JPS58208102A - Apparatus for concentrating and separating hydrogen or helium by means of porous glass film - Google Patents

Apparatus for concentrating and separating hydrogen or helium by means of porous glass film

Info

Publication number
JPS58208102A
JPS58208102A JP9050082A JP9050082A JPS58208102A JP S58208102 A JPS58208102 A JP S58208102A JP 9050082 A JP9050082 A JP 9050082A JP 9050082 A JP9050082 A JP 9050082A JP S58208102 A JPS58208102 A JP S58208102A
Authority
JP
Japan
Prior art keywords
porous glass
space
glass tube
hydrogen
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9050082A
Other languages
Japanese (ja)
Inventor
Eiji Taketomo
竹友 栄治
Masami Fujiura
藤浦 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9050082A priority Critical patent/JPS58208102A/en
Priority to US06/498,174 priority patent/US4482360A/en
Priority to CA000429025A priority patent/CA1213873A/en
Priority to DE19833319305 priority patent/DE3319305A1/en
Publication of JPS58208102A publication Critical patent/JPS58208102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To concentrate and separate H2 or He efficiently from a gaseous mixture contg. H2 or He by means of porous glass films by specifying the pore size distribution of the porous glass films. CONSTITUTION:Many porous glass tubes 7 are put in a stainless steel pipe 8, and both ends are sealed with a sealer 6. A gaseous mixture contg. H2 or He is fed from one inlet 1 of the pipe 8 under pressure. At the same time, the space 4 between the pipe 8 and the assembly of the porous glass tubes 7 is evacuated. Gaseous H2 or He in the gaseous mixture is diffused in the space 4 through the pores in the tubes 7, separated as concd. gaseous H2 or He, and taken out of the outlet 5. At this time, the pore size distribution of the tubes 7 is regulated so that the peak is set at 110-160Angstrom pore size. The separation factor of H2 or He is enhanced, and H2 or He can be concentrated and separated efficiently.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、多孔質ガラス膜を利用して水素もしく1ま・
・リウトを含む混合カスより水素もしくは・\11 +
’) 1.を濃縮分離するための装置に関するものて」
5る。 近年、石油ショック以来、石油を使用しない製鉄所か指
向され、高炉ではオールコークス操業が実が1;さイ1
ている。こイIは、j’、<炉・\0)重油吹込をやめ
、コークス1史用tl+’ ”:+−1’ン1′ぐ)し
て、tイ、炉11′g・乳をイ丁−)+)ノ)で、刺a
、所で発生する製’+J、ガ・−〇)セ1L1人5づ−
・も7℃し“)1、自家使用燃ト1という従来!/)製
秩力・−ソ’) Iff笥:1..1.蛙に新しい用途
を開拓する必要性か牛しる。 製鉄ガスには〕−カス炉ガス、転炉力、/、、高炉カス
の三種かある。−+ −ン’y’、炉1j 、’−!す
)上成分は水素てあζ)、転炉ガス、d′h・卯ノノス
υ)イ」用主成分は一酸化炭素である。−・酸化炭素は
/フト反応により従来技術により容易に水素に変4+A
て士ろ。′9A鉄ガスを燃料以外の用I翁に供4−るた
め′〔は5製鉄ガス中の目的成分をいかに経済的、盾1
−不的:こ濃縮分離するかかキーホイントである。本発
明、′す水素を1(む混合ガス、1+すえは儒」〕、ガ
スもし7くは変rノK L、た製鉄ガス、よる)水素を
経済的かつ省エイ的に濃縮分離するためす)装置に関す
るもので、その9旨とするところは、つき0)とおりで
ある。すなわち、(1)  多孔質ガラAll?、V 
<、−利用した水素、若しくはヘリウドを含む混合ガス
、よi)水素、若シ、<はヘリウl、を濃縮分離する装
置において、少くとも細孔径110〜160Xに細孔外
缶ヒークをもつ力・、L、Qft細rL径110〜16
0人の細孔容積か全細孔’fF積の過半数似Fを占めろ
多孔質ガラス管集積体を設けたこ上を特徴と74−ろ多
孔質カフス膜を利用した水素、各式 (−7く は ・
\ リ 蔦″) ノ、θ)(農 細 分 離 装 置。 121 .11:H:端を解放シ・1j“j:1こした
多孔質ガラス管集積1本の両端ダl、周面を気畜に構成
し、該多孔質ガラス管巣18一体り゛)外周面空間と、
多重′にガラス管束+責体の1咄り同両端jこ連1mす
る空間とに分離し、 rail記多孔實多孔ラス管集積
体の外周m〒空間、又は11Il11方向両へ]1に連
通する空11]のいずイtか一方に水素、若しくは・\
11つt、を含む混合ガスを供給する手段を設けろと吉
もに、前記混合ガス供給モ段を設けた空間0)他ノjの
空間には減圧手段を設けて八゛る特許請求の範囲第1世
記載の装置k0 1.31 −瑞を智閉し、他端を#故端にした多孔′V
ガフス*巣債体p7)外周面と解枚娼旨mを気衝に構1
戊し、該多孔質ガラス管集積体の′萬:閉端を含む外周
面空111吉多孔質ガラス管東積体力軸方向解放Z1.
