JPS58206161A - Process control system - Google Patents

Process control system

Info

Publication number
JPS58206161A
JPS58206161A JP8795182A JP8795182A JPS58206161A JP S58206161 A JPS58206161 A JP S58206161A JP 8795182 A JP8795182 A JP 8795182A JP 8795182 A JP8795182 A JP 8795182A JP S58206161 A JPS58206161 A JP S58206161A
Authority
JP
Japan
Prior art keywords
substrate
gate
channel
measured
channel doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8795182A
Other languages
Japanese (ja)
Inventor
Yoichi Takeuchi
洋一 竹内
Mikihiko Onari
大成 幹彦
Kuniaki Matsumoto
松本 邦顕
Ikuo Matsuba
松葉 育雄
Masaru Takeuchi
竹内 賢
「ふな」橋 誠壽
Seijiyu Funabashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8795182A priority Critical patent/JPS58206161A/en
Publication of JPS58206161A publication Critical patent/JPS58206161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To reduce the quantity of variation of the electric characteristic to be generated at the manufacturing process of a semiconductor element by a method wherein the channel doping quantity under a gate is adjusted conforming to impurity density of a substrate and the deviation value of the shape of the gate from the aiming value. CONSTITUTION:At the manufacturing process of the semiconductor element having gate structure of an MOSFET, etc., the sheet resistance value is measured at first to be inputted to a CPU, and the impurity density of p type Si substrate 101 is calculated. Then after an oxide film to isolate between the FET's is formed, channel width (w) is measured. Then an oxide film is formed on the whole surface of the substrate, and film thickness (d) of the gate oxide film 102 is measured. Then channel doping is performed according to ion implantation to form a p type surface inversion layer in the whole region of the surface of the substrate. At this time, the channel doping quantity is calculated according to operation from impurity density of the substrate and the measured values (w), (d). After then, diffusion layers 103, 104 and electrodes 106, 107, 108 are formed.

Description

【発明の詳細な説明】 本発明はMQSPET8のケート構造を有する半導体素
子のゲート下へのチャネルドービ/グプロセスの制御方
式に関し、特に個々の素子が微細化したLSI製造プロ
セスの?1ill 副刃式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the process of channel doping/doping under the gate of a semiconductor device having a gate structure of MQSPET8, and particularly to a method for controlling an LSI manufacturing process in which individual devices are miniaturized. 1ill Regarding the secondary blade type.

従来のMQSPET”IJ、f%プロセスでは、各プロ
セスの口碑1直や操作品げあらかじめ設計された飴に固
定さねており、前のプロセスで生じた変動により以後の
)゛ロセスの目積1直や操作筒°を震〆することnhな
われていなかったために、途中のプロセスで生じた変動
がそのまま素子の特性変動に影響する欠点があった。
In the conventional MQSPET "IJ, f% process, the word of mouth of each process and the operation items are fixed to a pre-designed candy, and the target value of the subsequent) process is fixed due to the fluctuations that occurred in the previous process. Since there was no practice of shaking the operating cylinder or the operating cylinder, there was a drawback in that fluctuations that occurred during the process directly affected the fluctuations in the characteristics of the element.

本発明の目的は、MQSPET等の半導体東予の電気的
特性の変動量を減少させるようにしたプロセス制御方式
を提供することにある。
An object of the present invention is to provide a process control method that reduces the amount of variation in the electrical characteristics of semiconductors such as MQSPET.

MQSPETの電気的特性に基板不純物濃度、ゲート形
状の賀化により変動するが、チャネルドーピング量をそ
れぞれの変化に賜じて調節することにより電気的特性の
変動蓋を減少させられることをシミュレーション計簀、
実験により確めた。
Although the electrical characteristics of MQSPET vary depending on the substrate impurity concentration and the gate shape, we conducted a simulation to demonstrate that the variation in electrical characteristics can be reduced by adjusting the channel doping amount according to each change. ,
Confirmed by experiment.

