JPS58206252A - Monitor circuit for circuit quality - Google Patents

Monitor circuit for circuit quality

Info

Publication number
JPS58206252A
JPS58206252A JP57088816A JP8881682A JPS58206252A JP S58206252 A JPS58206252 A JP S58206252A JP 57088816 A JP57088816 A JP 57088816A JP 8881682 A JP8881682 A JP 8881682A JP S58206252 A JPS58206252 A JP S58206252A
Authority
JP
Japan
Prior art keywords
circuit
path metric
bit error
maximum likelihood
line quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57088816A
Other languages
Japanese (ja)
Other versions
JPH0410773B2 (en
Inventor
Hideo Suzuki
秀夫 鈴木
Masato Tajima
田島 正登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57088816A priority Critical patent/JPS58206252A/en
Publication of JPS58206252A publication Critical patent/JPS58206252A/en
Publication of JPH0410773B2 publication Critical patent/JPH0410773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation

Abstract

PURPOSE:To always estimate and detect the circuit quality without inserting a specific signal for inspection of circuit quality, by making use of a bit error correcting circuit of the receiver side. CONSTITUTION:The figure shows the relationship between the S/N during the soft decision and the average increment of the maximum likelihood pass-metric. While the relation between the average increment of the maximum likelihood pass metric and the bit error factor can be quantized by synthesizing the relation between the S/N during the soft decision and the logical bit error factor of the entire system including a coder and decoder. Therefore the maximum likelihood pass metaric delivered from a bit decoding circuit 1 is fed successively to an averaging circuit 5 to extract the average value. Then this average value is fed to an bit error factor converting circuit 6, and therefore the bit error factor of the entire system can be delivered. Thus it is always possible to monitor the circuit quality in real time by monitoring the output of the circuit 6. A pass metric normalizing circuit 4 is provided to suppress the pass metric within a finite capacity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、衛星通信路の回線品質状態(例えばビット誤
り率)を検出するだめの回線品質監視回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a line quality monitoring circuit for detecting the line quality status (for example, bit error rate) of a satellite communication channel.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

衛星通信回線では、降雨等によって通信回線品質が変動
、劣化するため、回線状態を受信状態で常時モニタして
いる必要があり、場合によってはモニタ結果を送信側に
伝え送信側磁力が制御する等して回線不稼動率の改善が
図られているつところで受信回線状態を近視するため従
来は送信データ中に回線品質状態用の特定信号を挿入し
、4号データの中からその信号を抽出する事によって受
信状態をチェックしていたが、これにより週信情報区内
が減少し、性能良く回線品質を演出しようとすると伝送
能率が低下するという欠点がめった。
In satellite communication lines, the quality of the communication line fluctuates and deteriorates due to rain, etc., so the line status must be constantly monitored in the receiving state, and in some cases, the monitoring results are conveyed to the transmitting side and the transmitting side magnetic force controls. Conventionally, a specific signal for the line quality status is inserted into the transmitted data and that signal is extracted from the No. 4 data in order to closely monitor the receiving line status where the line unavailability rate is being improved. The reception status was checked depending on the situation, but this often resulted in a decrease in the weekly news information area, and when trying to produce good line quality, the transmission efficiency decreased.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の従来技術の欠点に鑑みなされたもので
、受信側に設置されるビタビ誤シ訂正回路を利用する事
によって回線品質検査用の特定方今を挿入することなく
、したがって伝送能率を全く劣化させずに常時回線品質
を推定検出でさる回線品質監視回路を提供す葛ことを目
的とする。
The present invention was devised in view of the above-mentioned drawbacks of the prior art, and by utilizing a Viterbi error correction circuit installed on the receiving side, it is possible to improve transmission efficiency without inserting a specific method for line quality inspection. The purpose of this invention is to provide a line quality monitoring circuit that constantly estimates and detects line quality without deteriorating the line quality at all.

〔発明の概要〕[Summary of the invention]

本発明は、ビタビ復号法のアルゴリズム処理の過程で現
われるパスメリックに統計的演算処理を施し、潜られた
結果よシ回線品質を推定するものである。
The present invention applies statistical calculation processing to the path metrics that appear during the algorithm processing of the Viterbi decoding method, and estimates the line quality based on the hidden results.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明に係る回線品質監視回路の基本構成図で
あり、ビタビ復号回路(1)及び演算回路(2)により
博成される。ビタビ復号回路11)は、受信信号を入力
し、誤シ訂正が施されたL麦号データを出力−rるとい
う通常の動作に、0口えて、同じくこのピメビJ号回路
よう出力された第2の出方であるパスメトリツク1言号
が演算回路(2)に入力され、それに伴って回線品質信
号が出方される。
FIG. 1 is a basic configuration diagram of a line quality monitoring circuit according to the present invention, which is constructed by a Viterbi decoding circuit (1) and an arithmetic circuit (2). The Viterbi decoding circuit 11) performs the normal operation of inputting the received signal and outputting the error-corrected L code data. Path metric 1 word, which is the output of 2, is input to the arithmetic circuit (2), and a line quality signal is output accordingly.

不発明の詳細な説明するに当ノζ9、proc +d 
ingsof the igEE、 Vol 61.1
ho3f’268−27’8.1973などKより仰ら
れているビタビ復号広、(ついて若干要点を整理してお
く。
To give a detailed explanation of the non-invention, the present ζ9, proc +d
ingsof the igEE, Vol 61.1
Ho3f'268-27'8.1973 and other Viterbi decoding techniques mentioned by K (I'll summarize some of the main points.

ピタビJ号法は、7τたみ込み1f号に対する強方な誤
り訂正1号法として知られているが、その構造は仔号を
生成Tる符号器の目才と密接l/C関係している。
The Piterbi J method is known as a robust error correction method for the 7τ convolution 1f code, but its structure is closely related to the intelligence of the encoder that generates the daughter code. There is.

すなob、対象とする符号器のパラメータ(すなわち符
号化率、狗束長)を指足すると符号器の内部状態数が−
、ばlこ決定され、このときとタビアルゴリズムとは、
各時刻とその時刻に>v′fる(行値信号系列との間の
よ、4)を頑犬足のでいくもりである。
In other words, ob, if you add the parameters of the target encoder (i.e. coding rate, bundle length), the number of internal states of the encoder is -
, the value is determined, and in this case, the Tavi algorithm is:
It is assumed that >v'f (between the row value signal series and 4) is determined between each time and that time.

従って各時刻毎に、全体で内部状態数だけの生き残りパ
スとそれぞれのパスに対応する同数のパスメトリックが
記憶されていることになるが、それらの中で、最小のパ
スメトリックをもつ生き残シバス(すなわち、受信デー
タ系列に、4率的な意味で最も近いパス)が送信データ
として最も確からしいという意味で、その時刻における
最尤パスと呼ばれ、復号出力の決定とも直接関係してい
る。
Therefore, at each time, a total of as many surviving paths as the number of internal states and the same number of path metrics corresponding to each path are stored, but among them, the surviving path with the minimum path metric ( In other words, the path that is closest to the received data sequence in a 4-rate sense is the most likely transmission data, and is called the maximum likelihood path at that time, and is directly related to the determination of the decoding output.

ただ゛しパスメトリックの選び方には任意比がめシ、受
信データに近いパスが逆に大きなパスメトリックを持つ
ように対応づけることも可能で、そのような場合には、
最尤のパスメトリックともつ生き残シパスが最尤パスと
なる。
However, it is also possible to use an arbitrary ratio in selecting the path metric, so that the path closer to the received data has a larger path metric, and in such a case,
The surviving path with the maximum likelihood path metric becomes the maximum likelihood path.

従って、両者を統一する目的で、パスメトリックの定義
にかかわらず決定される最尤パスを基準に考え、その最
尤パスのもつパスメトリックを最尤パスメトリックとこ
こでは呼ぶことにする。
Therefore, in order to unify the two, the maximum likelihood path determined regardless of the definition of the path metric will be considered as a standard, and the path metric of the maximum likelihood path will be referred to here as the maximum likelihood path metric.

さて上述のビタビ復号法は、特に軟判定復調と組み合わ
せて用いるとビット誤)率特性を飛Knに向上させるこ
とが出来ることが知られてお9実際そのような形で使用
される。
It is known that the above-mentioned Viterbi decoding method can significantly improve bit error rate characteristics, especially when used in combination with soft-decision demodulation, and is actually used in this manner.

この場合パスメトリックとは、軟判定データと送信シン
ボルとの間の距4を定義するシンボルノドリック撮に従
って、各時刻の軟判定データに対して算出されたシンボ
ルメトリックをその時刻には時間と共に単調に増力aす
るという性質?もっことになる。
In this case, the path metric is the symbol metric calculated for the soft decision data at each time, which is monotonous over time, according to the symbol nodrick that defines the distance 4 between the soft decision data and the transmitted symbol. The property of increasing the force a? There will be more.

