JPS58207006A - Optical circuit - Google Patents

Optical circuit

Info

Publication number
JPS58207006A
JPS58207006A JP9166582A JP9166582A JPS58207006A JP S58207006 A JPS58207006 A JP S58207006A JP 9166582 A JP9166582 A JP 9166582A JP 9166582 A JP9166582 A JP 9166582A JP S58207006 A JPS58207006 A JP S58207006A
Authority
JP
Japan
Prior art keywords
optical
broken line
optical fiber
point
concentric circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9166582A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kamikubo
上窪 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9166582A priority Critical patent/JPS58207006A/en
Publication of JPS58207006A publication Critical patent/JPS58207006A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering

Abstract

PURPOSE:To obtain easily an output pulse whose delay time is different in accordance with an incident point, by forming a concentric circle-like spiral part between a light incident part of an optical waveguide group and a light emitting part. CONSTITUTION:Optical fibers 10-13 are formed in parallel from a light incident point 15 to a position shown by a broken line 14, but after the broken line 14, they are formed like a concentric circle spiral, and its concentric circle spiral part ends at a point of the reverse side of the broken line 14 exactly, and after that point, it is formed in parallel to a light output part 16. The optical fiber 10-13 are all the same in its overall length from the incident point 15 to the broken line 14, therefore, an optical pulse signal which is made incident at the same time passes through the broken line 14 part at the same time, and passes through the optical path length corresponding to circumferential radiuses r1-r4 of each optical fiber 10-13 whenever it turns round the concentric circle spiral from the broken line 14 part, therefore, an optical pulse in each optical fiber 10-13 which reaches the output end 16 becomes an optical pulse signal which time is delayed in proportion to the overall length of each optical fiber.

Description

【発明の詳細な説明】 この発明は光伝送路において、入射点に対応した遅延時
間の異なる出力パルスを得る光回路に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical circuit that obtains output pulses with different delay times corresponding to input points in an optical transmission line.

先ずこの発明の原理を第1図および第2図を用いて以下
説明する。第1図において、(2)は長さtの光ファイ
バであり、この光ファイバ(2)の入方端に光パルス入
力(1)が入射すると、一定時間層に光ファイバ(2)
の出力端に光パルス出力(3)が到着する。
First, the principle of this invention will be explained below using FIGS. 1 and 2. In Fig. 1, (2) is an optical fiber of length t, and when a light pulse input (1) is input to the input end of this optical fiber (2), the optical fiber (2)
The optical pulse output (3) arrives at the output end of.

これの時間的関係を示すと第1図(b)が入力パルス波
形であり、第1図(c)が出力パルス波形である。
To show this temporal relationship, FIG. 1(b) is the input pulse waveform, and FIG. 1(c) is the output pulse waveform.

ioは入射時刻、11は出射時刻であり、11−10−
Δlはこの光フアイバ中を光パルスが通過するのに必率
輯光速e(1とするとΔl=二乙に相当する。
io is the incident time, 11 is the exit time, and 11-10-
Δl corresponds to the required rate of light e (1) for a light pulse to pass through this optical fiber.

O ここでtを2種類考えると第2図(cL)に示す様に4
+ t2の亘長の光ファイバ(6L (7)に同時刻忙
光パルス(4)、 (5)が入射すると、出力端に到着
する光パルス(8L (9)との関係は第2図(b)の
入力波形に対して、第2図(c)、(d)の様になる。
O If we consider two types of t, we get 4 as shown in Figure 2 (cL).
When simultaneous optical pulses (4) and (5) enter an optical fiber (6L (7)) with a length of + t2, the relationship with the optical pulse (8L (9)) arriving at the output end is shown in Figure 2 ( For the input waveform of b), the results are as shown in FIGS. 2(c) and 2(d).

即ち短亘長1.0光ファイバ(6)に時刻10で入射さ
れた光パルス(4)は時刻llで出力端に達し、長亘長
t2の光ファイバ(7)に時刻ioで入射された光パル
ス(5)は時刻12で出力端に達する。
That is, the optical pulse (4) entered the optical fiber (6) with a short length of 1.0 at time 10 reaches the output end at time ll, and enters the optical fiber (7) with a long length t2 at time io. The light pulse (5) reaches the output end at time 12.

