JPS58205543A - Uranium adsorbent and its production - Google Patents

Uranium adsorbent and its production

Info

Publication number
JPS58205543A
JPS58205543A JP8935982A JP8935982A JPS58205543A JP S58205543 A JPS58205543 A JP S58205543A JP 8935982 A JP8935982 A JP 8935982A JP 8935982 A JP8935982 A JP 8935982A JP S58205543 A JPS58205543 A JP S58205543A
Authority
JP
Japan
Prior art keywords
base material
uranium
amidoxime
layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8935982A
Other languages
Japanese (ja)
Other versions
JPS6361058B2 (en
Inventor
Jiro Okamoto
次郎 岡本
Isao Ishigaki
功 石垣
Takanobu Sugo
高信 須郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP8935982A priority Critical patent/JPS58205543A/en
Publication of JPS58205543A publication Critical patent/JPS58205543A/en
Publication of JPS6361058B2 publication Critical patent/JPS6361058B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To form an adsorbent having excellent adsorption and desorption efficiency for uranium, mechanical strength and durability in an optional shape by allowing an uranium adsorptive layer contg. an amidoxime group to exist locally on the surface of the adsorbent by a radiation graft polymn. method. CONSTITUTION:Ionizing radiations are beforehand irradiated to a base material consisting of an org. or inorg. or their composite material of an optional shape; thereafter, the base material is brought into contact with 1 or >=2 kinds of polymers contg. a nitrile group and polymerizable monomers which can convert the nitrile group to amidoxime when said polymers are caused to react with hydroxylamine (e.g., acrylonitrile, vinylidene cyanide) or the ionizing radiations are irradiated to said base material while the material is held in contact with said polymerizable monomers, to produce the graft polymer grafted with said polymerizable monomers only on the surface or surface layer of the base material. The graft polymer is caused to react with hydroxylamine to convert the nitrile group in the graft chain to an amidoxime group.

Description

【発明の詳細な説明】 本発明は、水浴液中に微量に溶存するウランをは、各種
基材とアミドキシム基に変換し得る官能基を有する単量
体との組合せおよびそれらの接触方法全特定するごとに
よって、ウラン吸着層を吸着材の表面または表面層に局
在させたウラン吸着材およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention proposes the use of a combination of various substrates and a monomer having a functional group that can be converted into an amidoxime group, and a method of contacting them, to remove trace amounts of uranium dissolved in a water bath solution. The present invention relates to a uranium adsorbent in which a uranium adsorption layer is localized on the surface or surface layer of the adsorbent, and a method for manufacturing the same.

工業廃水の浄化、再利用、あるいは、有用物質の回収な
どに、イオン交換膜や半透膜を用いた電気透析法や逆浸
透膜法とともに、イオン交換樹脂、キレート樹脂、凝集
剤などを用いた吸着、凝集による分離法が応用されてい
る。とくニ、水浴液中に微量に存在する重金属類の選択
的な分離および回収には、目的とする重金属類のイオン
種と錯体全形成する化合物が有用である。
In addition to electrodialysis and reverse osmosis membrane methods using ion exchange membranes and semipermeable membranes, ion exchange resins, chelate resins, flocculants, etc. are used to purify and reuse industrial wastewater, or to recover useful substances. Separation methods based on adsorption and coagulation have been applied. In particular, for the selective separation and recovery of heavy metals present in trace amounts in water bath liquids, compounds that form a total complex with the target heavy metal ion species are useful.

本発明と関連性を有する従来技術全説明する。All prior art related to the present invention will be described.