1に連通fる空間上に分離し、前記多孔質カラス管集績
体力外周而空間に水7(2、若しく(t・\リウノ、を
Jむ混合ガスを供給する手段を設ける、(古もにs t
jj+ :4t、多孔質ガラス管財情体り)軸方自前1
i1x’ :1′:に連;+++ 、r z、空間には
減圧手段を設(、fてt、る特許61’l求の範111
i第l。 J′1’4 i’!l:載の装置。 である。 本発明の原1ull iま多孔’t4(カラスカ細孔を
4’J用して水素を拡散分離しようというもθ)で、ガ
スの平均自由行程をλ、細孔径をdとすると、λ−/′
d)1の領域では4.111孔を通過するガス分子0)
流危;まその分子速度に比例M−るという11!論にも
とすいている。 すなわち、細孔を通過するガス分子の流歇は、ガス分子
の分子)iの平方根jこ反圧f+!l ツーるので、分
子量の箸しく小さい水(、や\゛′す・”jJ、は他の
ガス成分さ分離か「1日11でとなる。5)−離か口■
能ly領域はあくまでλ/′d :> 1の領域であり
、このためには細孔径を拡しく小さくする必1〃がある
。しθ・し細孔径をあまり小さくする吉、た吉え1シ1
想的な分Im能が得らイアたと(7ても細孔を透過する
ガスIが少く、実用的な分離装置にはなり得ない。すな
わち分離能と
The present invention utilizes a porous glass membrane to generate hydrogen or
・Hydrogen or ・\11 +
') 1. Regarding equipment for concentrating and separating
5ru. In recent years, since the oil shock, there has been a shift toward steel mills that do not use oil, and all-coke operation in blast furnaces has become a reality.
ing. I, j', <furnace \0) Stop injection of heavy oil, start coke 1 history tl+'”:+-1'n1'g), and start tI, furnace 11'g milk. Ding-)+)ノ), stab a
, the production that occurs in the place '+J, Ga--〇)Se1L1person5zu-
・The conventional method is 7 degrees Celsius.) 1. The traditional method of in-house combustion is 1!/) Manufacturing Chichiriki・-So') Iff 笥: 1.. 1. I wonder if there is a need to develop new uses for frogs. Steel manufacturing There are three types of gas: sludge furnace gas, converter power, /, and blast furnace scum. The main component of the gas, d'h・Unonosu)i, is carbon monoxide. -・Carbon oxide can be easily converted to hydrogen by conventional technology through /ft reaction 4+A
Teshiro. '9A To provide iron gas for purposes other than fuel'
- Inappropriate: This is the key point to concentrate and separate. The present invention is for concentrating and separating hydrogen in an economical and cost-saving manner. (9) Regarding equipment, the following points are as follows. That is, (1) Porous glass All? , V
<, - A mixed gas containing utilized hydrogen or helium, i) In an apparatus for concentrating and separating hydrogen, hydrogen, < is helium, the power to have an outer pore heat in a pore diameter of at least 110 to 160X. L, Qft thin rL diameter 110-16
Hydrogen using a 74-filtration porous cuff membrane, each formula (-7 Kuha・
121 .11:H: Open the ends. an outer circumferential surface space configured to be air-filled and integrated with the porous glass tube nest 18;
A bundle of glass tubes + a carrier is separated into a space extending 1 m from both ends of the glass tube bundle, and the outer periphery of the perforated lath tube assembly is connected to the space (or to both directions). Hydrogen or \ on either side of sky 11]
11. The scope of claim 1 is to provide a means for supplying a mixed gas containing 11, t, and 11, and a depressurizing means is provided in the space in which the mixed gas supply module is provided, and in the space in the other space (j). Device described in the 1st generation k0 1.31 - A porous hole 'V with a closed end and the other end as a closed end
Gaffs * bond body p7) The outer circumferential surface and the demolition matter m are arranged 1
