JPS58209045A - Electronic analytical device - Google Patents

Electronic analytical device

Info

Publication number
JPS58209045A
JPS58209045A JP57090748A JP9074882A JPS58209045A JP S58209045 A JPS58209045 A JP S58209045A JP 57090748 A JP57090748 A JP 57090748A JP 9074882 A JP9074882 A JP 9074882A JP S58209045 A JPS58209045 A JP S58209045A
Authority
JP
Japan
Prior art keywords
sample
electron
primary electron
detector
electron rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57090748A
Other languages
Japanese (ja)
Inventor
Shigemi Furubiki
古曳 重美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57090748A priority Critical patent/JPS58209045A/en
Publication of JPS58209045A publication Critical patent/JPS58209045A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable analysis with high accuracy while checking a drop in the S/N ratio under the influence of the primary electron rays by providing a deflection means between an electron gun and a charged particle detection device in order to intermittently deflect the primary electron rays and to intermittently irradiate a sample. CONSTITUTION:A deflection coil 36 serving as a deflection means is provided between an electron gun 11 and a charged particle detector. Accordingly, the primary electron rays 2 pass through plurality of detector 9 and an electrode 34 to irradiate a sample 3 while the primary electron rays 37 deflected by the coil 36 incide into the detector 38 and do not irradiate the sample 3. In this way, by intermittently deflecting the primary electron rays 37 to intermittenly irradiate the sample 3, stray electrons or the like due to the primary electron rays incide into the detector 9 to remove a disadvantage deteriorating the S/N ratio as well as to stabilize intensity of the primary electron rays with high accuracy.

Description

【発明の詳細な説明】 本発明は、固体試料表面の微小領域の元素分析を行うオ
ージェ電子分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an Auger electron analyzer that performs elemental analysis of a minute region on the surface of a solid sample.

固体表面に数keVの一次電子線を照射し、−次組子線
照射点から放出されるオージェ電子のエネ2 ベーラ゛ ルギースペクトルから、固体表面分析を行うオージェ電
子分析法t′l、固体表向分析の一つとして広く応用さ
Jl、ている。
A solid surface is irradiated with a primary electron beam of several keV, and the energy of the Auger electrons emitted from the -order muntin beam irradiation point is 2. Auger electron analysis method t'l, which analyzes the solid surface from the beam energy spectrum. It is widely applied as a type of direction analysis.

一般に固体試別にf[n子線を照射した場合のオージェ
電子放射現象における放射イールドは、−次組子線電流
の1×104分の1程度の微小電流であるこ吉が知られ
ている。このため、オージェ電子分析でd、開1]角の
広い電子エイ・ルギー分析器を使用し、荷電粒子検出端
におけるS/N比をあげることが必要である。
In general, it is known that the radiation yield in the Auger electron emission phenomenon when solid-state testing is irradiated with an f[n beam is Kokichi, which is a minute current of about 1×104 of the -order munton beam current. For this reason, it is necessary to use an electron Auger electron analyzer with a wide d, opening 1] angle in Auger electron analysis to increase the S/N ratio at the charged particle detection end.

第1図に従来のオージェ電子分析装置を示す。FIG. 1 shows a conventional Auger electron analyzer.

1C1−次組子線源、−次電子線収束用電子レンズ。1C1-order muntin radiation source, -order electron beam converging electron lens.

−次組子線偏向用コイルまたは電極等を含む一次組子線
コラド、2は一次電子線、3は試料、4お」:び6はそ
れぞれ円筒鏡面型電子エネルギー分析器(以下円筒型分
析器と略記する)の外円筒電極および内因画電極、6,
7幻:内円筒電極5の円周に沿って切込斗れたスリット
、8は被分析電子検出スリット、9に1荷電粒子検出器
、10はオージェ電子(被分析電子)の軌道である。
- A primary muntin beam corrad including a coil or electrode for secondary muntin beam deflection, 2 is a primary electron beam, 3 is a sample, 4, 6 and 6 are respectively cylindrical mirror electron energy analyzers (hereinafter cylindrical analyzers). (abbreviated as) outer cylindrical electrode and inner cylindrical electrode, 6.
7 Phantom: A slit cut along the circumference of the inner cylindrical electrode 5, 8 a slit for detecting electrons to be analyzed, 9 a charged particle detector 1, and 10 the trajectory of Auger electrons (electrons to be analyzed).

3−− このような構成のオージェ電子分析装置において、電子
銃から放射され、アノードによってエネルギーの定めら
れた一次電子線は電子レンズ、イ励向コイル等により収
束、偏向され、試料3に照射される。試料3の表面上か
ら放出された二次電子のうち、一部は内円筒電極4上の
スリット6.7と被分析電子検出スリット8を通過して
荷電粒子検出器9に入射し、電子数強度として検出され
る。
3-- In the Auger electron analyzer with such a configuration, the primary electron beam emitted from the electron gun and having its energy determined by the anode is focused and deflected by an electron lens, an excitation coil, etc., and is irradiated onto the sample 3. Ru. Some of the secondary electrons emitted from the surface of the sample 3 pass through the slit 6.7 on the inner cylindrical electrode 4 and the analyte electron detection slit 8, enter the charged particle detector 9, and the number of electrons is Detected as intensity.

い寸、偏向コイル捷たは電極に加える直流電流寸たは直
流電圧を調節し、−次組子線の試料表面上の照射点を適
当な位置に固定し、このような条件下で、内円筒電極と
外円節電極間に印加する電位差を掃引することにより、
試料表面から放射される電子のうち、円筒型分析器内で
被分析電子軌道10を通る電子のエネルギーを連続的に
変化することができる。
Under these conditions, adjust the DC current or DC voltage applied to the deflection coil or electrode, fix the irradiation point of the -muntin wire on the sample surface at an appropriate position, and By sweeping the potential difference applied between the cylindrical electrode and the outer node electrode,
Among the electrons emitted from the sample surface, the energy of the electrons passing through the analyzed electron trajectory 10 within the cylindrical analyzer can be continuously changed.

上述の操作により荷電粒子検出器9に得られる出力を増
幅し、内円筒電極と外円節電極間に印加。
The output obtained from the charged particle detector 9 by the above operation is amplified and applied between the inner cylindrical electrode and the outer cylindrical electrode.

掃引される電位差に対応して表示することにより、オー
ジェ電子エネルギースペクトルを得ることができる。
An Auger electron energy spectrum can be obtained by displaying it in response to the swept potential difference.

開[]角の広い電子エネルギー分析器として、前述した
ように、第1図に示した互いに直径の異なる円筒を同軸
に配置(−/ξ二重円筒電極構造の円筒型分析器を用い
ている。この分析器のスリットの幾何学的開口率C[半
立体角の11%に達する。
As mentioned above, as an electron energy analyzer with a wide opening angle, a cylindrical analyzer with a double cylindrical electrode structure is used, in which cylinders with different diameters are coaxially arranged as shown in Figure 1. The geometric aperture ratio C of the slit of this analyzer [reaches 11% of the half-solid angle].

1〜かi〜、第1図に示した構造のものでは放射された
オージェ電子の一部分しか荷電粒子検出器9に導入され
ないため、S/N比があ丑りょくない。
In the structure shown in FIG. 1, only a portion of the emitted Auger electrons are introduced into the charged particle detector 9, so the S/N ratio is not compromised.

斗だ、オージェ?IL子分析装置の面積分解能を1μt
nφ 」:りも小さくするには、第1図の構造では不可
能であZ)。
Doo, Auger? The area resolution of the IL analyzer is 1 μt.
It is impossible with the structure shown in Fig. 1 to make the diameter smaller than nφ.

そこで、−次組子照射系と試料量の距離を短縮し、面積
分解能を向−1−するため、第2図に示すよ一次 うに 電子線源からの電子線は円筒型分析器の内ゝA 円筒電極内を、その軸に沿って入射して試料に照射する
」:うな構造をとると、最も効率よくオージェ電子を円
筒型分析器内に導入することができる。
Therefore, in order to shorten the distance between the munton irradiation system and the sample volume and improve the area resolution, the electron beam from the electron beam source is transmitted inside the cylindrical analyzer as shown in Figure 2. A. Irradiating the sample along the axis of the cylindrical electrode: By adopting this structure, Auger electrons can be introduced into the cylindrical analyzer most efficiently.