アミドシム基金有する樹脂カニ海水中に各存するウラン
の吸着材として艮好なウラン吸着能を示すことは、例え
ば特開昭53−126088号に記載されて贋る様によ
く知られている。特開昭53−126088号(C記載
されている樹脂は、ニトリル基を有する重合体をヒドロ
キシルアミンと反応させて得られるものであり、主とし
て、アクリロニトリル全主成分とする重合体が用いられ
ており、そのニトリル基をアミドキシム基に変換したも
のである。また、吸着材としての樹脂の機械的強度、耐
膨潤性、および耐久性を改良干るために、ニトリル基を
有する重合体とジビニルベンゼンなどの多官能性単量体
との共重合体が主として用いられている。しかし、ニト
リル基を有する重合体または共重合体の製造方法および
ポリマー組成、分子量などに種々な制約があるため吸着
材として天川に即した形状、たとえシ粒子状、繊維状、
ンート状、膜状など種々の形状の樹脂−を得るには困難
が併う。さらに、吸着性能をあげるためには、アミドキ
シム基濃度を高くする必要があるが、アクリロニトリル
などのニトリル基含有単量体の重合または共重合により
得られた樹脂では、その形状にか\わらず、樹脂中のニ
トリル基の分布は均一であり、したがってアミドキシム
基が樹脂の中心部まで分布している。固相の吸着材に対
するm質の吸・脱着は吸着材の表面層から起り、時間と
ともに順次内部へと溶液が拡散しつつ進行するので、樹
脂の中心部に分布しているアミドキシム基の吸着能を有
効に利用するためには吸・脱着時間を長くする必要があ
り、生産性の低下を招く結果となる。さらに、アミドキ
シム基が親水性であるので、樹脂の中心部までアミドキ
シム基が分布している場合には、樹脂全体が膨潤し、機
械的強度が極めて低くなり、吸・脱着の繰返し使用に充
分な耐久性を有した吸着材を得る乙とは困難である。
It is well known that the resin Amidosim has excellent uranium adsorption ability as an adsorbent for uranium present in seawater, as described in, for example, JP-A-53-126088. The resin described in JP-A No. 53-126088 (C) is obtained by reacting a polymer having a nitrile group with hydroxylamine, and a polymer containing acrylonitrile as its main component is mainly used. In addition, in order to improve the mechanical strength, swelling resistance, and durability of the resin as an adsorbent, a polymer having a nitrile group and divinylbenzene etc. Copolymers with polyfunctional monomers such as Shape according to Amakawa, even particle-like, fibrous, etc.
It is difficult to obtain resins in various shapes such as a web or a film. Furthermore, in order to improve the adsorption performance, it is necessary to increase the concentration of amidoxime groups, but in resins obtained by polymerization or copolymerization of nitrile group-containing monomers such as acrylonitrile, regardless of their shape, The distribution of nitrile groups in the resin is uniform, so that the amidoxime groups are distributed all the way to the center of the resin. Adsorption/desorption of m-quality substances onto solid-phase adsorbents occurs from the surface layer of the adsorbent, and progresses as the solution gradually diffuses into the interior over time, so the adsorption capacity of the amidoxime groups distributed in the center of the resin increases. In order to effectively utilize the adsorption/desorption time, it is necessary to lengthen the adsorption/desorption time, which results in a decrease in productivity. Furthermore, since the amidoxime group is hydrophilic, if the amidoxime group is distributed all the way to the center of the resin, the entire resin will swell, resulting in extremely low mechanical strength, which is insufficient for repeated use of adsorption and desorption. It is difficult to obtain a durable adsorbent.

本発明者らは、放射線グラフト重合による各種の材料の
改質に関する研究過程で、グラフト重合の基材、単量体
の特性およびグラフト条件全適切に組合せるCとによっ
て、固相の基材中でのグラフト鎖の分at任意に制御し
得ることを見出した。
In the course of research on the modification of various materials by radiation graft polymerization, the present inventors discovered that C and C were combined in an appropriate manner with respect to the graft polymerization base material, monomer properties, and grafting conditions. It has been found that the amount of grafted strands can be controlled arbitrarily.

本発明は、この知見に基づくもので、放射線グラフト重
合方法により、吸着能を有する層を吸着材の表面または
表面層に局在させるごとによって、ウランの吸・脱着効
率および機械的強度、耐久性に極めて優れた吸着材全任
意の形状で糧供し得るものである。
The present invention is based on this knowledge, and improves uranium adsorption/desorption efficiency, mechanical strength, and durability by localizing a layer with adsorption ability on the surface or surface layer of an adsorbent using a radiation graft polymerization method. It is an excellent adsorbent and can be provided in any shape.

以下、本発明の構成全詳細に説明する。Hereinafter, the entire configuration of the present invention will be explained in detail.

本発明によって任意の形状の有機系、無機系又はこれら
の複合材からなる基材の表面又は表面層にのみアミドキ
シム基を有するウラン吸着層がグラフトしているウラン
吸着材で該ウラン吸着層と非吸着層の層厚の比率が1:
10〜10 : 10であるウラン吸着材が提供される
According to the present invention, a uranium adsorbent in which a uranium adsorption layer having an amidoxime group is grafted only on the surface or surface layer of a substrate made of an organic type, an inorganic type, or a composite material thereof in an arbitrary shape, and is The layer thickness ratio of the adsorption layer is 1:
A uranium adsorbent having a ratio of 10 to 10:10 is provided.