1. The outer circumferential surface including the closed end of the porous glass tube assembly is open 111.
1, and a means for supplying a mixed gas containing water 7 (2, or (t. Moni s t
jj+: 4t, porous glass management structure) Axial own 1
i1x' : 1': connected; +++ , r z, a pressure reducing means is provided in the space (, f t, Patent No. 61'1)
ith l. J'1'4 i'! l: Equipment listed. It is. The basic structure of the present invention is 1 ull i, with a pore 't4 (although it is assumed that hydrogen is diffused and separated by using a Karaska pore 4', θ), the mean free path of the gas is λ, and the pore diameter is d, then λ-/ ′
d) In the region of 1, gas molecules passing through 4.111 holes 0)
11 which is proportional to the molecular speed of the liquid! It makes sense. That is, the flow of gas molecules passing through the pore is calculated by the square root j of the gas molecules molecule i and the counterpressure f+! Since the molecular weight of water is relatively small, it is separated from other gas components.5) - Separate mouth ■
The functional region is strictly a region where λ/'d:>1, and for this purpose it is necessary to enlarge and reduce the pore diameter. It is a good idea to make the pore diameter too small.
Even if the ideal separation capacity is obtained (7), the amount of gas permeating through the pores is small and it cannot be used as a practical separation device.

【ざ1φ能(ま背反関係にある吉一般的に
は認識さlている1、 本発明は多孔質ガラスの細孔径と分離能の関係において
最大の分#能を示−(細孔径範囲か存在4−ン)こ吉を
見い出し、多孔質ガラス嘆を利用した効4、、/)gい
水素C4縮分離装置の入用fヒをはかるもθ)である。 多孔質ガラスは、 Na20−++20I−S i 0
2糸カラス4−熱処理し、分相現象を起こさせ、Na2
O13203糸の相を酸て浴出することにより作成さイ
1.る。この場合、熱処1里の副IW、1時間により多
孔質カラスのa孔径おまひ1別荘分布が異なり、こイ1
.を利用して、岬々の細孔径5細孔分布をもつ多孔質カ
ラスを作成てきる。このようにして得らイ1.た多孔質
ガラスゲ1細孔分布は通常、二山ヒークをもつものが多
い。 以−ド1つの実施例について比較例を示しながら、4:
発明の詳細な説明する。第1図は央/Alf列おまひ比
小4.41;u :こ用いた水素濃縮0覗装置の構、告
である。 クトJ 5’ mm 、厚み0.5mm、長さ600 
rnmの多孔質ガフス管19本か束ねられ多孔質ガラス
管東槓(4= 7を1[そIJ父し、lイノ丁カスラ゛
−ンしス&l1ll管81こ内1畝さイ1.ている。多
孔″1)jノノフス管東fAj fl\7υ)両パ・1
jlj部X30mmは多孔ノ色ガラス管U)外1r、J
j’il(t; !、ひA −r ’y’ l−ス鋼管
と多孔質ガラス管束積体とのi、111 (J)空−9
に7−ル剤6か充填さイ1、多孔質ガラス管集積体の外
周面空間4(!:多多孔度カラ胃管集積体〕軸方向両端
に連通ずる空間2を分離している。水素をa (+混合
ガスは多孔質カラス管頃積体7σ戸fil ノラ同両端
に連通゛4−る空間2の一力σ)人口1より加圧状態て
流入し。 他方の出口3より流出する。多孔″f′丁ガラス管集積
体の外周[1(1空間・1はFl、*王状態((9り才
ば−700mmHg )に保持されてお6つ、多孔質カ
ラスの細孔を透過した水素濃縮ガスは多孔質ガラス管集
積体の外周面空間・1をヘーC5よりr尻出4−る。 (実施例および比較I+lJ) 第1図の濃縮分離装置において、室温下て空間2の圧力
を所定v)JJI+ ++>状態に維持し、空間4の圧
力を−700mm IIgに減圧し、水素と炭酸ガスの
混合ガス(1:]、)を空間2に供給した。空間2の所
定圧力を0.4〜2.8 Kp/crlOの範囲で変化
させ、3にりの流出カスおよび5よりの透過ガスの水素
儂+41を測定し、それぞれの条件における分離係舷を
求Z)だ。結果を第2図に示「。 央殉例ては窒素吸着法による細孔分布測定結果で型出孔
径30〜50□Xと細孔径1】0〜160Xにピークを
もつ多孔質ガラスを用いた。比較例の1でハ1ltl孔
径3O−50xc!:細仕径80−110.:%に1−
一りをもつ多孔質ガラスを用いた。比較例2て)ま細孔
径30〜5 o Xと、)10孔径160〜220入に
℃゛−ク主、つ多孔質ガラスを用いた。こtLらび)多
孔質ガラスの細孔分布を第3因に示す。 、・こイ1ら多孔質カラスの細孔径110〜160Xの
細孔容積か全細孔容積に占める比率は実施f+lJでは
52係、比較例1および比較例2てはそイ1.そ’l’
7.14係。 12係である。 炭酸ガスの平均自由行程(ま室温、混合ガス1−1:力
o、1−2.8Kp/caOては314X−116Xで
ある。細孔:! 30〜50 X 乏細孔径80−11
0 、Xにピークをもつ多孔質ガラスを用いた比較例1
は、炭酸ガ;′−,U)平均自由行程に比べ十分小さい
細孔径といえるか、細孔r¥3 (1−5Fl :\と
細孔径110−16(1’<にピークをもつ多孔゛t”
1カラスを用いた不発11J−1カ実施例および細孔径
30〜5f) ’i、 、−111,14H孔イr、1
60−220 Xにピークをも一つ多孔質ガラスを用い
た比較例2では、細孔径は平均自由行程に比べ小さいと
はいえない。にもか\わら電、4・全開U)夾/A例が
最も大きい分離係数4−・ボ1−7てい乙。不発1iJ
jの実施例より細孔径か大きくなると比4i’t fa
ll 20)ことく分離係数はかな6)低ドする。 こイ1.は分離の原14Pにかなっている。分^11の
原理からして、最も高い分離能をもつと考えられる最も
細孔径の小さい比較例1か、最低の分離係数を示してい
る。この′−IS−は多孔質カラスを利’4−I L、
た水素濃縮分離では多孔質カラスのM適細孔径か存在A
−ることを示している。 これは分離の原理から説明てきないが、多孔質ガラスの
作成法からし7て次のように想像できる。 すなわち、多孔質ガラスのより小さい細孔はNa20−
[32o3の相が完全にm出できないで、多く残存する
ことによって形成されており、これが、水素以外グ)不
純物ガス成分、例えば炭素ガスを強く吸着−4−ること
により、表面拡散効果によって分離能が低下−ぐるもの
と考えられる。 以J−1不発明グ)実施例および比較例て示したよ・)
に、多孔質ガラスの細孔を利用した水素濃縮分離装置に
おいては、多孔管ガラスのIVal孔径が小さ0は七高
い分離能かえらイするのではなく、かなり大きい細孔径
かかえって高い分離能を示η−6細孔径11 (1〜1
6FIXに細孔分布ピークをもつものもしくは、細孔径
110〜160 Xの細孔容積か全細孔fス積の過半数
似りを占めるものが最適てあり、分肉l(能か高いば乃
・C)か、高い水準の透1尚能(透過係数)をえろこと
もてき、工業的な実用化かり能となる。 以ト0)実施例は第1図に示したように水素を含む混合
ガスを多孔質ガラス管集積体7のJl+方向方向両速通
する空間2に混合ガス流入口1から供給し流出口3より
流出させ乙。同時に多孔′直ガラス臂果績体の外周面空
間4を減圧状態jこL7て水素を分離し透過ガス流出口
5から敗り出す例であるが。 第1図における装置を用いてガス(1)流イ1を、σ弓
こ(7た」動台、IJ1]ち多孔′tAツノラス管東(
1°[体70)外問面′侶間4に混合ガスを5から供給
t、、、lR1示さイ・I′1い流出口より流出させる
と同時に多孔′U↓ガラス管集積(47の+1111+
方向両端に連通ずる空間2を11□に圧状態にして水素
を分離しI」5よひ、又(↓;3から敗り出すこともで
き、人倫1り11に叶い効率て水素、j;i L、 <
は・\す・’/ l・を分離することかできる。 この場合にはカスブ)拡散流通を良くするために多孔質
ガラス管の間に隙間か生し乙よ゛うに(例えは多孔質カ
ラス管力外周部にリンクをつける)集積体を構成−4−
ることか好ましい。 さらに多孔質ガラス管東積体力外周面空間に混合ガスを
供給し、多孔質ガラス管集積体の軸方向θ)一端から分
離した水素を敗り出す例さして第4図に示す装置を使用
−4−ることもできる。 第4図の装置は第1図の装置か両端を開放端にした多孔
質ガラス管集積体を使用するのに対して一端を密閉し、
他端を解放端にした多孔質ガラス管集積体を使用する例
である。 こU)例では多孔質ガラス管集積体7の密閉−7:T1
!をatj外周面空間4に混合ガスを1から供給し、流
出口3よ6)流出させると同時jこ多孔質ノlラス管集
積体7の軸方向解放端に連通する空間2を城IF状t!
和に[2て水素を分離して5から敗り出すことかてきる
。 こり)例の場合:こもガスの拡散流通を良くするた色に
多孔質ガラス管の間に隙間が生じるように管東債体を構
成することが好ましい。 本発明の実が0191は水素の、農縮汗離たけを示して
いるか、本発明は水素の議縮分離のみならす−\す・′
ツノ・り)a縮分離にも有効である。
[The present invention shows the maximum resolution in the relationship between the pore diameter and separation power of porous glass. The existence of a hydrogen C4 condensation separation device was discovered and the effectiveness of using porous glass was determined. Porous glass is Na20-++20I-S i 0
2 yarn crow 4 - heat treatment to cause phase separation phenomenon, Na2
Prepared by acid bathing the phase of O13203 yarn.1. Ru. In this case, the distribution of the a pore size of the porous crow differs depending on the sub-IW of the thermal processing station 1 ri and 1 hour;
.. Using this method, we can create a porous crow with a 5-pore distribution with five pore diameters. Obtained in this way: 1. The pore distribution of porous glass gel usually has two peaks. While showing a comparative example for one example, 4:
Detailed description of the invention. Figure 1 shows the structure of the hydrogen condensing device used in the center/Alf column with a ratio of 4.41 to 0. Cut J 5' mm, thickness 0.5 mm, length 600
19 RNM porous guff tubes were bundled into a porous glass tube (4 = 7 to 1). Porous" 1)
jlj part X30mm is a porous colored glass tube U) outside 1r, J
j'il(t; !, H A -r 'y' l-i of the steel pipe and the porous glass tube bundle, 111 (J) Sky-9
A space 4 on the outer circumferential surface of the porous glass tube assembly (!: porous glass tube assembly) is separated into a space 2 communicating with both ends in the axial direction. A (+The mixed gas is connected to both ends of the porous glass tube and the volume 7σ) 4-The force σ of the space 2 flows in from the population 1 in a pressurized state. It flows out from the other outlet 3. The outer periphery of the porous glass tube assembly [1 (1 space, 1 is Fl, The concentrated hydrogen gas exits the space 1 on the outer circumferential surface of the porous glass tube assembly from the space 2 in the space 2 at room temperature. The pressure was maintained at a predetermined v) JJI+ ++> state, the pressure in space 4 was reduced to -700 mm IIg, and a mixed gas of hydrogen and carbon dioxide (1:],) was supplied to space 2. The predetermined pressure in space 2 was varied in the range of 0.4 to 2.8 Kp/crlO, the hydrogen gas +41 of the outflow gas from 3 and 5 was measured, and the separation mooring under each condition was determined. The results are shown in Figure 2. For example, the results of pore distribution measurement using the nitrogen adsorption method showed that porous glass with a molded pore size of 30 to 50 x and a peak of pore size of 1 to 160 x was used. .In Comparative Example 1, 1ltl pore diameter 3O-50xc!: Fine diameter 80-110.:% to 1-
A porous glass with a single layer was used. Comparative Example 2 A porous glass having a pore size of 30 to 5° C. and a) pore size of 160 to 220° C. were used. The third factor is the pore distribution of the porous glass. ,・The ratio of the pore volume of the pore diameter 110 to 160X of the porous glass to the total pore volume was 52 in the implementation f+lJ, and in Comparative Example 1 and Comparative Example 2. So'l'
7.14 section. This is Section 12. Mean free path of carbon dioxide gas (room temperature, mixed gas 1-1: force o, 1-2.8 Kp/caO is 314X-116X. Pore:! 30-50X Poor pore diameter 80-11
Comparative Example 1 using porous glass with peaks at 0 and X
can be said to be a sufficiently small pore diameter compared to the mean free path of carbon dioxide; t”
Unexploded 11J-1 example using 1 crow and pore size 30-5f) 'i, , -111,14H pore i, 1
In Comparative Example 2 using a porous glass having one peak at 60-220X, the pore diameter cannot be said to be smaller than the mean free path. Monika\Waraden, 4. Fully open U) 夾/A example has the largest separation coefficient 4-・Bo 1-7. Unexploded 1iJ
When the pore diameter becomes larger than the example of j, the ratio 4 i't fa
ll 20) The separation coefficient is kana 6) Low. Koi 1. corresponds to the 14P principle of separation. Based on the principle of 11, Comparative Example 1, which has the smallest pore diameter and is considered to have the highest separation ability, shows the lowest separation coefficient. This '-IS- uses porous glass '4-I L,
In hydrogen condensation separation, the appropriate pore size M of the porous glass or the existence A
- indicates that Although this cannot be explained from the principle of separation, it can be imagined as follows from the method of producing porous glass. That is, the smaller pores of the porous glass are Na20-
[It is formed when the 32o3 phase cannot be completely extracted and remains in large quantities, and this strongly adsorbs impurity gas components other than hydrogen, such as carbon gas, and is separated by the surface diffusion effect. This is thought to be due to a decline in performance. Hereinafter, I have shown examples and comparative examples.)
In addition, in a hydrogen concentration separation device that utilizes the pores of porous glass, the IVal pore diameter of the porous tube glass is small and 0 means high separation performance, but rather the pore size is quite large and the separation performance is high. η-6 Pore diameter 11 (1 to 1
The optimal one is one that has a pore distribution peak in 6FIX, or one that accounts for a pore volume of 110 to 160 X or a majority of the total pore f area. C) It also has a high level of permeability (permeability coefficient), which makes it suitable for industrial practical use. 0) In the embodiment, as shown in FIG. 1, a mixed gas containing hydrogen is supplied from the mixed gas inlet 1 to the space 2 of the porous glass tube assembly 7 through which it passes at both speeds in the Jl+ direction, and the mixed gas is supplied to the outlet 3. Let it leak more. At the same time, the outer circumferential surface space 4 of the porous straight glass arm body is brought into a reduced pressure state L7 to separate hydrogen, which is then discharged from the permeated gas outlet 5. Using the apparatus shown in Fig. 1, the gas (1) flow A1 is transferred to the
1° [Body 70] A mixed gas is supplied from 5 to the outer surface 4 between 4 and 5, .
Space 2 that communicates with both ends of the direction is pressurized to 11 □ and hydrogen is separated. i L, <
It is possible to separate ha・\su・'/ l. In this case, a gap is created between the porous glass tubes to improve diffusion and circulation (for example, a link is attached to the outer periphery of the porous glass tube) to form an aggregate.
That's preferable. Furthermore, a mixed gas is supplied to the outer circumferential space of the porous glass tube assembly, and the hydrogen separated from one end of the porous glass tube assembly in the axial direction θ) is expelled using the apparatus shown in Figure 4. - You can also. The device shown in FIG. 4 uses a porous glass tube assembly with both ends open, as opposed to the device shown in FIG.
This is an example of using a porous glass tube assembly with the other end open. In this example, the sealing of the porous glass tube assembly 7-7: T1
! When the mixed gas is supplied from 1 to the outer peripheral surface space 4 and is allowed to flow out through the outlet 3, the space 2 communicating with the open end in the axial direction of the porous lath tube assembly 7 is formed into a castle IF shape. T!
In addition, it is possible to separate hydrogen from 2 and start defeating from 5. Example: In order to improve the diffusion and distribution of gas, it is preferable to configure the Kanto bond body so that gaps are created between the porous glass tubes. The fruit of the present invention is that 0191 shows the agricultural contraction separation of hydrogen.The present invention is not limited to the agricultural contraction separation of hydrogen.
It is also effective for condensation separation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施191」およ゛ひ比較例を示す水
素濃縮分離装置の構造である。 第2図は実施例および比較例1.比較例2における混合
ガス圧力と分離係数吉の関係を示す1ン1である。実線
は本発明の実施例の混合ガス圧力と分離係数の関係を、
破線および点線(ま比較例Iおよび比較例2のそれを示
す。 第3図は用いた多孔+t+1カラへ、の窒素吸7?イ法
による細・化分布訓定結東4−・律A−図て3下、ろ。 ′−J3ホ1.起ま実施例て用いた多孔′r7fカラス
の;1lll仕トf1.を、ri乞線lおよび点線2は
各々比IQ l+jl lおよび比較例231)細孔分
布を示す。 第41¥]は本発明の1112の実施j+1円:?’t
を示ず。 1・・混合ガス帷入口、2・ 茗孔苗カラス着・集積体
の軸方向両イ1;に連1114する空間1.3・混合カ
ス流出0.4・・多孔゛E]カラ=4管集積体の外周面
空間、5・・透過ガスMi−出口、6・シール削、7・
・多孔質ガラス管集積体、8・ステンレス、1114管
竿/図 隼 2 図 プ駄合ガス圧力にみ仝m2Q
FIG. 1 shows the structure of a hydrogen concentrating and separating apparatus showing the embodiment 191 of the present invention and a comparative example. FIG. 2 shows Example and Comparative Example 1. 1 shows the relationship between the mixed gas pressure and the separation coefficient in Comparative Example 2. The solid line represents the relationship between the mixed gas pressure and the separation coefficient in the example of the present invention.
Broken lines and dotted lines (showing those of Comparative Example I and Comparative Example 2). Figure 3 shows the narrowing and narrowing distribution training by the nitrogen absorption 7?A method into the used porous hole + t + 1 hole. Figure 3 below, RO.'-J3E 1. The porous 'r7f crow used in the example; ) shows the pore distribution. 41 yen] is implementation of 1112 of the present invention j + 1 yen:? 't
Not shown. 1. Mixed gas pipe inlet, 2. Space connected to both axial directions of the seedling crow and aggregate 1. 3. Mixed residue outflow 0.4. Porous [E] collar = 4 tubes Outer peripheral surface space of the aggregate, 5. Permeated gas Mi outlet, 6. Seal cutting, 7.
・Porous glass tube assembly, 8・Stainless steel, 1114 pipe rod/Fig.

Claims (1)

【特許請求の範囲】 +11  多孔質ガラス膜を利用し7た水素、若しくは
・\リウl、を含む混合ガスより水素、若しくは・\リ
ウl−1を濃縮分離する装置においで、少くとも細孔径
110〜160入に細孔分布ピークをもつか、或は細孔
径110〜160 Xの細孔容積か全MIIH孔容積の
過半数以上を占める多孔質ガラス管集積体を設けたこと
を特徴とする多孔質ガラス膜を利用した水素、若しくは
ヘリウl、のC4鰯分離装置。 (2)  両端を解放端にした多孔質′カラス管集積体
の両端外周面を気密(9構成し、該多孔質ガラス管集積
体の外周面′空間と、多孔質カラス管集積体の1軸方向
両端に連11f1゛(る空間とに分離し、前記多孔;直
ガラス管集積体の外周面空間、又は軸方向両端に連通ず
る空間U)い4”イ1か一方に水素、若しくは・・IJ
 r’ツムを含ti混合ガスを供給する手段を設ける6
−ともに、前記混合ガノ、供給手段を設けた空間の11
1!方の空間には減圧手段を設けてなる特許請求の範囲
第1項記載の装置。 +、’((一端を密閉し、他端を解放端にした多孔質カ
ラス管集積体の外周面と解放端面を気密に構成し7、古
な多孔質ガラス管集積体の密閉端を含む外周面゛空間と
多孔質ガラス管集積体の軸方同解放q;11′1に連1
由する空間とに分離し、前ml多孔質ガラス管集積体の
りを周面空間に水素、若しくは・\リパノノ・を含む混
合ガスを供給する手段を設けるとともに、前記多孔質ガ
ラス管集積体の+I!11方向解放端1に連通する空間
には減IE手段を設けてなる特許請求の範囲第1項記載
の装置。
[Claims] +11 In an apparatus for concentrating and separating hydrogen or .\RIU l-1 from a mixed gas containing hydrogen or .\RIU l using a porous glass membrane, A porous glass tube aggregate having a pore distribution peak in the range of 110 to 160 mm, or having a pore diameter of 110 to 160 mm or more than half of the total MIIH pore volume. A C4 sardine separation device for hydrogen or helium using a high quality glass membrane. (2) Both ends of the outer circumferential surface of the porous glass tube assembly with both ends open are airtight (9), and the outer circumferential surface of the porous glass tube aggregate is airtight and the outer circumferential surface of the porous glass tube aggregate is airtight. 11f1' (separated into a space connected to both ends in the axial direction, the above-mentioned porous space; a space U connected to the outer peripheral surface of the straight glass tube assembly, or a space U connected to both ends in the axial direction), hydrogen in one side, or... I.J.
Providing means for supplying a Ti mixed gas containing r'Tsum 6
- both of the above-mentioned mixing gaskets, 11 of the space provided with the supply means;
1! 2. The apparatus according to claim 1, wherein said space is provided with a pressure reducing means. +, '((The outer peripheral surface and the open end surface of the porous glass tube aggregate with one end sealed and the other end open are configured airtight7, and the outer periphery including the sealed end of the old porous glass tube aggregate Axial release of surface space and porous glass tube assembly q; connected to 11'1
A means is provided for supplying a mixed gas containing hydrogen or . ! 11. The apparatus according to claim 1, further comprising an IE reducing means provided in the space communicating with the open end 1 in the 11-direction.
