JPS58208116A - Method for regenerating co absorbing liquid - Google Patents
Method for regenerating co absorbing liquidInfo
- Publication number
- JPS58208116A JPS58208116A JP57089930A JP8993082A JPS58208116A JP S58208116 A JPS58208116 A JP S58208116A JP 57089930 A JP57089930 A JP 57089930A JP 8993082 A JP8993082 A JP 8993082A JP S58208116 A JPS58208116 A JP S58208116A
- Authority
- JP
- Japan
- Prior art keywords
- absorption
- liq
- liquid
- soln
- absorption liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
【発明の詳細な説明】
7本発明はCO吸収液の再生方法に関し、詳しくは酸化
さ扛たCO吸収液を電気化学的に再生する方法に関する
。COを含有する各種のプロセス廃ガスからCOi有効
利用するために回収する技術が化学工業や鉄鋼業等で重
要な課題となっているっ各種ガスからCOを分離するプ
ロセスとしては従来、例えば深冷分離法や銅−アンモニ
ア法など多くの方法が用いられているが、前者は装置の
建設費や運転コストが高く、後者は高圧を要する上、吸
収液のCu”/Cu2+比コントロールが難しいなどの
問題点がある。近年開発されたcoso凡Bプロセスで
は、水分による吸収液の劣化が著しく、処理ガスの脱湿
やポンプのシールなど取扱いが難しいほか、非水溶媒系
共通の問題として溶剤回収が必要であシ装置が複雑にな
る。DETAILED DESCRIPTION OF THE INVENTION 7. The present invention relates to a method for regenerating a CO absorption liquid, and more particularly to a method for electrochemically regenerating an oxidized CO absorption liquid. The technology to recover COi from various process waste gases containing CO in order to effectively use it has become an important issue in the chemical industry, steel industry, etc. Conventionally, the process for separating CO from various gases has been, for example, deep cooling. Many methods have been used, such as the separation method and the copper-ammonia method, but the former requires high equipment construction and operating costs, while the latter requires high pressure and is difficult to control the Cu''/Cu2+ ratio of the absorption liquid. There are some problems. In the recently developed COSO BonB process, the absorption liquid deteriorates significantly due to moisture, making handling difficult such as dehumidifying the process gas and sealing the pump. In addition, solvent recovery is a common problem with non-aqueous solvents. The necessary equipment becomes complicated.
一万、CuCtの塩酸溶液もCO吸収液として提案さn
ているが、酸素による第1銅イオンの酸化が速く、塩酸
蒸気の飛散も問題となる。However, a solution of CuCt in hydrochloric acid has also been proposed as a CO absorbent.
However, the oxidation of cuprous ions by oxygen is rapid, and the scattering of hydrochloric acid vapor also becomes a problem.
こルに対して発明者らは、水溶液系で取扱いが容易であ
り、酸化さnにくい吸収液としてCuCt55−180
375)i提案した。こnらの吸収液のCLI+の02
による酸化は式(1)に従って進行しCLI+の酸化速
度は、同じ分圧のCOの4Cu ”+02 +2HzC
)+4Cu”+40H−(1)とりこみ速度の百分の−
という特徴をもつ。In response, the inventors developed CuCt55-180 as an absorbing liquid that is easy to handle in an aqueous solution system and is resistant to oxidation.
375) i proposed. CLI+02 of these absorption liquids
The oxidation of CLI+ proceeds according to equation (1), and the oxidation rate of CLI+ is 4Cu ''+02 +2HzC
)+4Cu"+40H-(1) 100% of uptake speed-
It has the following characteristics.
ところで吸収液法によるCO回収でりす、吸収液はCO
吸収→加熱によるCO放散→冷却→CO吸収のサイクル
で用いらfるため、処理ガスと1回接触するととのCO
配位力のないCu2+の生成量は微小でろっても ぐり
返し回数の増加とともに無視できなくなる。By the way, in CO recovery using the absorption liquid method, the absorption liquid is CO
Since it is used in the cycle of absorption → CO dissipation by heating → cooling → CO absorption, once it comes into contact with the processing gas, CO
Although the amount of Cu2+ produced, which has no coordinating force, is minute, it becomes impossible to ignore as the number of turns increases.