更に本発明によって任意の形状の有機系、無機系又はこ
れら複合材から成る基材に予め電離性放射線を照射した
後ニトリル基を含有する重合体で且つその重合体をヒド
ロキシルアミンと反応させることによって該ニトリル基
をアミドキシムに変換し得る重合性単量体の1種又は2
種以上と筬触させまたは該基材と該重合性単量体を接触
させつつ電離性放射線を照射することによって該基材の
表面又は表面層にのみ該重合性単量体がグラフトしたグ
ラフト重合体全製造した後膣グラフト重合体をヒドロキ
シルアミンと反応させることによってグラフト鎖中のニ
トリル基をアミドキシム基に変換することによりアミド
キシム基を有するウラン吸着層が該基材の表面又は表面
層に局在しているウラン吸着材を製造する方法が提供さ
れる。
Furthermore, according to the present invention, a substrate made of an organic type, an inorganic type, or a composite material thereof in an arbitrary shape is irradiated with ionizing radiation in advance, and then a polymer containing a nitrile group is reacted with hydroxylamine. One or two polymerizable monomers capable of converting the nitrile group into amidoxime
A graft polymer in which the polymerizable monomer is grafted only to the surface or surface layer of the substrate by irradiating ionizing radiation while bringing the polymerizable monomer into contact with a seed or more or by contacting the substrate with the polymerizable monomer. After the combined production, the uranium adsorption layer with amidoxime groups is localized on the surface or surface layer of the substrate by converting the nitrile groups in the graft chains to amidoxime groups by reacting the graft polymer with hydroxylamine. A method of manufacturing a uranium adsorbent is provided.

本発明′fc!施するにあたって、吸着材の基材として
は、放射線の作用により後述の単量#:−ニーラグラフ
トる各種のM機または無機の固体化合物を使用し得るが
、本発明の目的全考慮して、特[機械的強度、耐海水性
、耐薬品性に優れた基材を選ぶ口とが好工しい。例えば
、有機系では各種の高分子材料、即ちボリオレフイ/類
、含・−・ロダンポリオレフィン類、ポリエステル類、
ポリエーテル類などが例示され、無機系基材としては、
シリカゲノへアルミナ、活性炭などがある。また、基材
の形状としては、吸・脱着方式に最適の形状のものを選
ぶCとが好ましいが、グラフト重合は以下に述べる任意
の形状の基材にも可能である。したがって、粒状、球状
、膜状、管状、繊維状、さらにこれら全加工した皿状、
網状、マット状など、あらゆる形状の吸着材を得るCと
ができるが、吸・脱着効率のより優れた吸着材を得るに
(プ、比表面積のより大きな、例えば、繊維状、粒子状
などが基本的には好ましい。
The present invention'fc! In carrying out the application, as the base material of the adsorbent, various M organic or inorganic solid compounds that can be grafted with the following monomer #:-Neela by the action of radiation can be used, but considering the purpose of the present invention, In particular, it is advisable to select a base material with excellent mechanical strength, seawater resistance, and chemical resistance. For example, in the organic system, there are various polymeric materials, such as polyolefins, rhodan polyolefins, polyesters, etc.
Examples include polyethers, and examples of inorganic base materials include:
There are silica, alumina, activated carbon, etc. Moreover, as for the shape of the base material, it is preferable to choose the shape that is most suitable for the adsorption/desorption method, but graft polymerization can also be performed on base materials of any shape described below. Therefore, granular, spherical, membrane-like, tubular, fibrous, and all these processed plate-like,
Although it is possible to obtain adsorbents in all shapes such as net-like and mat-like, it is possible to obtain adsorbents with better adsorption/desorption efficiency (C). Basically preferred.

本発明で使用されるニトリル基金含有し、その重合体全
ヒドロキシルアミンと反応させる乙とによりアミドキシ
ム基に変換し得る重合性単量体は、例えば、アクリロニ
トリノへ シアン化ビニリデン、クロトンニトリル、メ
グクリロニトリノへ タロルア? IJロニトリル、2
−ンアノエチルアクリレート、2−ノア/エチルメタク
リレートなどを単独でまたは2種以上混合して用いるこ
とができる。
Polymerizable monomers which contain nitrile groups and which can be converted into amidoxime groups by reacting the polymer with total hydroxylamine used in the present invention include, for example, acrylonitrino, vinylidene cyanide, crotonitrile, meg To Krylonitorino, Talorua? IJ lonitrile, 2
-Nanoethyl acrylate, 2-nor/ethyl methacrylate, etc. can be used alone or in combination of two or more.