JP9050082A 1982-05-29 1982-05-29 Apparatus for concentrating and separating hydrogen or helium by means of porous glass film Pending JPS58208102A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9050082A JPS58208102A (en) 1982-05-29 1982-05-29 Apparatus for concentrating and separating hydrogen or helium by means of porous glass film
US06/498,174 US4482360A (en) 1982-05-29 1983-05-25 Porous materials for concentration and separation of hydrogen or helium, and process therewith for the separation of the gas
CA000429025A CA1213873A (en) 1982-05-29 1983-05-27 Porous materials for concentration and separation of hydrogen or helium, and process therewith for the separation of the gas
DE19833319305 DE3319305A1 (en) 1982-05-29 1983-05-27 METHOD FOR CONCENTRATING AND SEPARATING IN PARTICULAR HYDROGEN OR HELIUM FROM A GAS MIXTURE AND POROUS MATERIALS FOR CARRYING OUT THIS METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9050082A JPS58208102A (en) 1982-05-29 1982-05-29 Apparatus for concentrating and separating hydrogen or helium by means of porous glass film

Publications (1)

Publication Number Publication Date
JPS58208102A true JPS58208102A (en) 1983-12-03

Family

ID=14000217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9050082A Pending JPS58208102A (en) 1982-05-29 1982-05-29 Apparatus for concentrating and separating hydrogen or helium by means of porous glass film

Country Status (1)

Country Link
JP (1) JPS58208102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204006A (en) * 1985-03-07 1986-09-10 Ngk Insulators Ltd Separation membrane and its production
US7494533B2 (en) 2005-12-29 2009-02-24 American Air Liquide, Inc. Systems for purifying gases having organic impurities using granulated porous glass
US7524359B2 (en) 2005-12-29 2009-04-28 American Air Liquide, Inc. Methods for purifying gases having organic impurities using granulated porous glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204006A (en) * 1985-03-07 1986-09-10 Ngk Insulators Ltd Separation membrane and its production
US7494533B2 (en) 2005-12-29 2009-02-24 American Air Liquide, Inc. Systems for purifying gases having organic impurities using granulated porous glass
US7524359B2 (en) 2005-12-29 2009-04-28 American Air Liquide, Inc. Methods for purifying gases having organic impurities using granulated porous glass

Similar Documents

Publication Publication Date Title
Zornoza et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO 2 from CH 4 at elevated pressures
EP0009385A1 (en) Process for methanol production
NO20085070L (en) Hydrogen production process
JP6553739B2 (en) Gas recovery apparatus, gas recovery method, and semiconductor cleaning system
CN117396264A (en) Method for recycling unused gas of membrane reactor
JP2022093693A (en) Separation membrane module
JP4910474B2 (en) Method for recovering hydrogen gas from mixed gas
JPS58208102A (en) Apparatus for concentrating and separating hydrogen or helium by means of porous glass film
JP2008200589A (en) Method and apparatus for separation of gas
JP2008247654A (en) Method for separating ammonia, method for producing ammonia, and gas separation membrane
Ohya et al. Separation of supercritical CO2 and iso-octane mixtures with an asymmetric polyimide membrane
JP5562698B2 (en) Hydrogen permeable alloy and hydrogen permeable membrane using the same
CN112717723B (en) Preparation method of amino carbon dot and polyimide mixed matrix membrane for gas separation
JPS62105901A (en) Production of hydrogen of high purity
Ohya et al. The separation of gaseous mixture with composite microporous glass membranes at high temperature
JPS58120502A (en) Production of high purity hydrogen from gas generated in iron manufacturing
JP7478486B1 (en) Gas Production System
JPS6241161B2 (en)
US20030047068A1 (en) Production method using permeation of at least two gaseous fluxes from a gaseous mixture, and a production installation for implementing this method
US20220356060A1 (en) Process and apparatus for the separation of a mixture of hydrogen and carbon monoxide at low temperature
JP2009291740A (en) Hydrogen separation member and hydrogen generating apparatus
WO2024157609A1 (en) Generation device and generation method
Ohya et al. Hydrogen purification using zirconia-silica composite membranes for thermochemical process
CN106219487B (en) A kind of online separator of hydrogen based on supercritical water gasification and method
JPS63185429A (en) Method for separating and recovering gas