生成したCu2+をCO配位能力のあるCu“へ還元す
る方法としてはS n C、l 、zやTiCL3など
の還元剤を投入する方法や、電解還元を用いる方法が考
えられる、しかし、前者は還元剤濃度が漸次増加するた
めくり返し使用するには使用還元剤の吸収液からの分離
が必要とな)。後右は酸力源が必要である上、電解還元
で一般的な陽極酸化の問題がある。本発明はとnらの問
題を解決することを目的とし、ガス極、特に水素極を用
いて電気化学的にCu”iCu+に還元することを特徴
としている。1−12Vi、分離・回収したCOからボ
性ガスシフト反応で容易に合成できるので入手は容易で
ある。第1図はガス極を用いたCu 2 +還元装置の
概念図である。第1図において、記号1はガス極、2に
陽イオン交換膜、3にカソード、Iは水素イオンを含む
電解質溶液、■はCLl(ID、 CLl(I)イオン
を含む溶液である。反応は、ガス極1でH2−’22
H” + 26− (2)によりH
゛とe−が生成する。e−は外部回路■を通ってカソー
ド3に達し、ここで
Cuν+e −、−2Cu ”
(3+によりCLl” ’v還元すゎ。1−I+
イ1ンは陽イオン交換膜2で柘送されて■側で
1”+OH−。−二)!、、 0
(4)によ
多消費される。オー・・オールの反応としてに種々の要
因で吸収液にとシこまt”した02カニH2で還元さn
る
02 +2H2ヰ2Hz Of5)
女る水の竺成反応である。Possible methods for reducing the generated Cu2+ to Cu" with CO coordination ability include adding a reducing agent such as S n C, l , z or TiCL3, or using electrolytic reduction. However, the former is (Because the reducing agent concentration gradually increases, it is necessary to separate the used reducing agent from the absorption liquid for repeated use.) In addition to requiring an acid power source, there are problems with anodic oxidation that are common in electrolytic reduction. The present invention aims to solve the problems of Ton et al., and is characterized by electrochemical reduction to Cu''iCu+ using a gas electrode, particularly a hydrogen electrode. 1-12Vi can be easily synthesized from separated and recovered CO by a bodic gas shift reaction, so it is easily available. FIG. 1 is a conceptual diagram of a Cu 2+ reduction device using a gas electrode. In Figure 1, symbol 1 is a gas electrode, 2 is a cation exchange membrane, 3 is a cathode, I is an electrolyte solution containing hydrogen ions, and ■ is a solution containing CLl(ID, CLl(I) ions.The reaction is , H2-'22 at gas electrode 1
H" + 26- (2)
゛ and e- are generated. e- reaches the cathode 3 through the external circuit ■, where Cuν+e −, −2Cu ”
(CLl"'v is reduced by 3+. 1-I+
I1 is sent through the cation exchange membrane 2, and 1"+OH- on the ■ side. -2)!,, 0
(4) It is consumed in large quantities. As a reaction of o-all, it was reduced with 02 crab H2 which was mixed into the absorption liquid due to various factors.
ru02 +2H2ヰ2Hz Of5) This is the formation reaction of female water.
酸化に用いらnた酸素量(モル)の倍量の水が生成する
ので、このように2価の銅を還元したあとでは吸収液は
若干希釈される、このH20rt’各易に系外へ除去で
きる、吸収液法によるCOの分離・回収でぼ、吸収した
COを加熱により吸収液から脱離させる。υ1熱温度は
、例えばCuCt−M g Ct 2系吸収液の場合8
0C以上であり、促ってこの温度での水蒸気分圧を制御
することにより吸収液の水分組成を一定に保つことがで
きる。Since twice the amount of water (in moles) as the amount of oxygen used for oxidation is generated, the absorption liquid is slightly diluted after reducing divalent copper in this way, and this H20rt' easily flows out of the system. In the separation and recovery of CO that can be removed by the absorption liquid method, the absorbed CO is desorbed from the absorption liquid by heating. The υ1 thermal temperature is, for example, 8 in the case of CuCt-M g Ct 2-based absorption liquid.
0C or higher, and by controlling the water vapor partial pressure at this temperature, the water composition of the absorption liquid can be kept constant.
上記還元方法は電気化学羽な還元であり、CLI(I)
/Cu0Ilの活量比できまる銅の1価、2価の酸化還
元電位が、水素の酸化還元電位よシ貴であることにもと
う〈。銅の1価/2価の酸化還元電位は鋼の2価の濃度
が高いほど貴になシ、水素極電位との差が大きくなるの
で、したがって還元のドライヴイングツオースも大とな
る。このことから、銅の2価の濃度が大な方が還元は容
易であるが、銅の2価はCOの配位力がないのでCOの
吸収の点からは望ましくない。The above reduction method is electrochemical reduction, and CLI(I)
It is also true that the monovalent and divalent redox potentials of copper, determined by the activity ratio of /Cu0Il, are more noble than the redox potential of hydrogen. The higher the divalent concentration of the steel, the more noble the monovalent/divalent oxidation-reduction potential of copper becomes, and the difference from the hydrogen electrode potential becomes larger, so that the driving force for reduction also becomes larger. From this, the higher the concentration of divalent copper, the easier the reduction, but since divalent copper has no coordinating power for CO, it is not desirable from the viewpoint of CO absorption.
本発明は、この問題点を、COを吸収した浴液からCO
とCu4′との錯体ヲ固体化して溶液から分離し、溶液
中のCu2+濃度を高めたのちに還元処理を行うことに
よって、CO吸収時におけるCu2+濃度は低く、還元
処理時のCu2+濃度を高く保つことを可能ならしめる
ものである。CO吸収によシCu“とCOを含む固体錯
体を形成せしめて吸収液系から分離し、結果として溶液
中のCu2+濃度を高めることJ1水溶液系吸収液の場
合吸収時の液温を約OCから約150の間に保つか、C
O吸収後に該温度まで下げることによりいず庇の吸収液
でも可能であるが、上記Cu Ct M g CL
2系吸収液を用いた場合は、約40C−!での温度範囲
で何らの冷却等の操作を加えることなく容易に行うこと
ができる。す々わち、このCuC,4−\J g Cl
2系吸収液でdcO吸収と同時に式(6)に示す錯体
が析出し液がスラリー化する。式(6)の・回収装置の
フローの一例全第2図に示す。簡単のため吸収液はCu
CL−MgCt2とする。処理ガス10は吸収塔21で
吸収液と接触し、COが液側に移行する。COを吸収し
スラリー化した液11は分離器24に入る。固体錯体1
3は脱離塔22へおくられCOを放出して溶液14とな
シ循環される。固体錯体と分離した上澄液12は還元装
置23に入シ、上記方法で電気化学的に還元さnる。還
元された上澄液15は脱離塔からの溶液14と合わされ
吸収塔21におくられる。The present invention solves this problem by removing CO from the bath liquid that has absorbed CO.
By solidifying the complex with Cu4' and separating it from the solution to increase the Cu2+ concentration in the solution and then performing reduction treatment, the Cu2+ concentration during CO absorption is low and the Cu2+ concentration during reduction treatment is kept high. It is what makes things possible. To absorb CO, form a solid complex containing Cu" and CO and separate it from the absorption liquid system, thereby increasing the Cu2+ concentration in the solution. In the case of J1 aqueous absorption liquid, the liquid temperature at the time of absorption should be from about OC. Keep it between about 150 or C
Although it is possible to use the absorption liquid of the eaves by lowering the temperature to the above temperature after O absorption, the above Cu Ct M g CL
Approximately 40C-! when using 2-type absorption liquid. It can be easily carried out within the temperature range of Well, this CuC,4-\J g Cl
The complex shown in formula (6) is precipitated simultaneously with dcO absorption in the two-system absorption liquid, and the liquid becomes a slurry. An example of the flow of the recovery device in equation (6) is shown in FIG. For simplicity, the absorption liquid is Cu.
Let it be CL-MgCt2. The treated gas 10 comes into contact with the absorption liquid in the absorption tower 21, and CO is transferred to the liquid side. The liquid 11 that has absorbed CO and turned into a slurry enters the separator 24 . solid complex 1
3 is sent to a desorption column 22, releases CO, and is circulated as a solution 14. The supernatant liquid 12 separated from the solid complex enters the reduction device 23 and is electrochemically reduced by the method described above. The reduced supernatant liquid 15 is combined with the solution 14 from the desorption column and sent to the absorption column 21.
実施例1
白金黒0.1 g 、活性炭粉末0.4gをテフロンデ
ィスパージョンと水でよく練り、タンタル網につけ 2
50r、’N2中で乾燥[また電極上H2極とし、隔壁
にナフィオン膜を用いて下記の系を構成した
P t/Cu(I)、Cu(ID/ナフイfy/H28
042N/Pt/H2両pt闇を接続して還元を開始す
る前のCuo量は22.6 m matであった。両p
t間を、電流計を介して接続したところ約100mAの
電流が流nた。115分ののち、CLIQDのffkk
しらべた所15mmoAに減少した。Example 1 0.1 g of platinum black and 0.4 g of activated carbon powder were thoroughly kneaded with Teflon dispersion and water, and placed on a tantalum mesh.
50r, dried in N2 [Also, the following system was constructed using H2 pole on the electrode and Nafion membrane for the partition.
042N/Pt/H2 The Cuo amount before connecting both pts and starting reduction was 22.6 m mat. both p
When a current of about 100 mA was connected between the two through an ammeter. After 115 minutes, CLIQD's ffkk
I found that it had decreased to 15 mmoA.
実施例2
第1表に記載した濃度のCuCL−MCAn −(M:
2価ないし3価の金属、 n = 2 、3 ) Mg
CA2溶液を調製し、1気圧のCOと接触させた。生じ
た固体を分離し上澄液組成を原子吸光法で調べたところ
、MC1nは元の液組成よυ大で、かつCu(I)及び
Mg濃度は減少しておI)、MC1nの濃縮が行わnた
。Example 2 CuCL-MCAn-(M:
Divalent or trivalent metal, n = 2, 3) Mg
A CA2 solution was prepared and contacted with 1 atmosphere of CO. When the resulting solid was separated and the composition of the supernatant liquid was examined by atomic absorption spectroscopy, it was found that MC1n was υ larger than the original liquid composition, and the Cu(I) and Mg concentrations had decreased (I), indicating that the concentration of MC1n had decreased. I did it.
第1図はガス極によるCu2”の還元を説明するための
概念図、第2図は本発明の一実施例を示す系統図である
。
1・・・ガス極、2・・・陽イオン交換膜、3・・・カ
ソード、10・・・処理ガス、21・・・吸収塔、22
・・・脱離塔、23・・・還元装置、24・・・分離器
。Fig. 1 is a conceptual diagram for explaining the reduction of Cu2'' by a gas electrode, and Fig. 2 is a system diagram showing an embodiment of the present invention. 1... Gas electrode, 2... Cation exchange Membrane, 3... Cathode, 10... Processing gas, 21... Absorption tower, 22
... desorption column, 23 ... reduction device, 24 ... separator.
Claims (1)
含むことを特徴とするCO吸収液の再生方法。A method for regenerating a CO absorption liquid, comprising a step of reducing with a Cu''k gas electrode contained in the liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57089930A JPS58208116A (en) | 1982-05-28 | 1982-05-28 | Method for regenerating co absorbing liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57089930A JPS58208116A (en) | 1982-05-28 | 1982-05-28 | Method for regenerating co absorbing liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58208116A true JPS58208116A (en) | 1983-12-03 |
JPS6110405B2 JPS6110405B2 (en) | 1986-03-29 |
Family
ID=13984409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57089930A Granted JPS58208116A (en) | 1982-05-28 | 1982-05-28 | Method for regenerating co absorbing liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58208116A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020127934A (en) * | 2019-02-07 | 2020-08-27 | 株式会社東芝 | Acid gas removal device and acid gas removal method |
-
1982
- 1982-05-28 JP JP57089930A patent/JPS58208116A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020127934A (en) * | 2019-02-07 | 2020-08-27 | 株式会社東芝 | Acid gas removal device and acid gas removal method |
Also Published As
Publication number | Publication date |
---|---|
JPS6110405B2 (en) | 1986-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100429155C (en) | Particle electrode catalyst filler of three-dimensional electrode reactor and preparation method thereof | |
CN109894115A (en) | A kind of preparation method of the modified active carbon catalyst for the processing of class Fenton | |
US20130287654A1 (en) | Leaching solution and metal recovery method | |
CN112657531B (en) | Preparation method and application of elemental copper and copper-iron oxide co-modified graphite phase carbon nitride magnetic catalyst | |
CN113774416B (en) | Gas diffusion cathode and electrochemical reactor for in-situ production of hydrogen peroxide | |
CN101554994B (en) | Method for recovering iodine in production waste liquid of X-CT series contrast media | |
US4711828A (en) | Carbon monoxide-oxygen fuel cell | |
CN111203281A (en) | Regeneration method of acetylene hydrochlorination non-mercury catalyst | |
Chowdhury et al. | Synthesis of Cu2O NPs using bioanalytes present in Sechium edule: mechanistic insights and application in electrocatalytic CO2 reduction to formate | |
WO2020038383A1 (en) | Method and device for purifying electrolyte solution of flow battery | |
CN113493237B (en) | Preparation of modified nano-iron and method for treating high-concentration nitrate wastewater by using modified nano-iron | |
CN112916025A (en) | Hydroxyl copper chloride catalyst, preparation method and application | |
JPS58208116A (en) | Method for regenerating co absorbing liquid | |
JPH02311302A (en) | Purification apparatus for hydrogen gas to be supplied to fuel cell | |
Zhao et al. | Clean and effective removal of Cl (-I) from strongly acidic wastewater by PbO2 | |
DE2553372A1 (en) | METHOD OF OPERATING A FUEL CELL WITH NITROGEN DIOXYDE | |
JP3091389B2 (en) | Dissolved hydrogen removing method for electrolysis apparatus and dissolved hydrogen removing apparatus therefor | |
CN114210175B (en) | Mixed solution, preparation method thereof and application thereof in absorbing hydrogen sulfide | |
KR102568830B1 (en) | Electrochemical water treatment apparatus for collecting high concentration ammonia nitrogen | |
Ruck et al. | Catalytic selective separation of chloride ions from acidic wastewater | |
CN111996541B (en) | Indirect hydrogen sulfide electrolysis method and device for improving hydrogen yield | |
JP4385424B2 (en) | Carbon dioxide concentration method and apparatus | |
JP2698253B2 (en) | Treatment method of ferric chloride etching solution containing copper | |
JPH0543641B2 (en) | ||
JP3528287B2 (en) | Pure water production method |