本発明において、基材に上記ニトリル基含有単量体全電
離性放射線の照射によりグラフト重合させるに当って用
いられる線源は、α線、β線、γ線、加速電子線、X線
などであるが、工業上の容易さから、γ線または加速電
子櫂が好ましい。また、グラフト重合法としては、予め
電離性放射線を照射してグラフト活性を付与した基材に
、重合性単量体を接触させてグラフトさせる方法(前照
射法〕、または、基材と重合性単量体とを互に接触fに
電離性放射線を照射してグラフトさせる方法(同時照射
法)を用いることができ、これらは、基材および重合性
単量体のグラフト重合性、両者の親和性などに応じて適
宜選ぶことが好ましい。
In the present invention, the radiation source used to graft-polymerize the above-mentioned nitrile group-containing monomer by irradiating the base material with total ionizing radiation includes α-rays, β-rays, γ-rays, accelerated electron beams, X-rays, etc. However, gamma rays or accelerated electron paddles are preferred from the viewpoint of industrial ease. In addition, the graft polymerization method includes a method in which a polymerizable monomer is brought into contact with a base material that has been irradiated with ionizing radiation in advance to impart grafting activity (pre-irradiation method), or a method in which the base material and the polymerizable monomer are grafted together. A method (simultaneous irradiation method) of grafting the monomers by irradiating them with ionizing radiation in contact with each other can be used. It is preferable to select it appropriately depending on the gender and the like.

本発明において、最も留意すべき点は、グラフトさせる
部分を基材の表面または表面層に限定する乙とであり、
ごれによってはじめて、本発明の目的とするウランの吸
着層が表面または表面層に局在したウラン吸着材を得る
ことが可能となる。
In the present invention, the most important point is that the part to be grafted is limited to the surface or surface layer of the base material.
Only by soiling does it become possible to obtain a uranium adsorbent in which the uranium adsorption layer is localized on the surface or surface layer, which is the object of the present invention.

したがって、基材の表面または表面層のみに単量体をグ
ラフトさせるためには、基材と単量体の特性に応じて、
これらの組合せ或いはグラフト条件を選択する必要があ
り、下記の態様によって達成される。すなわち、基材に
単量体をグラフトさせるに際して、■基材に、単量体ま
たはその溶液をガス状で接触させる。または■単量体ま
たはその溶液に膨潤しない基材、例えば、テフロン、無
機系基材全還び、これを単量体中またばその溶液中に浸
漬して行う。または■単量体がグラフトしたとき、グラ
フト鎖が析出系となる単量体またはその溶液を使用する
ことによって、目的が達せられる。なお、照射線量、グ
ラフト温度、時間、単量体濃度などについては、使用す
る基材および単量体の特性、すなわち、電離性放射線照
射によるグラフト活性点の生成の難易、その安定性、あ
るいは単量体の重合性などに応じて適宜決定し、最終的
に得られる吸着材のウラン吸着層と非吸着層の層厚の比
率が1 : 10−、=LO: 10の範囲にすること
が好ましい。
Therefore, in order to graft a monomer only to the surface or surface layer of the base material, depending on the characteristics of the base material and the monomer,
It is necessary to select these combinations or grafting conditions, which can be achieved by the following embodiments. That is, when grafting a monomer onto a base material, (1) the base material is brought into contact with the monomer or its solution in gaseous form; or (2) A base material that does not swell in the monomer or its solution, such as Teflon or an inorganic base material, is completely rehydrated, and this is carried out by immersing it in the monomer or its solution. Or (2) The purpose can be achieved by using a monomer or a solution thereof in which the graft chain becomes a precipitation system when the monomer is grafted. The irradiation dose, grafting temperature, time, monomer concentration, etc. depend on the characteristics of the base material and monomer used, i.e., the difficulty of generating graft active sites by irradiation with ionizing radiation, their stability, and the monomer concentration. It is preferable that the ratio of the thickness of the uranium adsorbed layer and the non-adsorbed layer of the finally obtained adsorbent be in the range of 1:10-, =LO:10, which is appropriately determined depending on the polymerizability of the polymer. .

本発明におけるグラフト鎖中のニトリル基のアミドキシ
ム基への変換は、ヒドロキシルアミンを用いる公知の方
法で行うことができる。すなわち、上述の方法で得たグ
ラフト重合体全ヒドロキシルアミン塩の浴液に浸漬し、
反応温度40〜80℃、反応時間4〜10時間で行われ
る。溶媒としては、水1 ジメノ・・小ノ・・   ド
、ジメチルスルホキシド、アルコール類、テトラヒドロ
フランなどが単独または2.4 l)、1トの1鍜合物
として用いられる。ヒドロキシルアミ   −では、塩
酸塩、硫酸塩、酢酸塩などが用いられ、その濃度は1〜
lO%、好しくけ3〜6″′、つ、である。
The conversion of the nitrile group in the graft chain into an amidoxime group in the present invention can be carried out by a known method using hydroxylamine. That is, the graft polymer obtained by the above method is immersed in a bath solution of total hydroxylamine salt,
The reaction temperature is 40 to 80°C and the reaction time is 4 to 10 hours. As the solvent, water, dimethyl sulfoxide, alcohols, tetrahydrofuran, etc. may be used alone or as a mixture of 2.4 liters or 1 ton. For hydroxylamide, hydrochloride, sulfate, acetate, etc. are used, and the concentration ranges from 1 to
10%, preferably 3 to 6''.