第2図において、電子銃11で発生した電子線2は、第
1コンデンザーレンズ12、絞り13.5 ・°−−−
゛ 第2コンデンザーレンズ14等により収束されて試料3
に照射される。試料面より放出されるオージェ電子10
は、内円筒電極6および外円筒電極4の中でに、図のよ
うな軌道を画き、スリット15を通過して荷電粒子検出
器9に到達し、電子数強度として検出される。試料への
照射電子線の位置を固定し、この条件下で、内円筒電極
と外円節電極間に印加する電位差を掃引することにより
、分析器内を通過するオージェ電子の軌道を連続的に変
化させることができる。
In FIG. 2, the electron beam 2 generated by the electron gun 11 is transmitted through the first condenser lens 12 and the aperture 13.5°---
゛The sample 3 is focused by the second condenser lens 14, etc.
is irradiated. Auger electrons emitted from the sample surface 10
traces a trajectory as shown in the figure within the inner cylindrical electrode 6 and the outer cylindrical electrode 4, passes through the slit 15, reaches the charged particle detector 9, and is detected as the electron number intensity. By fixing the position of the electron beam irradiating the sample and sweeping the potential difference applied between the inner cylindrical electrode and the outer cylindrical electrode under these conditions, the trajectory of the Auger electrons passing through the analyzer can be continuously traced. It can be changed.

上述の操作により荷電粒子検出器9に得られる出力を増
幅し、内円筒電極と外円節電極間に印加、掃引される電
位差に対応して表示することにより、オージェ電子エネ
ルギースペクトルを得ることができる。しかして得られ
たスペクトルは微小面積分析に相当する。
An Auger electron energy spectrum can be obtained by amplifying the output obtained by the charged particle detector 9 through the above operation and displaying it in response to the potential difference applied and swept between the inner cylindrical electrode and the outer cylindrical electrode. can. The spectrum thus obtained corresponds to micro area analysis.

このオージェ電子分析装置における一番の問題点は、−
次組子ビーム2と、分析器のスリット15を通過したオ
ージェ電子とが交叉する部分にある。
The biggest problem with this Auger electron analyzer is -
It is located at the intersection of the second muntin beam 2 and the Auger electrons that have passed through the slit 15 of the analyzer.

すなわち−次組子線のス’) ソl□ 15等にJ:る
散乱6 ページ 電子が荷電粒子検出器9に流入し、上述した微小電流で
あるオージェ電子信号を撹乱する。
That is, the scattered electrons flowing into the -order muntin line S') 15, etc. flow into the charged particle detector 9 and disturb the Auger electron signal, which is the minute current described above.

本発明は、この」:うな問題を解消するもので、電子銃
と荷電粒子検出器の間に偏向手段を設け、−次組子線を
断続的に偏向することにより、−次組子線を断続的に試
料に照射し、−次組子線による散乱電子などのS/Nを
低下させる雑音成分を除き、従来の力法以−にに感度を
向上させる装置を提供するものである。
The present invention solves this problem by providing a deflection means between the electron gun and the charged particle detector and intermittently deflecting the -order muntin wire. The present invention provides an apparatus that improves sensitivity more than the conventional force method by irradiating a sample intermittently and removing noise components that lower the S/N ratio, such as scattered electrons due to -order munton beams.

第3図は本発明の一実施例にかがる電子分析装置の概略
構成を示し、第1.2図と同一部分には同一番号をイマ
117ている。
FIG. 3 shows a schematic configuration of an electronic analyzer according to an embodiment of the present invention, and the same parts as in FIGS. 1 and 2 are designated by the same numbers 117.

電子分析装置30は、真空ボンダ31により真空になっ
ている。その中に置かれている試料3の表面に高圧電源
部32から電流を電子銃11へ供給し−・次組子線2を
発生させる。電子銃11がら放射された一次電子は、収
束用電子レンズ系33により収束さノ主、中空となって
いる複数の荷電粒子検出器9とスリット系16を通り、
円筒鏡面型エネルギー分析器の内円筒′電極6の内部3
4を通過して試嘴斗3上の一次電子照射点35に入射す
る。
The electronic analyzer 30 is evacuated by a vacuum bonder 31. A current is supplied to the electron gun 11 from the high-voltage power supply section 32 to the surface of the sample 3 placed therein, and a second muntin wire 2 is generated. The primary electrons emitted from the electron gun 11 are converged by a converging electron lens system 33, and then pass through a plurality of hollow charged particle detectors 9 and a slit system 16.
Inside 3 of inner cylinder' electrode 6 of cylindrical mirror type energy analyzer
4 and enters the primary electron irradiation point 35 on the test beak 3.

そ1〜で、この−次組子線2は、偏向手段となる偏向コ
イル36により断続的に偏向され、偏向を働かせないと
きのみ一次電子線2は、複数の検出器9および電極34
内を通過して試料3に照射される。コイル36により偏
向させると一次電子線は曲げられ5、偏向された一次電
子線37は検出器38に入射する。すなわち、−次組子
線の照射により試料3から発生したオージェ電子1oは
、収束点39を通過して電子軌道40を通って検出器9
に入射するが、このとき偏向コイル36により一次電子
線37は偏向されて検出器38に入射し、試料3に照射
されない。このように、−次組子線37を断続的に偏向
して試料3への照射を断続することにより、−次組子線
にもとづく散乱電子等が検出器9に入射してS/N比を
劣化させる不都合を除去することができる。
In steps 1 to 1, the -order muntin beam 2 is intermittently deflected by a deflection coil 36 serving as a deflection means, and only when the deflection is not activated, the primary electron beam 2 passes through the plurality of detectors 9 and the electrodes 34.
The sample 3 is irradiated through the inside. When deflected by the coil 36, the primary electron beam is bent 5, and the deflected primary electron beam 37 enters the detector 38. That is, the Auger electrons 1o generated from the sample 3 by the irradiation with the -order muntin beam pass through the convergence point 39 and pass through the electron trajectory 40 to the detector 9.
However, at this time, the primary electron beam 37 is deflected by the deflection coil 36 and enters the detector 38, and is not irradiated onto the sample 3. In this way, by intermittently deflecting the -order muntin line 37 and intermittent irradiation of the sample 3, scattered electrons and the like based on the -order muntin line enter the detector 9, thereby increasing the S/N ratio. It is possible to eliminate inconveniences that cause deterioration.

捷だ、偏向コイル36により偏向された一次電子線37
は検出器38に入射し、電流計41で読み出された後、
電源部32への帰還回路部42へ送られる。この構成に
]=れば、常時−次組子線の強度をモニターできるとと
もに、その強度変化を検知し、その変化に、1、って電
源部32の出力を制御できるため、市確な分析データを
得る上で最も重要な項目の一つである一次電子線の強度
を高精度に安定化することができる。
The primary electron beam 37 is deflected by the deflection coil 36.
enters the detector 38 and is read out by the ammeter 41, then
The signal is sent to the feedback circuit section 42 to the power supply section 32. With this configuration, it is possible to constantly monitor the intensity of the -order muntin wire, detect changes in the intensity, and control the output of the power supply unit 32 according to the change, making it possible to conduct accurate analysis. The intensity of the primary electron beam, which is one of the most important items in obtaining data, can be stabilized with high precision.

さて−次組子照射点35から発生したオージェ電子10
は、被分析電子軌道40を描いて内円筒電極5と外円前
電極4の間を通過し、スリット系15を通過して複数の
荷電粒子検出器9へ到達する。偏向コイル36へは発振
器43に同調した高周波矩形波電流44を流17偏向を
断続的に行う。
Now - Auger electron 10 generated from the next muntin irradiation point 35
The electrons pass between the inner cylindrical electrode 5 and the outer cylindrical front electrode 4 while drawing an analyzed electron trajectory 40, pass through the slit system 15, and reach the plurality of charged particle detectors 9. A high frequency rectangular wave current 44 tuned to an oscillator 43 is passed through the deflection coil 36 to intermittently perform deflection.

荷電粒子検出器9の信uシ1.プリアンプ45を通し、
発振器43に同調して口、フィンアンプ46で信号増幅
を行う。そして、内円筒電極5を電気的に接地12、外
円前電極4に印加する電圧を走査し、この走査に同期1
〜てロンクインアンブ46の出力を読み出し、x−Yレ
コーダ47に出力すると、積分型の電子エネルギースペ
クトルが得られる。
Confidence of charged particle detector 91. Through preamplifier 45,
Signal amplification is performed by a fin amplifier 46 in tune with the oscillator 43. Then, the inner cylindrical electrode 5 is electrically grounded 12, and the voltage applied to the outer cylindrical front electrode 4 is scanned.
By reading out the output of the long-in amplifier 46 and outputting it to the x-y recorder 47, an integral type electron energy spectrum is obtained.

48仁1、ランプ電源である。48 Ren 1, lamp power supply.

9、、。9.

こうして得られたスペクトルは微少面積分析となる。な
お、内円筒電極5の内部にコンデンザレンズ、偏向コイ
ル、対物レンズなどより成る電子レンズ系49を収納し
てあり、これにより対物レンズと試料3との距離を接近
させることができる。
The spectrum obtained in this way becomes a micro area analysis. Note that an electron lens system 49 consisting of a condenser lens, a deflection coil, an objective lens, etc. is housed inside the inner cylindrical electrode 5, so that the distance between the objective lens and the sample 3 can be brought closer.

第3図の装置によれば、円筒鏡面型エネルギー分析器の
全円周にわたってオージェ電子が導入されるため、信号
収量を増大させることができる。
According to the apparatus shown in FIG. 3, since Auger electrons are introduced over the entire circumference of the cylindrical mirror energy analyzer, the signal yield can be increased.

寸だ、試料表面上の一次電子線の径のぼけは球面収差に
よって決まり、オージェ電子分析器の空間分解能を決め
る。球面収差は対物レンズ−試料間距離の平方に比例す
る。第3図の構造では対物レンズと試料とを近接させる
ことが可能であり、従来の走査形オージェ電子分析器の
空間分解能よりもその値を著しく改善できる。さらに第
3図の構造では、試料の大きさが円筒分析器に関係しな
くなり、分析対象となる試料直径に対する制限もなくな
り、大口径試料を装着することが可能であり、かつ全体
的に装置の小型化が可能となる等の利点がある。
The blurring of the diameter of the primary electron beam on the sample surface is determined by spherical aberration, which determines the spatial resolution of the Auger electron analyzer. Spherical aberration is proportional to the square of the objective lens-sample distance. With the structure shown in FIG. 3, it is possible to bring the objective lens and the sample close to each other, and the spatial resolution can be significantly improved over that of the conventional scanning Auger electron analyzer. Furthermore, with the structure shown in Figure 3, the size of the sample is no longer related to the cylindrical analyzer, there is no restriction on the diameter of the sample to be analyzed, it is possible to mount a large-diameter sample, and the overall size of the device is improved. There are advantages such as miniaturization.

10ベーン・ 寸だ、偏向コイルにより一次電子線を断続的に試別表面
へ照射し、この−次組子線の断続と同期して荷電粒子を
検出するので、−次組子線の散乱などによる雑音成分を
小さくできる。そのため荷電粒子検出器端におけるS/
N比を著しく改善でき、寸だ、検出限界も従来」:り改
善される。
The primary electron beam is intermittently irradiated onto the sample surface using a deflection coil, and charged particles are detected in synchronization with the interruption of the -order muntin wires, so scattering of the -order muntin wires, etc. It is possible to reduce the noise component caused by Therefore, S/
The N ratio can be significantly improved, and the detection limit has also been significantly improved.

以−にの」:うに、本発明によれば、分解能がすぐ八、
小型化が可能になるとともに、−次組子線の影響による
S/N比の低下を防止でき、さらに高精度の分析を行う
ことができる。
According to the present invention, the resolution is immediately 8,000 yen.
It is possible to reduce the size, prevent a decrease in the S/N ratio due to the influence of negative muntin lines, and perform highly accurate analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電子分析装置の概略断面図、第2図は他
の電子分析装置の概略断面図、第3図は本発明の一実施
例にかかる電子分析装置の概略断面図である。 2.37・・・・・・−次組子線、3・・・・・・試料
、9・・・・・・荷電粒子検出器、11・・・・・・電
子銃、15・・・・・・スリット系、32・・・・・・
高圧電源部、36・・・・・・偏向コイル、38・・・
・・・検出器、42・・・・・・帰還回路部。
FIG. 1 is a schematic cross-sectional view of a conventional electronic analyzer, FIG. 2 is a schematic cross-sectional view of another electronic analyzer, and FIG. 3 is a schematic cross-sectional view of an electronic analyzer according to an embodiment of the present invention. 2.37...- Next muntin beam, 3... Sample, 9... Charged particle detector, 11... Electron gun, 15... ...Slit type, 32...
High voltage power supply section, 36...Deflection coil, 38...
. . . Detector, 42 . . . Feedback circuit section.

Claims (2)

【特許請求の範囲】[Claims] (1)−次電子線を放射する電子銃と試料間に、エネル
ギー分析器と複数の荷電粒子検出器を配置し、前記−次
電子線を前記荷電粒子検出器の間および前記エネルギー
分析器内を通して前記試料に照射し、前記検出器と電子
銃間に前記−次電子線を偏向する手段を設け、前記−次
電子線を前記偏向手段により断続的に前記試料に照射す
るように構成した電子分析装置。
(1) An energy analyzer and a plurality of charged particle detectors are disposed between an electron gun that emits a secondary electron beam and a sample, and the secondary electron beam is emitted between the charged particle detectors and within the energy analyzer. and a means for deflecting the -order electron beam is provided between the detector and the electron gun, and the deflection means intermittently irradiates the sample with the -order electron beam. Analysis equipment.
(2)偏向された一次電子線を検出して電子銃の電源出
力を制御する装置を有する特許請求の範囲第1項記載の
電子分析装置。
(2) The electron analysis device according to claim 1, further comprising a device for detecting the deflected primary electron beam and controlling the power output of the electron gun.
JP57090748A 1982-05-27 1982-05-27 Electronic analytical device Pending JPS58209045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57090748A JPS58209045A (en) 1982-05-27 1982-05-27 Electronic analytical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090748A JPS58209045A (en) 1982-05-27 1982-05-27 Electronic analytical device

Publications (1)

Publication Number Publication Date
JPS58209045A true JPS58209045A (en) 1983-12-05

Family

ID=14007211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090748A Pending JPS58209045A (en) 1982-05-27 1982-05-27 Electronic analytical device

Country Status (1)

Country Link
JP (1) JPS58209045A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077086A (en) * 1973-11-07 1975-06-24
JPS50155287A (en) * 1974-06-05 1975-12-15
JPS56141158A (en) * 1980-04-03 1981-11-04 Sony Corp Electron microscope device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077086A (en) * 1973-11-07 1975-06-24
JPS50155287A (en) * 1974-06-05 1975-12-15
JPS56141158A (en) * 1980-04-03 1981-11-04 Sony Corp Electron microscope device

Similar Documents

Publication Publication Date Title
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
JPS6369135A (en) Electronic detector
US5591971A (en) Shielding device for improving measurement accuracy and speed in scanning electron microscopy
US4205226A (en) Auger electron spectroscopy
US4698502A (en) Field-emission scanning auger electron microscope
CA1048163A (en) Process and apparatus for the elementary and chemical analysis of a sample by spectrum analysis of the energy of the secondary electrons
US4833323A (en) Determining the composition of a solid body
US3505517A (en) Ion cyclotron resonance mass spectrometer with means for irradiating the sample with optical radiation
JP2873839B2 (en) Aperture inspection method in focused ion beam device
JPS58209045A (en) Electronic analytical device
US4748407A (en) Method and apparatus for measuring time dependent signals with a particle probe
US3376415A (en) X-ray spectrometer with means to vary the spacing of the atomic planes in the analyzing piezoelectric crystal
JP2999127B2 (en) Analytical equipment for ultra-fine area surface
US4219730A (en) Charge-particle energy analyzer
US3435207A (en) Apparatus for measuring velocity of low energy electrons
JPS59134541A (en) Electron analyzer
US3686501A (en) Charged particle analyzer with means to determine the coordinate position of the sample
JPH05109379A (en) Scanning reflecting electron microscope
JPS6324435Y2 (en)
JP3353488B2 (en) Ion scattering spectrometer
TW202431322A (en) Apparatus of charged particle system for contactless current-voltage measurement of devices
JPH04112445A (en) Electronic spectral analyzing device
JP2794885B2 (en) Analyzer using charged particle beam
JPS63102149A (en) Determinating potential measuring spectrometer detector
JPH10213556A (en) Device and method for analyzing surface element