JPS58209008A - Method of producing electrically insulating paper - Google Patents

Method of producing electrically insulating paper

Info

Publication number
JPS58209008A
JPS58209008A JP9190582A JP9190582A JPS58209008A JP S58209008 A JPS58209008 A JP S58209008A JP 9190582 A JP9190582 A JP 9190582A JP 9190582 A JP9190582 A JP 9190582A JP S58209008 A JPS58209008 A JP S58209008A
Authority
JP
Japan
Prior art keywords
insulating paper
pressure
plastic film
micropores
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9190582A
Other languages
Japanese (ja)
Other versions
JPS643009B2 (en
Inventor
安藤 順夫
金丸 公春
野沢 英行
駒木根 民泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9190582A priority Critical patent/JPS58209008A/en
Publication of JPS58209008A publication Critical patent/JPS58209008A/en
Publication of JPS643009B2 publication Critical patent/JPS643009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Organic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気用絶縁紙、とくにポーラスプラスチックフ
ィルムからなる絶縁紙に関するものである0 電線ケーブル、変圧器、コンデンサ等に使用される電気
用絶縁紙は、従来のセルローズ紙からプラスチックフィ
ルムあるいはプラスチック紙に置き換えられつつある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrical insulating paper, particularly insulating paper made of porous plastic film.0 Electrical insulating paper used for electric cables, transformers, capacitors, etc. is conventional cellulose paper. are being replaced by plastic film or paper.

プラスチックフィルムを使用する場合、セルローズ紙と
同様のしなやかさ、引張り強度、伸び、圧縮率等を得る
だめ、プラスチックフィルムは多数の微小孔を持つよう
加工される場合が多く、とくに多数枚の絶縁紙を積層し
て絶縁体を構成する場合には、絶縁油や絶縁ガスの含浸
性を良くするため同様の加工がなされる。
When using plastic film, in order to obtain the same flexibility, tensile strength, elongation, compressibility, etc. as cellulose paper, plastic film is often processed to have a large number of micropores. When forming an insulator by laminating layers, similar processing is performed to improve impregnation with insulating oil or gas.

このとき使用されるポーラスなプラスチックフィルムは
種々の方法により作製されるが、いずれの方法によって
も微小孔の全てが絶縁紙外部と通じているいわゆる開放
孔とはなっておらず、プラスチックフィルム内に閉じこ
められた微小孔が多少なりとも存在する。このようなポ
ーラスフィルムを積層し脱湿、脱気した後絶縁油或いは
不活性ガス圧を加えることにより、あるレベルの絶縁耐
力を持つよう設計された絶縁体に独立した、閉じた微小
孔が存在すると、その内部は絶縁油、或いは不活性カス
と十分置換されず、内部に空気或いはグラスチックや絶
縁油の分解ガス等が残存するため、この部分での微小放
電による劣化、或いはこの部分を発端とする絶縁破壊を
生じ、本来の絶縁耐力を発揮できない場合がある。
The porous plastic film used at this time is produced by various methods, but none of the methods have so-called open pores in which all of the micropores communicate with the outside of the insulating paper. There are some confined micropores. By laminating such porous films, dehumidifying and degassing them, and then applying insulating oil or inert gas pressure, independent closed micropores are created in the insulator, which is designed to have a certain level of dielectric strength. Then, the inside is not sufficiently replaced with insulating oil or inert scum, and air, plastic, decomposed gas of insulating oil, etc. remain inside, resulting in deterioration due to micro discharge in this part, or deterioration caused by this part. In some cases, dielectric breakdown may occur and the original dielectric strength cannot be demonstrated.

本発明の目的は従来のポーラスプラスチックフイルムの
持つ欠点を軽減し、より性能の向上した電気絶縁紙を提
供することにある。
An object of the present invention is to alleviate the drawbacks of conventional porous plastic films and to provide electrically insulating paper with improved performance.

すなわち、本発明の要旨は従来のポーラスプラスチック
フィルムを製造した後、存在する閉じた微小孔にプラス
チックフィルムの表面或いは周囲の開放孔等の外部から
カス圧或いは液圧を加え、比較的長時間にわたって閉じ
た微小孔周囲のプラスチック部内をこれら気体又は液体
を拡散させ、微小孔の内部の圧力を高め、逆に外部の圧
力を短時間に低下させることにより、微小孔内の内圧に
よる膨張により微小孔を破裂させ、プラスチックフィル
ム表面或いは周囲の開放孔とつながる通路を形成させた
ことにある。
In other words, the gist of the present invention is that after manufacturing a conventional porous plastic film, a gas pressure or liquid pressure is applied to the existing closed micropores from the outside such as the surface of the plastic film or the open pores around it, and the process is continued for a relatively long period of time. By diffusing these gases or liquids inside the plastic part around the closed micropores, increasing the pressure inside the micropores and conversely reducing the external pressure in a short time, the micropores expand due to the internal pressure inside the micropores. The plastic film is ruptured to form a passageway that connects to the open pores on or around the plastic film.

第1図は従来のポーラスプラスチックフィルムによる電
気絶縁紙1の断面模型であり、フィルム表面に達した開
放孔2、他の開放孔につながった微小孔3とともにいず
れとも通路を持たぬ閉じられた微小孔4が存在している
Figure 1 is a cross-sectional model of electrical insulating paper 1 made of a conventional porous plastic film, with open holes 2 reaching the film surface, micropores 3 connected to other open holes, and closed microscopic holes with no passages. Hole 4 is present.

第2図は、第1図のような従来のポーラスプラスチック
フィルム1に高圧ガス5を加えた状態を示す模型図であ
り、印加圧力1)に対し開放孔2゜3内の圧力は同じP
となるが、閉じた微小孔4内部の圧力はP′となりP 
> P’となっている。
FIG. 2 is a model diagram showing a state in which high pressure gas 5 is applied to the conventional porous plastic film 1 as shown in FIG.
However, the pressure inside the closed micropore 4 becomes P' and P
>P'.

第3図は、第2図の高圧ガスを加えた後、外部の圧力P
をP′に急変させた状況を示し、開放孔2゜3内のカス
圧は直に■′″となるのに対し、P’>P’であれば、
閉じた微小孔4の内部には外向きの圧力(P′〉1)つ
が作用し、壁面の一部はこの圧力によって機械的に6部
分で破壊され、内部のカスは例えば第3図中の矢印の経
路を経て解放される。即ち、閉じた微小孔が開放孔と々
る。この処理に於てフィルムの温度を微小孔が崩壊しな
い範囲、一般には材料プラスチックの融点より低い温度
範囲捷で高めておけば、外部圧力によるガス又は液体の
拡散を促進し、高圧力保持時間を短縮することが可能と
なり、寸だ一般にプラスチックフィルムの引張り強さが
低下するため、外部圧力急低下時の閉じた孔内の内圧が
低くても壁面を破壊することが可能となるので実用的に
は、鳴動な付加条件である。また、印加する圧力値、圧
力媒体、印加時間は上記温度、ポーラスプラスチックフ
ィルムの材質、孔の状況によって変化すべきものである
Figure 3 shows the external pressure P after adding the high pressure gas in Figure 2.
This shows a situation in which P is suddenly changed to P', and the gas pressure inside the open hole 2゜3 immediately becomes ■''', whereas if P'>P',
An outward pressure (P′〉1) acts inside the closed micropore 4, and a part of the wall surface is mechanically destroyed in 6 parts by this pressure, and the internal debris is removed, for example, as shown in Fig. 3. It will be released by following the path of the arrow. That is, the closed micropores become open holes. In this process, if the temperature of the film is raised within a range that does not cause the micropores to collapse, which is generally lower than the melting point of the plastic material, the diffusion of gas or liquid due to external pressure will be promoted, and the high pressure holding time will be extended. Since the tensile strength of the plastic film generally decreases, it is possible to destroy the wall surface even if the internal pressure inside the closed hole is low when the external pressure suddenly decreases, making it practical. is an important additional condition. Further, the applied pressure value, pressure medium, and application time should be changed depending on the temperature, the material of the porous plastic film, and the condition of the pores.

捷だ、低温で液化するカスを高温、高圧力で印加し、閉
じた微小孔内への充満を早め、これを低温とし液化させ
、この状態で急激に外部圧力をとりさるか、急激に再加
熱することにより内部の液体の沸騰を生じさせ、内圧を
高める方法もとることができる。さらに高温−低温状態
をくり返すことにより、液体が微小孔内部に貯えられる
ことを促進し、その后上記と同一処理により高い内圧を
得ることも可能である。
In this case, the scum that liquefies at low temperature is applied at high temperature and high pressure to hasten the filling of the closed micropores, which is then lowered to a low temperature and liquefied. It is also possible to use heating to cause the internal liquid to boil, thereby increasing the internal pressure. Furthermore, by repeating high temperature and low temperature conditions, it is possible to promote the storage of liquid inside the micropores, and then to obtain a high internal pressure by the same process as described above.

実施例の一つとして厚さ100μmのポーラスポリプロ
ピレンフィルムを試料として、これを10枚巻回して真
空乾燥後アルキルベンゼン油を含浸して作製したモデル
ケーブルにおいて、従来のポーラスポリプロピレンフィ
ルムそのものでは、油圧1kg/1rlGの状態で部分
放電開始電圧は30kv/m絶縁破壊ストレスは52k
v/mmであった。
As an example, we used a porous polypropylene film with a thickness of 100 μm as a sample, and in a model cable created by winding 10 sheets of this, vacuum-drying it, and then impregnating it with alkylbenzene oil. At 1rlG, the partial discharge inception voltage is 30kv/m, and the dielectric breakdown stress is 52k.
It was v/mm.

一方、本発明の一例として窒素ガス圧100気圧を90
℃の状態で1時間加え、その後、約20秒 5− で大気圧に開放する処理をした絶縁紙を用いて同様のモ
デルケーブルの部分放電開始電圧を測定した所、その開
始電圧は45 k v /amとなり、絶縁破壊ストレ
スは7Qkv/m+n以上となった。このことは前者の
ケーブル絶縁体中には微小な閉じた孔が残存し、その内
部で30kv/mmのストレスで放電を開始したのに対
し、後者のケーブルではそれらの閉じた孔が開放され、
絶縁油が浸透したため内部放電開始電圧が45kv/M
nに上昇すると共に絶縁破壊ストレスも向上したもので
ある。但し、45kv/咽でなお微小放電が残存しだが
、これは極めて微小な閉じた孔が開放されずこの内部で
放電を生じたものである。しかし、放電開始電圧が30
から45kv/m+nへ50%上昇したことは工業的に
は大きい改良であり、絶縁紙の性能が画期的に改良され
たと云える。
On the other hand, as an example of the present invention, nitrogen gas pressure of 100 atm is
When the partial discharge inception voltage of a similar model cable was measured using insulating paper that had been exposed to atmospheric pressure for 1 hour at ℃ and then released to atmospheric pressure for about 20 seconds, the inception voltage was 45 kV. /am, and the dielectric breakdown stress was 7Qkv/m+n or more. This means that in the former cable, minute closed holes remained in the cable insulation, and discharge started inside them under a stress of 30 kv/mm, whereas in the latter cable, those closed holes were opened.
Internal discharge starting voltage was 45kv/M due to penetration of insulating oil.
As n increases, the dielectric breakdown stress also improves. However, at 45 kV/throat, a small discharge still remained, but this was because an extremely small closed hole was not opened and the discharge occurred inside the hole. However, the discharge starting voltage is 30
The 50% increase from 45kv/m+n to 45kv/m+n is a major improvement from an industrial perspective, and can be said to be a revolutionary improvement in the performance of insulating paper.

本発明は電気絶縁紙として、ポーラスプラスチックフィ
ルム一枚の状態をとりあげたが、実用面ではそれらの積
層構造、ロール巻構造、他の絶縁紙やフィルムとの接着
構造においても処理するこ 6− とにより新たな絶縁紙を得ることができる。
In the present invention, a porous plastic film is used as the electrically insulating paper, but in practical terms, it can also be processed in the form of a laminated structure, a roll-wound structure, or an adhesive structure with other insulating papers or films. A new insulating paper can be obtained.

さらに、本発明による絶縁紙と同じ手法によりポーラス
プラスチックフィルムでなくとも微小な閉じた空隙を有
する通常のプラスチックフィルムを用いた絶縁紙の性能
を向上させることも可能である。
Furthermore, it is also possible to improve the performance of an insulating paper using an ordinary plastic film having minute closed voids, rather than a porous plastic film, by the same method as the insulating paper according to the present invention.

本発明により従来閉じた微小孔が残存するだめ実使用が
ためられれたポーラスプラスチックフィルムによる絶縁
紙の耐電圧性能が飛躍的に向上し、脱気、乾燥、含浸も
十分で長年月安定した電気絶縁紙を得ることができる。
The present invention dramatically improves the voltage resistance of insulating paper made of porous plastic film, which was previously discouraged from practical use due to remaining closed micropores, and provides stable electrical insulation for many years with sufficient deaeration, drying, and impregnation. You can get paper.

この結果とくに高ストレス下での耐電圧性能と低誘電体
損特性を持つ絶縁紙が得られ、今後の高電圧機器の超高
圧化、コンパクト化が促進され、電力機器の開発に大き
く寄与するものである。
As a result, an insulating paper with high voltage resistance and low dielectric loss characteristics, especially under high stress conditions, was obtained, which will promote the ultra-high voltage and compactness of future high voltage equipment, and will greatly contribute to the development of power equipment. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のポーラスプラスチックフィルムによる絶
縁紙の断面の一例を示しだ説明図、第2図は従来のポー
ラスプラスチックフィルムに高ガス圧を加えた状態を示
す断面図、第3図は、高圧カスを加えた後、急激に外部
圧力をとりさり、閉じだ微小孔の内圧によりその壁面が
破れ、開放孔となる状況を示しだ本発明方法の一実施例
断面図である。 1・・・ポーラスプラスチックフィルム、2・・・開放
孔、3・・・他の開放孔につながる微小孔、496.閉
じた微小孔、5・・高圧力媒体、6・・・内圧による破
裂口。
Figure 1 is an explanatory diagram showing an example of the cross-section of insulating paper made from a conventional porous plastic film. Figure 2 is a cross-sectional view showing a state in which high gas pressure is applied to the conventional porous plastic film. FIG. 2 is a cross-sectional view of an embodiment of the method of the present invention, showing a situation in which after adding dregs, the external pressure is suddenly removed, and the walls of the closed micropores are ruptured by the internal pressure, resulting in open pores. 1... Porous plastic film, 2... Open pores, 3... Micropores connected to other open pores, 496. Closed micropore, 5... high pressure medium, 6... rupture port due to internal pressure.

Claims (1)

【特許請求の範囲】[Claims] (1)  多数の微小孔を持つポーラスなプラスチック
フィルムからなる電気用絶縁紙に清浄な気体、或いは液
体による高圧力を加えた後、短時間に圧力を低下させ、
閉じられた微小孔を破り、開放孔とすることを特徴とす
る電気用絶縁紙の製造方法。
(1) After applying high pressure with clean gas or liquid to electrical insulating paper made of a porous plastic film with many micropores, the pressure is reduced in a short time,
A method for producing electrical insulating paper, characterized by breaking closed micropores to form open pores.
JP9190582A 1982-05-28 1982-05-28 Method of producing electrically insulating paper Granted JPS58209008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9190582A JPS58209008A (en) 1982-05-28 1982-05-28 Method of producing electrically insulating paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9190582A JPS58209008A (en) 1982-05-28 1982-05-28 Method of producing electrically insulating paper

Publications (2)

Publication Number Publication Date
JPS58209008A true JPS58209008A (en) 1983-12-05
JPS643009B2 JPS643009B2 (en) 1989-01-19

Family

ID=14039588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9190582A Granted JPS58209008A (en) 1982-05-28 1982-05-28 Method of producing electrically insulating paper

Country Status (1)

Country Link
JP (1) JPS58209008A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055473A (en) * 1991-06-28 1993-01-14 Toyota Motor Corp Fuel injection type internal combustion engine

Also Published As

Publication number Publication date
JPS643009B2 (en) 1989-01-19

Similar Documents

Publication Publication Date Title
US4751488A (en) High voltage capability electrical coils insulated with materials containing SF6 gas
US4099218A (en) Method of making porous polymer containing separators for electrolytic electrical devices
JPS58209008A (en) Method of producing electrically insulating paper
US4170665A (en) Method of making impregnated electrical capacitor employing plastic foil dielectric
US6452109B1 (en) Bushing for high electrical voltage
US2948838A (en) Tubular capactitor
JP5354159B2 (en) Solid cable manufacturing method
US4498117A (en) Dielectric fluid
JP3803139B2 (en) DC oil immersion power cable
JP2724105B2 (en) Oil immersion capacitor bushing
US4262322A (en) Impregnated electric capacitor
JPH09232189A (en) Electrolytic capacitor
JPH03297120A (en) Electrolytic capacitor
JPH0794366A (en) Manufacture of electrolytic capacitor
JP3593360B2 (en) Electrolytic capacitor and method of manufacturing the same
JP2655856B2 (en) Manufacturing method of electrolytic capacitor
JP3235648B2 (en) Oil immersion solid power cable
JPS62179710A (en) Oil impregnated capacitor with excellent low temperature characteristics
EP4009339A1 (en) Capacitor assembly, method of manufacturing the same, and converter assembly including the capacitor assembly
JPH08153654A (en) Electrolytic capacitor
JP2000276954A (en) Oil-impregnated solid power cable and its manufacture
JPH039208Y2 (en)
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPH09161582A (en) Craft paper for oil impregnated insulation and power cable using the same
JPS5860528A (en) Method of producing oil-immersed condenser