本発明の吸着材のウランに対する吸着性能は、基材寂よ
び単量体の種類、基材の形状、グラフト層(吸着層)の
層厚、などによっても異なるが、最も効率の良いアミド
キシム基濃度としては、3〜8 me q / ji’
−グフ7ト鎖である。
The adsorption performance of the adsorbent of the present invention for uranium varies depending on the size of the base material, the type of monomer, the shape of the base material, the thickness of the graft layer (adsorption layer), etc., but the most efficient concentration of amidoxime groups As for 3~8 meq/ji'
-Guf7to chain.

以下に夫施例金用いて本発明全史に具体的に説明するが
、Cれらは、本発明の範囲を限定するものではない。
The entire history of the present invention will be specifically explained below using examples, but these are not intended to limit the scope of the present invention.

実施例1.比較例り 四フフ化エチレンーエチレン共重合体(77σ))の線
径40μmの繊維に、電子加速器(電圧15 MeV、
電流1mA)k用い、窒素雰囲気下で30Mrad照射
した。この照射した繊維を、あらかじめ窒素ガスをバブ
リングして溶存酸素濃度をQ、1p7WrL以下にした
アクリロニトリル中に浸漬し、25”Cで3時間反応さ
せ、グラフト率48%のグラフ)繊維’を得た。ついで
、口のグラフト繊維を、水酸化カリウムで中和した塩酸
ヒドロキシルアミンの3%水−メタノール(1:1重量
比)混合液に浸漬し、80”Cで6時間反応させてζ陰
イオン交換容量4.8meq/?の吸着材を得た。
Example 1. As a comparative example, a fiber of 40 μm in wire diameter of tetrafluorinated ethylene-ethylene copolymer (77σ) was heated with an electron accelerator (voltage 15 MeV,
Irradiation was performed at 30 Mrad in a nitrogen atmosphere using a current of 1 mA)k. The irradiated fibers were immersed in acrylonitrile in which nitrogen gas had been bubbled in advance to bring the dissolved oxygen concentration below Q, 1p7WrL, and reacted at 25"C for 3 hours to obtain fibers with a grafting rate of 48%. Next, the grafted fibers were immersed in a 3% water-methanol (1:1 weight ratio) mixture of hydroxylamine hydrochloride neutralized with potassium hydroxide, and reacted at 80"C for 6 hours to form ζ anions. Replacement capacity 4.8meq/? of adsorbent was obtained.

この吸着材の1部を、0.02Nの硫酸調水溶液に、3
0℃で24時間浸漬したのち、X腺マイクロア六りイザ
ー(XMA)を用いて、繊維の破断面における銅の特性
X線強度を求めたとごろ、銅の吸着は繊維の表面要約1
0μmに限られていた(第」図参照〕。すなわち、アミ
ドキシム基は繊維の表面層に局在し、中心部にはアミド
キシム基が存在しないCとが示された。
A part of this adsorbent was added to a 0.02N sulfuric acid aqueous solution for 3 hours.
After soaking at 0°C for 24 hours, the characteristic X-ray intensity of copper at the fracture surface of the fiber was determined using an X-ray microarray analyzer (XMA).
In other words, the amidoxime group was localized in the surface layer of the fiber, and C was shown to have no amidoxime group in the center.

一方、この吸着材0.12を、硝酸ウラニルを添加して
調整したウラン濃度51■/lの海水50m1中に浸漬
し、30℃で1時間振とうしたとき、ウランの吸着量は
48μf10.t y=吸着材でありウラン吸着効率は
96%であった。
On the other hand, when this adsorbent 0.12 was immersed in 50 ml of seawater with a uranium concentration of 51 μ/l adjusted by adding uranyl nitrate and shaken at 30°C for 1 hour, the amount of uranium adsorbed was 48 μf10. ty=adsorbent, and the uranium adsorption efficiency was 96%.