本発明は、このような点にイオ目し、基板不純物濃度、
ゲート形状の目標値からのイ屍A1直を検出し、その唾
に基ついてゲート下へのチャネルドーピング量f調整す
るようにしたことに励機がある。
The present invention focuses on these points, and the substrate impurity concentration,
The motivation lies in the fact that the dead body A1 is detected from the target value of the gate shape, and the channel doping amount f under the gate is adjusted based on that saliva.

以下、本発明の一実施例を図面により説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1し1はNtO8FET 内のFETの構造の一世]
を示す。基板101はp−型シリコンであり、その内部
に01型のソース拡散層103、ドレイ/拡散k t 
04 、p型の表面拡散I曽(チャネル部)105が形
成されている。チャネル105上にはケート酢化膜10
2が、ソース拡散層103上、ドレイン拡?層104上
、ゲート酸化19102上ににそれぞれ市、+1)ll
 06.107.  l 08か形成されている。ケ=
1・酸化)1ψ102の形状は直方体であり、その大き
さは厚さd1長さz、IIMWで決シト′される。FE
T間V1醐化膜で分離されている。
The first is the first generation of the structure of the FET in the NtO8FET]
shows. The substrate 101 is p-type silicon, and therein is a 01 type source diffusion layer 103 and a drain/diffusion k t
04, a p-type surface diffusion Iso (channel portion) 105 is formed. On the channel 105 is a cateacetate film 10.
2 is the drain expansion on the source diffusion layer 103? +1)ll on layer 104 and gate oxide 19102, respectively.
06.107. l 08 has been formed. Ke =
1. Oxidation) The shape of 1ψ102 is a rectangular parallelepiped, and its size is determined by the thickness d1, length z, and IIMW. FE
It is separated by a phosphorized membrane between V1 and T.

p型表面拡散rm 105を形h7するための不純物は
チャネルドーピングにより基板表面に打込まれる。
Impurities for forming the p-type surface diffusion rm 105 in the form h7 are implanted into the substrate surface by channel doping.

次にしきい1直知、圧ケ一定にするようにチャネルドー
ピングにおける不純物量を決定する制御式を示す。しき
い値電圧(以下Vihとdピす。)は1’vlO8I”
ETの基本−であり、一般にはソース、ドレイン間の表
面反転19.・内のキャリア数が基板のキーsr IJ
ア数に等しくなった状態と定義される。実際の測定では
一般にドレイン札、茄の浦れ始めのゲー) ’ri1圧
をなんらかの十段で71411定することが多く、4)
1・定法によりその1的も変ってくる。本実施例では−
ボのドレインη、;流に達するに心細なゲート電圧とし
て取り扱っている。まずVshに関して次の(1)式の
1屍差式を用いる。
Next, a control equation for determining the amount of impurity in channel doping so as to keep threshold 1 constant and pressure constant will be shown. The threshold voltage (hereinafter referred to as Vih) is 1'vlO8I''
19. This is the basis of ET and is generally a surface inversion between the source and drain.・The number of carriers inside is the key sr IJ of the board
It is defined as the state where the number is equal to the number of In actual measurements, the drain pressure is often fixed at 71411 in some ten steps, 4)
1. The 1-point also changes depending on the fixed law. In this example -
The drain η of the current is treated as a gate voltage with care. First, regarding Vsh, the following one-body difference equation (1) is used.

ただし、vtho=シきい1直止′圧の目標1直N、:
シリコン基板の不純物密度(側蓋11白) N、。:シリコン基板の不純物密度(14槽f直 ) d :ゲート酸化)Iい厚(測定(16)do :ゲー
ト酸化膜厚(目緯帥) t :チャネル長(測定値) to:チャネル長(口碑(直) W::チャネル幅(測定端) Wo :チャネル幅(目標(直) NDII :チャネルドーピング歇(操作(!#)ND
IIO:チャネルドーピング量1準1直)a、〜a、:
係数 (1)式によれば、N、、d、L、Wを得た後、Voの
目標値からの偏差を消滅するようにチャネルドーピング
量の操作@を決める副側1式として、(2)式が得られ
る。
However, vtho = target 1st straight N of the 1st straight stop' pressure:
Impurity density of silicon substrate (side lid 11 white) N. : Impurity density of silicon substrate (direction of 14 tanks) d : Gate oxidation) thickness (measurement (16)) do : Gate oxide film thickness (measurement) t : Channel length (measured value) to : Channel length (measured value) (Direct) W:: Channel width (measurement end) Wo: Channel width (target (direct)) NDII: Channel doping interval (operation (!#) ND
IIO: Channel doping amount 1 quasi-1 straight) a, ~a,:
According to the coefficient equation (1), after obtaining N, d, L, and W, the sub-side equation for determining the operation of the channel doping amount so as to eliminate the deviation from the target value of Vo is (2 ) formula is obtained.