?LAI Δi、=i、−4=−でありΔ12=4−4=”であc
、o                       
    (!Qる。時間遅延Δlは光ファイバの亘長に
比例する事が分る。これは光ファイバに限らず一定屈折
率を有する結晶導波路中でも気体中液体中又は真空中の
各種導波路においても同様である。
? LAI Δi, = i, -4 = - and Δ12 = 4-4 = ”, c
,o
(!Q. It turns out that the time delay Δl is proportional to the length of the optical fiber. This is true not only for optical fibers but also for crystal waveguides with a constant refractive index and various waveguides in gas, liquid, or vacuum. The same is true.

以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図において、QU、(lυ、a埠、a→はそれぞれ
光ファイバであり、光入射点α穆から破線a1までは平
行に形成され、破線(l◆から同心円螺旋状に形成され
、の終点部から光出力部までは平行に形成されている。
In Fig. 2, QU, (lυ, ab, and a→ are optical fibers, respectively, which are formed in parallel from the light incident point α to the broken line a1, and are formed in a concentric spiral shape from the broken line (l◆). The sections from the end point to the light output section are formed in parallel.

次に動作について説明する。入射点(11から同心円螺
旋開始点までは光ファイバ(LO〜(13は同じ亘長で
あるので同時刻に入射した光パルス信号は同時刻に破線
04部を通過する。破線04部から1周回心円螺施を周
回する毎に、各光フアイバα0〜α葎の円周半径はrl
+ r2. r3. r4であるので光路長が光ファイ
バ(11−(1!Iの各々について破線04部分の通過
時刻から同心円螺旋終点通過時刻までの時間を各々Δ’
1+Δ’2+Δシ8.Δ14とすると第4図はこの発明
の他の実施例で第6図と異なるところは光ファイバの線
数および単芯当りの口径を異にした点である。今照光入
カスポットの当たる物理的位置2を考える。一定の間隔
で並んだ光入力部aすを綿線半径の小さい順に”l+ 
”2+ ”3−与−どなる様に並べると入力スポット位
置が2/になったとき光出力部αQからスポットが出射
する時刻Δl、は1番目の導波路が選択されることによ
り半径V7の螺旋部により Δlrシ六×2πV/+RΔl となる。
Next, the operation will be explained. From the incident point (11) to the start point of the concentric spiral is an optical fiber (LO~(13 has the same length, so the optical pulse signals that enter at the same time pass through the dashed line 04 section at the same time.One round from the dashed line 04 section) Each time it goes around the center circular thread, the circumferential radius of each optical fiber α0~α is rl
+r2. r3. r4, the optical path length is Δ' for each of the optical fibers (11-(1!
1+Δ'2+Δshi8. Assuming Δ14, FIG. 4 shows another embodiment of the present invention, which differs from FIG. 6 in that the number of optical fibers and the diameter per single core are different. Now consider the physical position 2 where the illumination spot hits. The optical input parts a arranged at regular intervals are arranged in descending order of the cotton wire radius "l+"
When the input spot position is 2/, the time Δl at which the spot is emitted from the light output section αQ becomes a spiral with radius V7 due to the selection of the first waveguide. Δlr×2πV/+RΔl.

ここでRΔlは平行導波路部分通過時間であるが、一定
時間と通過時間差を検出すると、入力スポット位置に比
例した時間遅延が得られることになる。
Here, RΔl is the parallel waveguide portion transit time, and if the difference between the constant time and the transit time is detected, a time delay proportional to the input spot position will be obtained.

なお上記実施例は螺旋形同心円を1周する間に発生する
時間遅延を入射点の変位に対応して得る事としたが、螺
旋形同心円は何回転重ねてもよく遅延時間差を太き(す
る時に適切である事は言うまでもない。また、第2図で
は光ファイバを円筒状のものとしたが光信号が光入射部
αつに入射して光出射部α0を出射するまでに大巾なロ
スとならない限り、矩形波導波路の集合一体物で構成さ
れるものでもよい。また導波路を重ねてなる光回路はそ
の重ねる導波路数に制限はなく、更に個々の導波路の大
きさは導波路として光ノくワーを閉じ込める事が可能で
あれば特に限定するものでなく設定できる事は言うまで
もない。
In the above embodiment, the time delay that occurs during one revolution around the spiral concentric circle is obtained in accordance with the displacement of the incident point. It goes without saying that this is appropriate in some cases.Also, although the optical fiber is shown in Fig. 2 as a cylindrical fiber, there is a large amount of loss between the optical signal entering the light input part α and exiting the light output part α0. As long as it is not, it may be composed of a set of rectangular waveguides.In addition, there is no limit to the number of stacked waveguides for an optical circuit made of stacked waveguides, and the size of each waveguide is determined by the size of the waveguide. Needless to say, if it is possible to confine the light of light, there is no particular limitation and it can be set.

以上のようにこの発明によれば、入射端での光スポツト
位置に対応した遅延時間を有する光回路が容易に得られ
る効果がある。
As described above, according to the present invention, an optical circuit having a delay time corresponding to the position of the light spot at the input end can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の原理を示す図、第6図
はこの発明の実施例を示す平面図、第4図はこの発明の
他の実施例を示す平面図である。 図において、α0. ell)、α汎α→は光ファイノ
く、0→は光入射点、αQは光出射点である。なお図中
同一符号は同一または相当部分を示す。 代理人   葛  野  信  −
1 and 2 are diagrams showing the principle of the invention, FIG. 6 is a plan view showing an embodiment of the invention, and FIG. 4 is a plan view showing another embodiment of the invention. In the figure, α0. ell), α-pan α→ is an optical fin, 0→ is a light incident point, and αQ is a light output point. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] 光導波路群の光入射部から光出射部間に同心円状螺旋状
部を形成したことを特徴とする光回路。
An optical circuit characterized in that a concentric spiral portion is formed between a light input portion and a light output portion of an optical waveguide group.
JP9166582A 1982-05-27 1982-05-27 Optical circuit Pending JPS58207006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9166582A JPS58207006A (en) 1982-05-27 1982-05-27 Optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9166582A JPS58207006A (en) 1982-05-27 1982-05-27 Optical circuit

Publications (1)

Publication Number Publication Date
JPS58207006A true JPS58207006A (en) 1983-12-02

Family

ID=14032773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9166582A Pending JPS58207006A (en) 1982-05-27 1982-05-27 Optical circuit

Country Status (1)

Country Link
JP (1) JPS58207006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011400A1 (en) * 1999-08-06 2001-02-15 Mitsubishi Cable Industries, Ltd. Structure for holding optical fiber
EP1099965A2 (en) * 1999-11-12 2001-05-16 Lucent Technologies Inc. Optical fiber delay lines for digital signal processing
WO2001038909A1 (en) * 1999-11-24 2001-05-31 Mitsubishi Cable Industries, Ltd. Coated optical fiber, optical fiber assembly, methods for the same, and optical fiber substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011400A1 (en) * 1999-08-06 2001-02-15 Mitsubishi Cable Industries, Ltd. Structure for holding optical fiber
US6697560B1 (en) 1999-08-06 2004-02-24 Mitsubishi Cable Industries, Ltd Structure for holding optical fiber
EP1099965A2 (en) * 1999-11-12 2001-05-16 Lucent Technologies Inc. Optical fiber delay lines for digital signal processing
EP1099965A3 (en) * 1999-11-12 2004-05-12 Lucent Technologies Inc. Optical fiber delay lines for digital signal processing
WO2001038909A1 (en) * 1999-11-24 2001-05-31 Mitsubishi Cable Industries, Ltd. Coated optical fiber, optical fiber assembly, methods for the same, and optical fiber substrate

Similar Documents

Publication Publication Date Title
US4060308A (en) Angle selective coupler for optical fibers
EP0080815B1 (en) Optical filter
JPH04301810A (en) Optical semiconductor array module
JPH08248229A (en) Optical tapping filter using long-cycle diffraction grating
JPS58207006A (en) Optical circuit
US4128302A (en) Ray-path equalizer for signal transmission via multimode optical waveguides
SE507445C2 (en) Optical element
JPS6051088B2 (en) optical distribution circuit
US20070110366A1 (en) Collimator and optical filter device using the same
JP2605136B2 (en) Optical wiring board
JPS6217708A (en) Mode converter
JPS5518641A (en) Optical fiber branching and connecting part
JPS60140203A (en) Parts for arraying optical fiber
JPS60189706A (en) Branching device for multicore optical fiber
SU1697035A1 (en) Fiber-optics coupler
SU1017932A1 (en) Optical system for transmitting light from the source to sensing element
JPS5746218A (en) Optical fiber connecting part having directional property
SU1515129A1 (en) Fibre light-guide
JPS61229373A (en) Semiconductor light emitting device
JPS5616103A (en) Photo branch coupler
JPH10239566A (en) Method for increasing transmission information amount of optical fiber
JPS5831313A (en) Optical star coupler
JPS5456849A (en) Optical branching circuit
JPS6398610A (en) Optical fiber sensor
SU1531049A1 (en) Fibre-optics decoupler