比較例り 比較のため、線径40μmφのポリ塩化ビニル繊維を用
いた以外は、上記と全く同じ操作により得られる吸着材
では、グラフト率、45%;陰イオン交換容量、 3.
5 meq/ t ;ウラン吸着量、25μt;10,
1を一吸着材;及びつ之ン吸着効率は50%であり、ア
ミドキシム基が均一に分布していた、(第2図参照)。
Comparative Example For comparison, an adsorbent obtained by the same procedure as above except that polyvinyl chloride fibers with a wire diameter of 40 μmφ was used had a graft ratio of 45%; anion exchange capacity, 3.
5 meq/t; Uranium adsorption amount, 25μt; 10,
1 as one adsorbent; the adsorption efficiency was 50%, and the amidoxime groups were uniformly distributed (see Figure 2).

実施測色 実施例1と同様な方法で10 M rad照射した40
μmφのポリ塩化ビニル繊維を、目皿で上下2室に区画
されたガラス製反応器の上室に入れ、下室に溶存酸素濃
度0.lppm以下にしたアクリロニトリルを注入して
、繊維がガス吹上ツマ−と擬触する状態で、30”Cで
5時間反応させた。このときのグラフト率は70%であ
った。
40 irradiated with 10 M rad in the same manner as in Example 1.
Polyvinyl chloride fibers of μmφ are placed in the upper chamber of a glass reactor divided into two upper and lower chambers by a perforated plate, and the lower chamber has a dissolved oxygen concentration of 0. Acrylonitrile at a concentration of 1 ppm or less was injected, and the fibers were allowed to react at 30''C for 5 hours in a state where they came into simulated contact with a gas blow-up tube.The grafting rate at this time was 70%.

乙のグラフト重合体を実施例1と同じ方1法で処理した
のち、同様にウラン全吸着させた結果、陰イオン交換容
量、 5 meq/ t ;ウラン吸着量。
After treating the graft polymer of Example 1 in the same method as in Example 1, uranium was completely adsorbed in the same manner, resulting in an anion exchange capacity of 5 meq/t; uranium adsorption amount.

48μP10.I P−吸着材;ウラン吸着効率、96
%、を得た。また、XMA測足によるグラフト層は、表
面から約3μm厚さであった。
48μP10. I P-adsorbent; uranium adsorption efficiency, 96
%, obtained. Further, the graft layer was found to have a thickness of about 3 μm from the surface by XMA foot measurements.

実施例& 基材として、ポリプロピレンの不織石ヲ、単量体溶液と
してIQwt%の水を添加したアクIJ oニトリル溶
液をそれぞれ用いて、実施例1と同じ操作で吸着材を得
た。グラフト率は45%、陰イオン交換容量は4.5、
rrLeq/lニゲラフト層は繊維表面から5μm厚さ
であった。
Example & An adsorbent was obtained in the same manner as in Example 1, using polypropylene non-woven stone as the base material and an Ac IJ o nitrile solution to which IQwt% of water was added as the monomer solution. The grafting rate was 45%, the anion exchange capacity was 4.5,
The rrLeq/l niger raft layer was 5 μm thick from the fiber surface.

実施例1と同じ方法でウランを吸着させた納置、吸着量
は各々4T、5μf70.1?−吸着材:ウラン吸着効
率は95%、であった。
Uranium was adsorbed using the same method as in Example 1, and the amount of adsorption was 4T and 5μf70.1, respectively. - Adsorbent: Uranium adsorption efficiency was 95%.

実施例屯 G−4グラスフイルターのフィルタ一部で区画された上
下2室からなるガラス容器の上室に、直径10μmのク
ロマトグラム充填材用球状シリカゲルを入れ、王室に溶
存酸素濃度0.lppm以下にしたアクリロニトリルを
注入し、王室部金鉛ブロックで遮蔽したのち、Co−6
0のγ線を、線量率I X 10’rad/hrで3時
間室温で照射し、グラスト率15%のグラフト重合体を
得た。ついで、実施例1と同じ方法でアミドキノム化し
たのち、得られた吸着材0.1ft”を採り直径11m
zφのガラス製カラムに充填し、硝酸ウラニルで濃度調
整した海水(ウラン濃度1 ′n9/ l) 5 (J
rrIlf、1時間を要して流下させた。この処理のの
ちめ吸着材のウラン吸着量は48.3μ?10,1 ?
−吸着材であり、その効率は96.5%であった。
Example A spherical silica gel for chromatogram packing material with a diameter of 10 μm was placed in the upper chamber of a glass container consisting of two upper and lower chambers partitioned by a part of the filter of a Tun G-4 glass filter, and the dissolved oxygen concentration was 0. After injecting acrylonitrile to lppm or less and shielding it with a royal gold lead block,
0 gamma rays were irradiated at a dose rate of I x 10'rad/hr for 3 hours at room temperature to obtain a graft polymer with a graft ratio of 15%. Next, amide quinomization was performed in the same manner as in Example 1, and 0.1 ft" of the obtained adsorbent was taken and made into a diameter of 11 m.
Fill a zφ glass column with seawater whose concentration was adjusted with uranyl nitrate (uranium concentration 1'n9/l) 5 (J
rrIlf was allowed to flow down for 1 hour. After this treatment, the amount of uranium adsorbed by the adsorbent is 48.3μ? 10,1?
- adsorbent, the efficiency of which was 96.5%.