再び本発明の詳細な説明にもどる。Returning once again to the detailed description of the present invention.

ツクを最小パスメトリックの意味で用いるものとする。Let tsuk be used to mean the minimum path metric.

このような仮定の下で軟判定時における胆を表わす)の
屓係を求めると第2丙の結果かえられ、同図に示される
様にきわめて具体的かつ定量的な関数関係にあることが
わかる。
Under these assumptions, when we calculate the relationship between the values of 2 and 3 (representing the power in soft decisions), we get the result shown in 2C, which shows that there is a very specific and quantitative functional relationship as shown in the figure. .

更に今までの説明で明らかなように、最尤パスメトリッ
クはアルゴリズム自身を処理する過程で発生する量であ
るから、具体的な送信データとは独立である。
Furthermore, as is clear from the above explanation, the maximum likelihood path metric is a quantity generated in the process of processing the algorithm itself, and therefore is independent of specific transmission data.

ゆえにこの関係を利用すれば、実際の送信データに依存
せず、1号過程で現われるパスメトリックという1つの
量に注目することによって通信品とタビ復号回路(1)
平均化回路(5)及び変換回路(6)よυ4構成されて
2シ、符号器、復号器を含めた系全体のピッ)Gul)
率を演算回路tz+から出力することができる。ただし
、M3図で(4)はパスメトリック有限谷量内にとどめ
るためのパス7) IJラック規化回路である。
Therefore, by using this relationship, communication products and Tavi decoding circuits (1) can be calculated by focusing on a single quantity, the path metric, that appears in the 1st process, without depending on the actual transmitted data.
It consists of an averaging circuit (5) and a conversion circuit (6).
The ratio can be output from the arithmetic circuit tz+. However, in the M3 diagram, (4) is the path 7) IJ rack normalization circuit for keeping the path metric within the finite valley amount.

さて、ビタビ復号回路(1)より出力された最尤パスメ
トリックは平均化回路t5)へ入力され、その1、出力
平均値が変換回路(6)へ入力されビット誤り率が出力
される。d!J3図の回路の動作原理は次のように説明
さ乳る。
Now, the maximum likelihood path metric output from the Viterbi decoding circuit (1) is input to the averaging circuit t5), and the output average value is input to the conversion circuit (6), where the bit error rate is output. d! The operating principle of the circuit shown in Figure J3 is explained as follows.

既に第2図で、軟判定時におけるS/l″Jと対応すを
含めた基金1−−輪ピット誤り率(これは算出可能)と
の1関係は既却と考えてよいからそれらを合成すればく
最尤パスメリックの平均増分〉対〈ビット誤9率〉の関
係を第4図に示すように定量的に与えることができる。
As already shown in Figure 2, the relationship between S/l''J and the corresponding fund 1-ring pit error rate (which can be calculated) at the time of soft decision can be considered to have been established, so we can combine them. Then, the relationship between the average increment of the maximum likelihood path metric and the bit error rate can be quantitatively given as shown in FIG.

ゆえにビタビ榎号lp1g:11から出力された最尤パ
スメトリックを次々と平均化回路(5)へ入力して平均
直を抽出し、その1区全く平均最尤パスメトリック〉対
くビット誤シ率〉の変換回路(6)へ入力すれば系全体
のビット誤り4が出力出来る。明らかに、これらの操作
はすべて実時間で処理出来るから変換回路(6)の出力
をモニタすることによってリアルタイムで常時回線品質
を監・疏出来ることがわかる。
Therefore, the maximum likelihood path metrics output from the Viterbi Enoki lp1g:11 are input one after another to the averaging circuit (5) to extract the average straightness, and the bit error rate is calculated as follows: If input to the conversion circuit (6) of >, the bit error 4 of the entire system can be output. Obviously, since all of these operations can be processed in real time, it is clear that by monitoring the output of the conversion circuit (6), the line quality can be constantly monitored in real time.

平均化回路としてはディジタルフィルタt、変換回路と
しては1N(読出し専用メモリ)で実現することができ
る。ところで第3図の4成では、直接符号誤シ率が表示
出来るようになっているが、場合によっては、誤シ率そ
のものでなくても、受信信号の8/ LNその他の同系
統の量であるならば、それらが互いに定量的関数関係に
あることから、変換回路を適当に構成することによシ、
それらの値を目的に合わせて抽出することも可能である
The averaging circuit can be realized by a digital filter t, and the conversion circuit can be realized by 1N (read-only memory). By the way, in the 4-component shown in Figure 3, the code error rate can be displayed directly, but in some cases, the code error rate itself may not be displayed, but the 8/LN of the received signal or other similar quantities. If so, since they have a quantitative functional relationship with each other, it can be done by appropriately configuring the conversion circuit.
It is also possible to extract these values according to the purpose.

(発明の効果〕 以上述べたように本発明によれば、ピタビ復号法自身の
特徴を利用して送信データとは独立に、通信。、86☆
、エフ。2イ、ア推定す、。よ78カ来、しかもその導
出過程は、復号演算の途中に現われる量を有効に利用し
ているため付加演算量が少ない等憶めて有効なl−品質
監視回路を提供することが出来る。
(Effects of the Invention) As described above, according to the present invention, communication is performed independently of transmitted data by utilizing the characteristics of the Piterbi decoding method itself.
, F. 2. I guess. Moreover, since the derivation process effectively utilizes the quantity that appears during the decoding operation, it is possible to provide an effective l-quality monitoring circuit with a small amount of additional calculations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における回耐品質監+A回路の基本構成
図、第2図は受信信名/Nに対する最尤パスメトリック
の平均増分の関係を表わしfc→性図、第3図は本発明
の一実施例における回路構成図、第4図は平均最尤パス
メトリックに対するビット誤シ率の関係を表わした特性
図である。 1・・・どタビ復号回路 2・・・演算回路3・・・ピ
タビ復号回路 4・・・パスメトリック正規化回路 5・・平均化回路   6・・・変臭回路代理人 弁理
士 則近恵市 (ほか1名)第1凶 第2図 E b/r’Jo (dB)
Fig. 1 is a basic configuration diagram of the reversibility quality control +A circuit according to the present invention, Fig. 2 is a relationship between the average increment of the maximum likelihood path metric and the reception name/N, and Fig. 3 is a diagram showing the relationship between fc → FIG. 4 is a circuit configuration diagram in one embodiment of the present invention, and is a characteristic diagram showing the relationship between the bit error rate and the average maximum likelihood path metric. 1... Dotabi decoding circuit 2... Arithmetic circuit 3... Pitabi decoding circuit 4... Path metric normalization circuit 5... Averaging circuit 6... Odor changing circuit agent Patent attorney Norichika City (1 other person) No. 1 No. 2 E b/r'Jo (dB)

Claims (4)

【特許請求の範囲】[Claims] (1)  受信信号を入力とし、誤シ訂正が施された復
号データを出力するビタビ復号回路と、このビタビ復号
回路から第2の出力としてとり出されるパスメトリック
信号を入力として回線品質信号を出力する演算回路とを
具備してなることを特徴とする回線品質監視回路。
(1) A Viterbi decoding circuit that takes the received signal as an input and outputs decoded data that has been subjected to error correction, and a path metric signal that is taken out as a second output from this Viterbi decoding circuit and outputs a line quality signal. 1. A line quality monitoring circuit comprising: an arithmetic circuit that performs the following operations.
(2)  演算回路の入力であるパスメトリック信号は
、その時刻での最尤パスメトリックである。特許請求の
範囲第1項記載の回線品質監視回路。
(2) The path metric signal input to the arithmetic circuit is the maximum likelihood path metric at that time. A line quality monitoring circuit according to claim 1.
(3)  ビタビ復号回路は、パスメトリック正規化回
路を具備し、演算回路の入力であるパスメトリック信号
は、ビタビ復号回路において時刻毎にパスメトリックを
キ正規化して得られた最尤パスメトリックである4特許
請求の範囲第1項記載の回線品質監視回路。
(3) The Viterbi decoding circuit is equipped with a path metric normalization circuit, and the path metric signal input to the arithmetic circuit is the maximum likelihood path metric obtained by x-normalizing the path metric at each time in the Viterbi decoding circuit. A line quality monitoring circuit according to claim 1 of the fourth patent.
(4)演算回路は平均回路を内蔵するものであることを
特徴とする特許請求の範囲第1項記載の回線品質監視回
路。 15)演算回路は、平均化回路及び変換回路によって構
成されるものである特許請求の範囲第1項記載の回線品
質監視回路。
(4) The line quality monitoring circuit according to claim 1, wherein the arithmetic circuit includes an averaging circuit. 15) The line quality monitoring circuit according to claim 1, wherein the arithmetic circuit is constituted by an averaging circuit and a conversion circuit.
JP57088816A 1982-05-27 1982-05-27 Monitor circuit for circuit quality Granted JPS58206252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57088816A JPS58206252A (en) 1982-05-27 1982-05-27 Monitor circuit for circuit quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57088816A JPS58206252A (en) 1982-05-27 1982-05-27 Monitor circuit for circuit quality

Publications (2)

Publication Number Publication Date
JPS58206252A true JPS58206252A (en) 1983-12-01
JPH0410773B2 JPH0410773B2 (en) 1992-02-26

Family

ID=13953431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57088816A Granted JPS58206252A (en) 1982-05-27 1982-05-27 Monitor circuit for circuit quality

Country Status (1)

Country Link
JP (1) JPS58206252A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198131A (en) * 1988-02-03 1989-08-09 Kokusai Denshin Denwa Co Ltd <Kdd> System for estimating circuit quality of communication circuit using sequential decoding method
JPH02202725A (en) * 1989-02-01 1990-08-10 Japan Radio Co Ltd Detecting method for bit error rate of viterbi decoder
JPH02241249A (en) * 1989-03-15 1990-09-25 Nec Corp Interference detecting system
JPH02278939A (en) * 1989-04-19 1990-11-15 Matsushita Electric Ind Co Ltd Data decoder
US5838697A (en) * 1995-12-15 1998-11-17 Oki Electric Industry Co., Ltd. Bit error counting method and counting technical field
WO2000041353A1 (en) * 1999-01-07 2000-07-13 Sony Corporation Error rate estimating device, receiver comprising error rate estimating device, error rate estimating method, receiving method using error rate estimating method, and information providing medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123211A (en) * 1973-03-28 1974-11-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123211A (en) * 1973-03-28 1974-11-26

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198131A (en) * 1988-02-03 1989-08-09 Kokusai Denshin Denwa Co Ltd <Kdd> System for estimating circuit quality of communication circuit using sequential decoding method
JPH02202725A (en) * 1989-02-01 1990-08-10 Japan Radio Co Ltd Detecting method for bit error rate of viterbi decoder
JPH02241249A (en) * 1989-03-15 1990-09-25 Nec Corp Interference detecting system
JPH02278939A (en) * 1989-04-19 1990-11-15 Matsushita Electric Ind Co Ltd Data decoder
US5838697A (en) * 1995-12-15 1998-11-17 Oki Electric Industry Co., Ltd. Bit error counting method and counting technical field
WO2000041353A1 (en) * 1999-01-07 2000-07-13 Sony Corporation Error rate estimating device, receiver comprising error rate estimating device, error rate estimating method, receiving method using error rate estimating method, and information providing medium
US7054357B1 (en) 1999-01-07 2006-05-30 Sony Corporation Error rate estimating device, method, and information recording medium

Also Published As

Publication number Publication date
JPH0410773B2 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US6148431A (en) Add compare select circuit and method implementing a viterbi algorithm
JP3120511B2 (en) Viterbi decoding device
EP0846376B1 (en) Method for metric determination in a communication system
EP0138598A2 (en) Error correction apparatus using a viterbi decoder
US6393074B1 (en) Decoding system for variable-rate convolutionally-coded data sequence
US5548684A (en) Artificial neural network viterbi decoding system and method
US6680986B1 (en) Method for implementing shared channel decoder for onboard processing satellites
EP0910907B1 (en) Method and apparatus for concatenated coding of mobile radio signals
US8335971B2 (en) Application of a meta-viterbi algorithm for communication systems without intersymbol interference
EP0805572A2 (en) Error detection and error concealment for encoded speech data
JPS58206252A (en) Monitor circuit for circuit quality
US6396878B1 (en) Reception method and a receiver
US5450338A (en) Add-compare-select device
US6483881B1 (en) Method of reducing complexity using statistics of path metrics in a trellis decoder
US20040044947A1 (en) Method and device for decoding a sequence of physical signals, reliability detection unit and viterbi decoding unit
US6677865B1 (en) Method and configuration for decoding information
US7991082B2 (en) Maximum a posteriori probability decoder
US20030103587A1 (en) Viterbi equalizer using various hardware data paths for ACS and transmission metric operations
JPS6319097B2 (en)
JP2516673B2 (en) Viterbi decoder bit error rate detection method
EP0944173A2 (en) Add-compare selection circuit for a Viterbi decoder
US6934343B2 (en) Computing the full path metric in viterbi decoding
JP3235333B2 (en) Viterbi decoding method and Viterbi decoding device
JP2591332B2 (en) Error correction decoding device
US7032165B2 (en) ACS unit in a decoder