(2)式のもとになる(1)式の根部全以下に示す。The entire root of equation (1), which is the basis of equation (2), is shown below.

基板深さ方向の一次元モデルによりvtbは(3)式%
式% たたし、VF!l :フラットパ/ド’fill FF
φr:基板のフエルミボデノンヤル Q!l :チーヤネルの空乏層中のt荷CoX:ゲート
酸化弾拝爺 Nng:チャネルドーピングー まず、N、のす化は(3)式の第3項のQ−の変化とし
て、また、dと(″、。Xの関係は(4)式で表わされ
るのでdの変化は(3)式の・赫3,4珀の変化として
Vthに影響する。
According to the one-dimensional model in the substrate depth direction, vtb is calculated using formula (3)%
Formula% Tatashi, VF! l :Flat pad/de'fill FF
φr: Fermibodenon Yar Q of the board! l: t-load in channel depletion layer CoX: Gate oxide bomb Nng: Channel doping - First, N, sulfurization is expressed as a change in Q- in the third term of equation (3), and d and ( Since the relationship between `` and .

ただし、C@ 二酸化膜の詩電率 tに関して1−11.tの増減により、ドレイノ′屯1
−tがチャネルに及ぼす卜書の鳴゛合か変わるためV 
s hが変化する。この現象は通常、知チャネル効宋と
呼(l−rねでいる。
However, regarding the electrical coefficient t of C@dioxide film, 1-11. Due to the increase or decrease of t, Dreno'ton1
-V because t changes the ringing of the map on the channel
s h changes. This phenomenon is usually called knowledge channel effect.

甘だ、Wに関しては印力0′lIl圧の束柱か等しい場
合、Wの増7Aυに応じてドレイン゛i、」1も増減−
1石ためにV t hは変化すも。
That's naive. Regarding W, if the impression force is 0'lIl pressure bundle column is equal, the drain ゛i,''1 will also increase or decrease according to the increase of W 7Aυ.
V th changes because of one stone.

N o s (7) 変化は、主に(3)式の第4項の
変化としてV t hに影響する。
The change in N o s (7) mainly affects V th as a change in the fourth term of equation (3).

係数a、−、−a、i、j:次のようにして求める。N
1゜d+  Z+  wを目標(直近幼で、NDlIを
(塵Y(直髪丁f′;1で変化させて複数1(^1のl
” E T i作成し、Vtbを4川定1−る。この結
果を滞り用して、重回帰分析によ、!7係数a、〜aS
を定める。
Coefficients a, -, -a, i, j: Calculated as follows. N
Aim for 1゜d+Z+w (in the nearest child, change NDlI to (dust Y(straight hair f′;
” E Ti is created and Vtb is determined by four rivers.Using this result, multiple regression analysis is performed to calculate !7 coefficients a, ~aS
Establish.

本発明の実施例の装置構成を第2図に、cpuの処理フ
ローを第3しJに示す。第3図には、)’E’I”製造
プロセス中の本実施例に関連するプロセスと、CPUの
処理との順序関係も合わせて示す。以ド、ウェハの加工
順に従い、本実施例の千1i1fflを説明する。
The device configuration of the embodiment of the present invention is shown in FIG. 2, and the processing flow of the CPU is shown in FIG. Fig. 3 also shows the order relationship between the processes related to this embodiment during the )'E'I' manufacturing process and the processing of the CPU. 111i1ffl will be explained.

寸ス、CP11201に(1)式の係数a、〜a、の打
月(,11fil′1% プロセスの目標1的N”Q 
+ do + ZOI WO%チャネルドービ7グ覇の
抄・・掌値N O!10  を設定する(ステップ40
1)。胛ツ、所定の枚数のウエノ・の々;1−1理が絖
了するまで1ζ−■リエ1理を絣り返す。
At the same time, the coefficient a of equation (1), ~a, is applied to CP11201.
+ do + ZOI WO% Channel Dobi 7g Ha no Sho...Pal value NO! 10 (step 40)
1). Yoshitsu, repeat the 1ζ-■rie 1ri until the 1-1 ri is completed.

基板検査プロセス301で抵抗4相定器202によりノ
ー、板の7−トt”>抗1的f 1i11i ’+i’
−rる(ステップ402)。CPt1201i1T1そ
の1直を入力し7、基板の不紳物1蕾11r N 、ケ
ー出する(ステップ403)。
In the board inspection process 301, the resistor 4-phase regulator 202 determines that the board's 7-tt''> anti-1 f 1i11i '+i'
-r (step 402). CPt1201i1T1 1st part is input 7, and 1st bud 11r N of the board is output (step 403).

次に、第一酸化プロセス302でFET間を分離するた
めの酸什j1酢を・肘11νシ1、寸法測定器203に
よりチャネル幅Wを4川定fる。CP[J201はそ(
1) (lISを入力する(ステップ404)。次に、
第二酸化プロセス303で酸化膜を基板全曲に形成し、
膜j!ν淘15?器204によりケート酸化膜厚dを4
(11定す乙、。CP [−1201にそのf的を入力
する(ステップ405)。次に、イオン打込プロセス3
04によりチャネルドーピング金倉ないp型の表面反転
層ケ基板表面全域にhそbkする。この場合、N、。
Next, in a first oxidation process 302, acid and vinegar are added to separate the FETs, and the channel width W is determined using a dimension measuring device 203. CP[J201haso(
1) (Enter IS (step 404). Next,
In a second oxidation process 303, an oxide film is formed on the entire substrate,
Membrane j! ν昘15? The thickness d of the Kate oxide film is 4 using the container 204.
(11) Enter the f target in CP [-1201 (step 405).Next, ion implantation process 3
04, a p-type surface inversion layer is formed over the entire surface of the substrate without channel doping. In this case, N.

w、dはすでに定°まっているが、tは来庁であるので
、c p tl201は(2)式よジtの項を除いた(
5)式によシチャネルドーピングMNosi切出し、イ
オン打込装置コントローラ205に、ビシt、7−す石
(ステップ406)。
w and d have already been determined, but since t is the next office, c p tl201 is calculated by removing the term t from equation (2) (
5) Cut out the channel-doped MNosi, transfer it to the ion implantation device controller 205, and apply it to the ion implanter controller 205 (step 406).

ドレイン上の酸化膜を除去し、寸?り、IIIII定器
206によりゲート酸化膜102の1長さtケ則定−1
ろ。
Remove the oxide film on the drain and check the size. Then, the length t of the gate oxide film 102 is determined by the III regulator 206.
reactor.

CP tJ 201はそのInnを入力す、7E、 (
ステップ407)。
CP tJ 201 enters its Inn, 7E, (
Step 407).

さらに、れI数プロセス全!l〕シて、n+拡11々層
103゜104、電極106,107,108を形成[
7てPETを作成し7た(ρ、N性検査プロセス3f)
6において、■Cテスタ207によりVthを6用定す
る。
In addition, there are many processes! l] Then, form n+ expansion 11 layers 103, 104 and electrodes 106, 107, 108 [
7 to create a PET (ρ, Nity test process 3f)
At step 6, Vth is set to 6 using the C tester 207.

CP LJ 201 (’j Vth k人力り、−(
(ステツ−1408入(1)式の併、数a1〜a、を修
正する(ステップ409)。
CP LJ 201 ('j Vth khuman power, -(
(Step 1408) In addition to formula (1), numbers a1 to a are corrected (step 409).

(1)式のfaa+ 〜q、の修正方θSの一例を次に
示す。素イ1グ時系列的にi−1,i、i+1のItt
r+序で処理するものとする。i折目の素子に対する(
1)式中の各変数の71+11定1的を〜’tb(1)
+ N、(i)、 d(i)。
An example of how to correct θS for faa+ to q in equation (1) is shown below. Itt of i-1, i, i+1 in chronological order
It is assumed that processing is performed in r+ order. For the i-fold element (
1) The 71+11 constant of each variable in the formula is ~'tb(1)
+ N, (i), d(i).

t(i)、 w(i)、ドy+作帥’< N o8(i
)、(1)式の係Plをa、(i )〜a 、(i) 
 と表わす。I召丁目までの素子の4川定1直にもとす
いて、i+1番目の素子に対する係数a、(i4−1)
〜a、(i+1)を決定する方法は次のようになる。ま
ず、i−4番目からi@目までの潰11定飴、操作1直
より得られる連立方程式(6)を解いてar〜azを求
める。
t(i), w(i), doy+sakushu'< No8(i
), the coefficient Pl of equation (1) is a, (i ) ~ a , (i)
It is expressed as The coefficient a for the i+1th element, (i4-1)
The method for determining ~a, (i+1) is as follows. First, solve the simultaneous equations (6) obtained from the 11th fixed candy and the 1st operation from the i-4th to the i@th to obtain ar to az.

=0         ・・・・・・・・・(6)ここ
で、k = i −4、i −3、・・・・・・、ia
 、/ 〜a 、/をそのままaI (I+1)〜a、
(i+1)とすると、プロセス内で生ずるノイズやl′
Ijl定ノイズの影響か大きく入り込む可能性かある。
= 0 ...... (6) Here, k = i -4, i -3, ......, ia
, / ~a, / as is aI (I+1) ~a,
(i+1), the noise generated in the process and l'
There is a possibility that it may be affected by Ijl constant noise.

従って、プロセスを安定に制御するためにフィルタリン
グ技技を利用してa、(i+11〜aa(!+13に決
定する。例えば、(7)式により求める。
Therefore, in order to stably control the process, filtering techniques are used to determine a, (i+11 to aa(!+13). For example, it is determined by equation (7).

a、(四−1)=ajfil−t−β(’dr  at
(i)l−=−17)J−1,・・・・・・、5 ここでβげブ【jセスの1軍転状l昇によりOと1のl
lIn囲で最適値を求める。。
a, (4-1)=ajfil-t-β('dr at
(i) l-=-17) J-1, ......, 5 where β Gebu
Find the optimal value within lIn. .

以上述べたように、本発明によtlげ、基板の不糾物密
劇、ケート形状の変動によって発する半導体素子の電気
的特性の変動量を減少させることができる。その結果、
素子の特性の均一性が向上する。
As described above, according to the present invention, it is possible to reduce the amount of variation in the electrical characteristics of a semiconductor element caused by contamination of the substrate and variation in the shape of the gate. the result,
Uniformity of device characteristics is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるMo5LSI中のF ETの一例
の構造を示すt′Xl 、第2図は本発明による装置構
成の一例を示す図、第3図は第2図のCP Uでの処理
のフロー図である。 201・・・CPU、202・・・抵抗測定器、203
・・・寸法測定器、204・・・膵厚ill定器、2o
5・・・イオン打込装置コントローラ、2o6・・・寸
法測定器、207・・・ICテスタ、301・・・基板
検査プロセス、302・・・第一酸化プロセス、3o3
・・・第二酸化プロセス、304・・・イオン打込プロ
セス、305・・・エツチングプロセス、306・・・
特性検査フO(! 、x。 代理人 弁理士 薄田利幸 第  j  口 第 2 図 第  3  [¥l D 第1頁の続き @発 明 者 船橋誠壽 川崎市多摩区王禅寺1099番地株 式会社日立製作所システ/、開発 研究所内
FIG. 1 shows the structure of an example of the FET in Mo5LSI according to the present invention, FIG. 2 shows an example of the device configuration according to the present invention, and FIG. 3 shows the processing in the CPU of FIG. FIG. 201...CPU, 202...Resistance measuring device, 203
...Dimension measuring instrument, 204...Pancreatic thickness illumination device, 2o
5... Ion implantation device controller, 2o6... Dimension measuring device, 207... IC tester, 301... Board inspection process, 302... First oxidation process, 3o3
...Second oxidation process, 304...Ion implantation process, 305...Etching process, 306...
Characteristics Test F O (!, x. Agent: Patent Attorney Toshiyuki Usuda No. 2 Figure No. 3 / Inside the development laboratory

Claims (1)

【特許請求の範囲】[Claims] ゲート構造を有する半導体素子製造プロセスにおいて、
基板不純物密度とゲート形状の目標棟からの偏差値を検
出し、その検出(直に基づいてゲート下のチャネルドー
ピング針を1周整することを特徴とするプロセス制餌1
方式。
In the manufacturing process of semiconductor devices with gate structures,
Process feeding 1 characterized by detecting the deviation value of the substrate impurity density and gate shape from the target pattern, and aligning the channel doping needle under the gate once based on the detection (directly based on the detection)
method.
JP8795182A 1982-05-26 1982-05-26 Process control system Pending JPS58206161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8795182A JPS58206161A (en) 1982-05-26 1982-05-26 Process control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8795182A JPS58206161A (en) 1982-05-26 1982-05-26 Process control system

Publications (1)

Publication Number Publication Date
JPS58206161A true JPS58206161A (en) 1983-12-01

Family

ID=13929187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8795182A Pending JPS58206161A (en) 1982-05-26 1982-05-26 Process control system

Country Status (1)

Country Link
JP (1) JPS58206161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288464A (en) * 1985-06-14 1986-12-18 Ricoh Co Ltd Semiconductor memory device
US6518075B2 (en) 2000-04-18 2003-02-11 Nec Corporation Method of forming S/D extension regions and pocket regions based on formulated relationship between design and measured values of gate length

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288464A (en) * 1985-06-14 1986-12-18 Ricoh Co Ltd Semiconductor memory device
US6518075B2 (en) 2000-04-18 2003-02-11 Nec Corporation Method of forming S/D extension regions and pocket regions based on formulated relationship between design and measured values of gate length

Similar Documents

Publication Publication Date Title
CN109540987B (en) Reference electrode-free GaN-based pH sensor based on groove structure and preparation method thereof
JPS58206161A (en) Process control system
US7033846B2 (en) Method for manufacturing semiconductor devices by monitoring nitrogen bearing species in gate oxide layer
US6754553B2 (en) Implant monitoring using multiple implanting and annealing steps
US9935021B2 (en) Method for evaluating a semiconductor wafer
JPS58197878A (en) Method for controlling diffused layer forming process
CN104701225B (en) A kind of elemental release defect ameliorative way based on model
US6313480B1 (en) Structure and method for evaluating an integrated electronic device
US6908777B2 (en) Compound semiconductor device and method for controlling characteristics of the same
CN109309006A (en) Semiconductor devices and forming method thereof
JPS5853514B2 (en) Manufacturing method of semiconductor device
US6639228B2 (en) Method for molecular nitrogen implantation dosage monitoring
JPH04340741A (en) Ion implantation amount measuring method, forming method of silicon crystal for ion implantation amount measurement and manufacture of semiconductor device
JPS6167253A (en) Semiconductor device
JPH022615A (en) Manufacture of semiconductor device
Dong et al. Fabrication and testing of ISFET based pH sensor for microliter scale solution targets
JP3107681B2 (en) Etching control method for recess structure FET
Zaborowski et al. Adjustment of sensivity of ISFET-type micro-and nanosensors
US9852900B2 (en) Oxidizing filler material lines to increase width of hard mask lines
JPS62186529A (en) Element for measuring deformed amount of pattern
CN113223979A (en) Thickness compensation method in gate oxide layer process
KR100415629B1 (en) Method for molecular nitrogen implantation dosage monitoring
JPH1022502A (en) Method and equipment for estimating impurity distribution, and method and equipment for manufacturing semiconductor
KR100791696B1 (en) Method for monitoring profile of semiconductor device
JP2003068756A (en) Method for acquiring simulation parameter of transistor