実施例& 実施例1において、基材をテトラフルオルエテレノーへ
キナフルオルプロピレンのR維(i径4 Q ILmφ
)とし、シアン基含有モノマーとして、メタクリロニト
リルとし、グラフト(浸漬)@度を40℃とした以外は
全く同じ方法で、照射、グラフト反応、後処理などの操
作を行なった。グラフト率は23%、グラフト層は磯維
表面から約8μm厚であった。実施例1と同様に行った
ウラン吸着試験の結果、ウラン吸着量は48μり10.
I P−吸着材、ウラン吸着効率は96%であった。
Examples & In Example 1, R fibers of cinafluoropropylene (i diameter 4 Q ILmφ
), irradiation, graft reaction, post-treatment, etc. were performed in exactly the same manner except that methacrylonitrile was used as the cyan group-containing monomer and the grafting (immersion) temperature was 40°C. The grafting rate was 23%, and the graft layer was approximately 8 μm thick from the surface of the rock fibers. As a result of the uranium adsorption test conducted in the same manner as in Example 1, the amount of uranium adsorbed was 48μ/10.
The IP-adsorbent had a uranium adsorption efficiency of 96%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一態様によつ製造さnたウラン吸着材
のウラン吸着層を示すX線強度分布写真である。 第2図は比較のため本発明以外の方法によって製造され
たウラン吸着材のウラン吸着層を示すX線強度分布写真
である。 特許出願人  日本原子力研究所 沸3、 ■■■ 1゜1.−一■ ■■■;: X;、 ゛、 ■ ■・
FIG. 1 is an X-ray intensity distribution photograph showing a uranium adsorption layer of a uranium adsorbent manufactured according to one embodiment of the present invention. FIG. 2 is an X-ray intensity distribution photograph showing a uranium adsorption layer of a uranium adsorbent manufactured by a method other than the present invention for comparison. Patent applicant: Japan Atomic Energy Research Institute 3, ■■■ 1゜1. −1■ ■■■;: X;, ゛, ■ ■・

Claims (1)

【特許請求の範囲】 し 任意の形状の有機系、無機系又はCれらの複合から
なる基材の表面又は表面層にのみアミドキシム基を有す
るウラン吸着層がグラフトしているウラン吸着材にして
該ウラン吸着層と非吸着層の層厚の比率が1=10〜1
0:LOであることを特徴とするウラン吸着材。 乙 任意の形状の有機系、無機系又はこれら複合材から
戊る基材に予め電離性放射線を照射した後ニトリル基を
含有する重合体で且つその重合体全ヒドロキシルアミン
と反応させることによって該ニトリル基をアミドキシム
に変換し得る重合性単量体の1種又は2種以上と接触さ
せまたは該基材と該重合性単量体ヲ痰触させつつ電離性
放射線を照射することによって該基材の表面又は表面層
にのみ該重合性単量体がグラフトしたグラフト重合体を
製造した後該グラフト重合体をヒドロキシルアミンと反
応させることによってグラフト鎖中のニトリル基金アミ
ドキシム基に変換することから成るアミドキシム基を有
するウラン吸着層が該基材の表面又は表面層に局在して
いるつL徹着材を製造する方法。 a 基材と重合性単量体の接触を、基材に重合性単量体
またはその溶液をガス状で接触させることを特徴とする
特許請求の範囲第2項記載の方゛法。 t 基材と重合性単量体の接触を、重合性単量体または
その溶液中に、それらに膨潤しない基材を浸漬すること
によって行5C(!:を特徴とする特許請求の範囲第2
項記載の方法。 & 重合性単量体がアクリロニトリル、シアン化ビニリ
デン、クロトンニトリル、メタクリレートリル、グロル
アクリロニトリル、2−シアンエチルアクリレート及び
2−シアンエチルメタクリレートから成る群から選択さ
れる特許請求の範囲第2項記載の方法。 G アミドキシム基金有するウラン吸着層と非吸着層の
層厚の比率が1=10〜10 : 10の範囲である特
許請求の範囲第2項記載の方法。 7 アミドキシム基の濃度が3〜8 mgq / f−
グラフト鎖である特許請求の範囲第2項記載の方法。
[Scope of Claims] A uranium adsorbent in which a uranium adsorption layer having an amidoxime group is grafted only on the surface or surface layer of an organic, inorganic, or composite base material of any shape. The layer thickness ratio of the uranium adsorption layer and the non-adsorption layer is 1 = 10 to 1
A uranium adsorbent characterized by being 0:LO. B. A polymer containing a nitrile group is prepared by irradiating a substrate made of an organic type, an inorganic type, or a composite material thereof in any shape with ionizing radiation in advance, and then reacting the nitrile group with the total hydroxylamine of the polymer. The base material is brought into contact with one or more polymerizable monomers capable of converting the group into amidoxime, or by irradiating the base material with ionizing radiation while bringing the base material into contact with the polymerizable monomer. An amidoxime group consisting of producing a graft polymer in which the polymerizable monomer is grafted only on the surface or surface layer, and then converting the graft polymer into a nitrile-based amidoxime group in the graft chain by reacting the graft polymer with hydroxylamine. A method for producing an L-penetrating material in which a uranium adsorption layer having a uranium adsorption layer is localized on the surface or surface layer of the base material. (a) The method according to claim 2, wherein the contact between the base material and the polymerizable monomer is performed by bringing the base material into contact with the polymerizable monomer or its solution in a gaseous state. The contact between the substrate and the polymerizable monomer is carried out by immersing the substrate, which does not swell in the polymerizable monomer or its solution, in line 5C (!).
The method described in section. & The method of claim 2, wherein the polymerizable monomer is selected from the group consisting of acrylonitrile, vinylidene cyanide, crotonitrile, methacrylaterile, chloroacrylonitrile, 2-cyanoethyl acrylate, and 2-cyanoethyl methacrylate. . 3. The method according to claim 2, wherein the ratio of the layer thicknesses of the uranium adsorbed layer and the non-adsorbed layer containing G amidoxime foundation is in the range of 1=10 to 10:10. 7 The concentration of amidoxime groups is 3-8 mgq/f-
The method according to claim 2, which is a graft chain.
JP8935982A 1982-05-26 1982-05-26 Uranium adsorbent and its production Granted JPS58205543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8935982A JPS58205543A (en) 1982-05-26 1982-05-26 Uranium adsorbent and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8935982A JPS58205543A (en) 1982-05-26 1982-05-26 Uranium adsorbent and its production

Publications (2)

Publication Number Publication Date
JPS58205543A true JPS58205543A (en) 1983-11-30
JPS6361058B2 JPS6361058B2 (en) 1988-11-28

Family

ID=13968508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8935982A Granted JPS58205543A (en) 1982-05-26 1982-05-26 Uranium adsorbent and its production

Country Status (1)

Country Link
JP (1) JPS58205543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258592A (en) * 1999-03-08 2000-09-22 Japan Atom Energy Res Inst Filter and device for removing iodine
JP2007077508A (en) * 2006-11-02 2007-03-29 Japan Atomic Energy Agency Method and apparatus for eluting and recovering metal from metal collecting material
KR20160097205A (en) 2013-12-13 2016-08-17 도레이 카부시키가이샤 Multilayer separation membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126445A (en) * 1980-03-08 1981-10-03 Agency Of Ind Science & Technol Method for sampling uranium from dilute solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126445A (en) * 1980-03-08 1981-10-03 Agency Of Ind Science & Technol Method for sampling uranium from dilute solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258592A (en) * 1999-03-08 2000-09-22 Japan Atom Energy Res Inst Filter and device for removing iodine
JP2007077508A (en) * 2006-11-02 2007-03-29 Japan Atomic Energy Agency Method and apparatus for eluting and recovering metal from metal collecting material
KR20160097205A (en) 2013-12-13 2016-08-17 도레이 카부시키가이샤 Multilayer separation membrane
US10040033B2 (en) 2013-12-13 2018-08-07 Toray Industries, Inc. Multilayer separation membrane

Also Published As

Publication number Publication date
JPS6361058B2 (en) 1988-11-28

Similar Documents

Publication Publication Date Title
Yamagishi et al. Introduction of a high-density chelating group into a porous membrane without lowering the flux
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
JP5045269B2 (en) Particulate cellulose-based adsorbent and method for producing the same
Saito et al. