JPS58209168A JP S58209168 A JPS58209168 A JP S58209168A JP 57091332 A JP57091332 A JP 57091332A JP 9133282 A JP9133282 A JP 9133282A JP S58209168 A JPS58209168 A JP S58209168A
Authority
JP
Japan
Prior art keywords
layer
inp
type
junction
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57091332A
Other languages
Japanese (ja)
Inventor
Yoshio Ito
義夫 伊藤
Takatoshi Yamamoto
山本 「あ」勇
Akinori Katsui
勝井 明憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57091332A priority Critical patent/JPS58209168A/en
Publication of JPS58209168A publication Critical patent/JPS58209168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To produce a solar battery with high conversion efficiency by a method wherein an InGaAs lower cell layer grid-matched with InP substrate, a tunnel junction layer comprising P<+>-N<+> junction of InP, and an InAlAs upper cell layer grid-matched with InP are laminated on an InP substrate in said order. CONSTITUTION:An N type and P type In0.53Ga0.47As layer 9, an InP tunnel junction layer 10 comprising P<+> layer and N<+> layer and an N type In0.52Al0.48As layer 11 are laminated on an N<+> type InP substrate 8 in said order to be epitaxially grown. Next an insulating film 12 is formed on the layer 11 by means of the anode oxidation process and a band-like Au upper electrode 13 is provided on the film 12 while the overall back surface of the substate 8 is coated with an AuGe lower electrode 14. Through these procedures, a depletion layer is formed on the surface of the layer 11 while the electrons excited by absorption of solar light may be immediately transferred to the junction layer 10 due to the internal electric field with holes concentrated upon the interface of said film 12, thereby improving the photoelectric conversion efficiency.

Description

【発明の詳細な説明】 ード形太陽電池に関するものである。[Detailed description of the invention] The present invention relates to a board-type solar cell.

太@電池を最も高効単にする構造として、従来、第1図
に刈くずように、同一基板上に2つの太陽電池ヲ檀階し
たモノリシックカスフード形太陽電池が提案されている
。8l4/図において、/は基板単結晶、λは) h 
’tlt池層であるpn接合電池、3はnLp+接合に
よるトン早ル接合層、ダは上部電池層であるpn接合電
池、Sは窓層でシリ、各層l〜jをこの順序で積層し、
更に窓III S上に上部電MIA6を配置し、基板/
の)面に下部電極7を配電する9。
As the most efficient structure for thick batteries, a monolithic cass hood type solar cell has been proposed in which two solar cells are mounted on the same substrate, as shown in Fig. 1. 8l4/In the figure, / is the substrate single crystal, λ is)h
'tlt is a pn junction battery which is a cell layer, 3 is a fast junction layer by nLp+ junction, da is a pn junction battery which is an upper battery layer, S is a window layer, each layer l to j is laminated in this order,
Furthermore, place the upper electric MIA6 on the window IIIS, and connect the board/
9 for distributing power to the lower electrode 7 on the surface).

ここで、上部電池層lに/.6 eV、下部電池層λに
o.qs eVのバンドギャップをそれぞれ持つ半4体
祠料を用い、トンネル接合3により、これらコつのpn
従合奄池の電気的接合を行わせる構造が理想的な構造と
されている。
Here, the upper battery layer l has /. 6 eV, o. These pn
The ideal structure is one that allows electrical connections to be made.

このようなモノリシックカスケード形電池は、基板/の
上に多層をエビタキンヤル成長させ、順次に積層し一こ
い作製するので、各層の格子定数が一致しないと、各層
に、格子不整による欠陥が導入され、効革の低下を招く
Such a monolithic cascade battery is manufactured by growing multiple layers on a substrate and sequentially stacking them in a single layer, so if the lattice constants of each layer do not match, defects due to lattice misalignment will be introduced in each layer. This leads to a decrease in effectiveness.

ところで、GaAs太陽嵐池でもよく知られているよう
に、直接濱移の光吸収を利用する太陽電池では、舛キャ
リアの発生は牛導体のごく表面で起るので、その表面栴
結合が著しく、効率の向上を図ることができない。この
ため、上部電池層ダと上部電極6との間に、上部電池層
lの材料よりもバンドギャップが約0.3 eV程度大
きい材料による窓層jを設けて表面再結合の低減を図る
方法が採用されている。しかしながら、基板/がら上部
電池層eまでは格子定数が一致し、かつ上部電池層グの
バンドギャップがへ乙eV 、下部電池層コのバンドギ
ャップが0.9!; eV七勝う条件を満たす材料の組
み合わせは楓々存在するが、窓1ti !まで考慮する
と、上記エネルギーギャップ値の関係を満たし、かつ格
子整合のとれる組4合わせは存在しない。
By the way, as is well known in the case of GaAs solar storm ponds, in solar cells that utilize direct light absorption, carriers are generated on the very surface of the conductor, so the surface coupling is significant. Unable to improve efficiency. For this reason, there is a method of reducing surface recombination by providing a window layer j made of a material whose band gap is about 0.3 eV larger than that of the material of the upper battery layer l between the upper battery layer D and the upper electrode 6. has been adopted. However, the lattice constants from the substrate/glass to the upper battery layer e are the same, and the band gap of the upper battery layer is eV, and the band gap of the lower battery layer is 0.9! ; There are many combinations of materials that satisfy the conditions for achieving eV7, but there is no window 1ti! Considering the above, there are no four combinations that satisfy the above energy gap value relationship and are lattice matched.

そこで、エネルギーギャップ値を理想状麿からずらすか
、あるいは格子整合を犠牲にして、モノリシンクカスケ
ード太@電池を作製する以外に方法はない。しかし、い
ずれにしでも、理想状態からずれるから、効率は向上せ
ず、編−素子の太陽電池よりも低い/S%程度の変換効
率しか実現されていなかった。
Therefore, there is no other way than to deviate the energy gap value from the ideal value or to sacrifice lattice matching to create a monolithic cascade thick battery. However, in any case, the efficiency does not improve because of deviation from the ideal state, and only a conversion efficiency of about /S%, which is lower than that of a solar cell using a knitted element, has been achieved.

そこで、本発明の目的は、これら欠点を除去して、変侠
効¥の高い太陽電池を提供することにある0 かかる目的を達成するために、本発明でな、同一基板上
に下部電池層、トンネル接合層および上部電池層をこの
順序で積層したモノリシックカスケード形太−電池に2
いて、前記下乱、電池響をpn接合電池で構成し、前記
上部電池層をMIS構債笥池で横8表する。
Therefore, an object of the present invention is to eliminate these drawbacks and provide a solar cell with high variable efficiency. , a monolithic cascade type thick battery with a tunnel junction layer and an upper battery layer stacked in this order.
In this case, the above-mentioned disturbance and battery are constructed of pn junction batteries, and the upper battery layer is horizontally represented by an MIS structure.

以下に1面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to one side.

本開明太・湯電池の一例を第2図に示す。梁2・・′1
に2いて、lは基板となるInP単結晶、ヲ、は下部電
池層である工nO,55GaO,47Asのpni合3
、/θ゛丁InPのp+n+のトンネル接合層、//け
上部篭池會であるn形の工nO,52A18.46A−
6N ’2け絶縁層としての工nO,52”o、4sA
s%極聾化絶縁膜であり、こ+1j−各層l〜/2をこ
り順序で積層する。
An example of the present invention pollack/hot water battery is shown in Fig. 2. Beam 2...'1
In 2, l is the InP single crystal that is the substrate, and wo is the lower battery layer, which is the pni composite of nO, 55GaO, and 47As.
, /θ゛D InP p+n+ tunnel junction layer, // an n-type junction layer with an upper cage association nO, 52A18.46A-
6N'2 as insulation layer nO, 52''o, 4sA
This is a s% extremely deafening insulating film, and layers 1 to 2 are laminated in this order.

具体的には、液相エピタキシアル法でまずn層のInP
 (キャリア濃度n #l′it’θ /cc)Jh板
rの(///)面上にIn、、 Ga、4. As層り
のn形およびp形の各層を成長させた。#厚はp層およ
びn層ともに0.1μmとした。その上に、InPのト
ンネル接合部/θのp層層およびn層層を順次に成長さ
せた。その膜厚は、それぞn、 0.07μmとなるよ
うにした。
Specifically, we first created an n-layer InP using a liquid phase epitaxial method.
(Carrier concentration n #l'it'θ /cc) In, Ga, 4. N-type and p-type layers of As were grown. #The thickness was 0.1 μm for both the p layer and the n layer. Thereon, an InP tunnel junction/θ p-layer and n-layer were sequentially grown. The film thickness was set to n and 0.07 μm, respectively.

その後、n形のIn。、5゜Al。、48As層//を
O,,2pm成長させた。このInAlAs層//の表
面に、陽極酸化法により、絶縁嘆12を設けた。最後に
、Auによる上部電極13およびAuGe (10%)
による下sii極/1を形成した。
Then, n-type In. , 5°Al. , 48As layer// was grown to a thickness of O,,2 pm. An insulating layer 12 was provided on the surface of this InAlAs layer// by an anodic oxidation method. Finally, the upper electrode 13 by Au and AuGe (10%)
The lower sii pole/1 was formed.

このようにして得られた太陽電池のエネルギー帯構造ば
゛、第3図に示すようになる。In。、5□Al。、4
8As層//の表面では、空乏智15が形成されている
ため、太陽光の吸収により励起きれた電子は内部電界に
よりすみやかにトンネル接合部/θへ移動する。他方、
正孔は絶縁撲12の界面へ集まる。
The energy band structure of the solar cell thus obtained is shown in FIG. In. , 5□Al. , 4
Since a depletion layer 15 is formed on the surface of the 8As layer //, electrons excited by absorption of sunlight quickly move to the tunnel junction /θ due to the internal electric field. On the other hand,
The holes gather at the interface of the insulator 12.

このように、工n。、52A10.48As II /
/の表面では、正孔と電子が大きな内部電界により分離
さnるので、従来のような窓層5を中いなくても、電子
と正孔の再結合確率が減少する。また、本例では、基板
rと各層との格子整合が完全に取れているため、効率の
低下を招く結晶欠陥が導入でれること本ない。
In this way, engineering n. , 52A10.48As II /
On the surface of /, holes and electrons are separated by a large internal electric field, so the probability of recombination of electrons and holes is reduced without passing through the window layer 5 as in the conventional case. Furthermore, in this example, since the lattice matching between the substrate r and each layer is completely achieved, it is unlikely that crystal defects that would cause a decrease in efficiency would be introduced.

以上のようにして作製したモノリシックカスケード形太
陽亀池は、〃〜B%の変換効率を有1−1従来のものに
比較して、はるかく優れていることが確認された。
It was confirmed that the monolithic cascade type Taiyo Kameike produced as described above has a conversion efficiency of ~B% which is far superior to that of the conventional one.

本実施例では、液相エピタキシアル法1(より作製した
太陽電池について述べたか、他の作製法、例えばMBE
法あるいはMOCVD法を明いても全く同様に作製でき
る。
In this example, solar cells fabricated by liquid phase epitaxial method 1 are described, or other fabrication methods such as MBE are used.
It can be produced in exactly the same manner using the MOCVD method or the MOCVD method.

前述の実施例では、n形のInP 4板r上にIn。、
、Gao、4. As層?をn形層よびp形の順序で積
層したが、更に、p形のInP基板を用いて、p形およ
びn形の順序に積層して、InP )ンネル愛合/θを
n層およびp層の順序に、また、下部電池層・θを工n
O,52A’0,48 Asのp形層にすることによす
、絶赫膜との界面を蓄積層とする構造の太@電池を得る
こともできる。しかし、この場合には、上述した実施例
に比較して、2%程度効率は低い。これはp形のInA
lAsと絶縁膜界面でのバンドベンディングかn形のI
n AlAsの場合程には顕著でないためと考えられる
In the above example, InP was deposited on four n-type InP plates. ,
, Gao, 4. As layer? were laminated in the order of the n-type layer and the p-type layer, but further, using a p-type InP substrate, the layers were laminated in the order of the p-type layer and the n-type layer, and the InP layer was laminated in the order of the n-type layer and the p-type layer. In addition, the lower battery layer θ is constructed in the order of
By using a p-type layer of O,52A'0,48As, it is also possible to obtain a thick battery having a structure in which the interface with the absolute film serves as an accumulation layer. However, in this case, the efficiency is about 2% lower than in the embodiment described above. This is p-type InA
Band bending at the interface between lAs and the insulating film or n-type I
This is thought to be because it is not as pronounced as in the case of nAlAs.

以上に説明したように、本発明による構造のモノリシッ
クカスケード形太陽電池では、基板と上部電池層および
下部電池層との格子不整合がなく、かつ窓層を用いなく
ても、表面再結合確率が減少しているため、変換効率が
向上する利点がある。
As explained above, in the monolithic cascade solar cell having the structure according to the present invention, there is no lattice mismatch between the substrate and the upper and lower cell layers, and the surface recombination probability is high even without using a window layer. This has the advantage of improving conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1肉は従来構造のモノリシックカスケード杉太腸亀池
を模式的に示す断面図、第一図は本発明のモノリシック
カスケード形太@電池の構成例を模式的に示す断面図、
第3図は第214示の太陽電電ノエネルギーバンド図で
ある。 l・・・基板、      2・・・下部電池層、3・
・・トノネル接合部、  ≠・・・上部電池層、S・・
窓層、      乙・・上部電極、7・・下部電極、
     に 工nP基板、9 ・In。、53Gao
、4.As下it池層、/θ・・・工nP  p”n十
トンネル接合部、// ・−・In。、5□Alo、、
8As 、f部電池層、/2”’ 1nQ、52 A’
o、4BAs@ 極0化絶縁膜、/3− Au上Nil
[、/a =・AuGe下九[Li3・・・空乏層。 刊許出嘘人 日本電信電帖公社
The first figure is a cross-sectional view schematically showing a conventional monolithic cascade type cedar intestine Kameike, and the first figure is a cross-sectional view schematically showing a configuration example of the monolithic cascade type thick@ battery of the present invention.
FIG. 3 is a solar energy band diagram shown in FIG. 214. l...Substrate, 2...Lower battery layer, 3...
...Tononel junction, ≠...upper battery layer, S...
Window layer, B...upper electrode, 7...lower electrode,
In Engineering nP substrate, 9 ・In. , 53 Gao
,4. As bottom layer, /θ... nP p”n ten tunnel junction, // ・-・In., 5□Alo,,
8As, f part battery layer, /2"' 1nQ, 52 A'
o, 4BAs@ polarized insulating film, /3-Nil on Au
[, /a = AuGe lower 9 [Li3... depletion layer. Liar published by Nippon Telegraph Telegraph Corporation

Claims (1)

【特許請求の範囲】 旬 同一基板上に下部電池層、トンネル接合層および上
部電池層をこの順序で積層したモノリシックカスケード
形太陽電池において、前記下部電池層をpn接合電池で
構成し、前記上部電池層をMIS@@電池で構成したこ
とを特徴とする太陽電池。 2、特許請求の範囲第1項記載の太陽゛転地において、
前記基板をInPで形成し、削紀下部電池層にInPに
格子整合したInGaAS 、前記トンネル接合層とし
てInPのpn  接合、前記上部電池層としてInP
に格子整合゛したIn1Asを用いたことを特徴とする
太#、送池。
[Scope of Claims] Shun A monolithic cascade solar cell in which a lower battery layer, a tunnel junction layer, and an upper battery layer are laminated in this order on the same substrate, wherein the lower battery layer is composed of a pn junction battery, and the upper battery layer A solar cell characterized in that its layers are composed of MIS@@cells. 2. In the sun rotation location described in claim 1,
The substrate is made of InP, the lower battery layer is made of InGaAS lattice matched to InP, the tunnel junction layer is an InP pn junction, and the upper battery layer is InP.
A thick water supply pond characterized by using In1As with lattice matching.
JP57091332A 1982-05-31 1982-05-31 Solar battery Pending JPS58209168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57091332A JPS58209168A (en) 1982-05-31 1982-05-31 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57091332A JPS58209168A (en) 1982-05-31 1982-05-31 Solar battery

Publications (1)

Publication Number Publication Date
JPS58209168A true JPS58209168A (en) 1983-12-06

Family

ID=14023484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57091332A Pending JPS58209168A (en) 1982-05-31 1982-05-31 Solar battery

Country Status (1)

Country Link
JP (1) JPS58209168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374020B1 (en) * 2000-09-25 2003-02-26 학교법인고려중앙학원 Thin film solar cell and method for its manufacture
CN113690335A (en) * 2021-10-26 2021-11-23 南昌凯迅光电有限公司 Improved three-junction gallium arsenide solar cell and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571268A (en) * 1980-03-25 1982-01-06 Us Government Device for convering electromagnetic radiation to electric energy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571268A (en) * 1980-03-25 1982-01-06 Us Government Device for convering electromagnetic radiation to electric energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374020B1 (en) * 2000-09-25 2003-02-26 학교법인고려중앙학원 Thin film solar cell and method for its manufacture
CN113690335A (en) * 2021-10-26 2021-11-23 南昌凯迅光电有限公司 Improved three-junction gallium arsenide solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH05114747A (en) Improved monolithic tandem-type solar cell
JP2008211217A (en) Thin-film solar battery, and manufacturing method thereof
JPH02218174A (en) Photoelectric converting semiconductor device
CN104393086B (en) Composite photo voltaic battery
US20100059097A1 (en) Bifacial multijunction solar cell
CN106663714B (en) Compound-semiconductor photovoltaic cell and method for manufacturing compound-semiconductor photovoltaic cell
TW201438264A (en) Compound semiconductor photovoltaic cell and manufacturing method of the same
JP5481665B2 (en) Multi-junction solar cell
CN103219414B (en) GaInP/GaAs/InGaAsP/InGaAs tetra-ties the manufacture method of cascade solar cell
WO2020243998A1 (en) Multi-junction laminated laser photovoltaic cell
US10886425B2 (en) Tandem photovoltaic cell
CN111430493B (en) Multi-junction solar cell and power supply equipment
CN108735848B (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
JPH0661513A (en) Laminated solar battery
JPS58209168A (en) Solar battery
CN103346190B (en) Four knot tandem solar cell of Si substrate and preparation method thereof
WO1999048157A1 (en) Solar battery
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si
JP6536220B2 (en) Compound semiconductor solar cell and method of manufacturing the same
KR102175147B1 (en) Solar cell and manufacturing method thereof
JPH11274532A (en) Solar cell
JPS62291183A (en) Manufacture of multijunction semiconductor photoelectric conversion element
CN108269866B (en) Mixed polarity InGaN solar cell structure
JPH0955522A (en) Tunnel diode
JP2016028413A (en) Compound semiconductor photovoltaic cell and manufacturing method of compound semiconductor photovoltaic cell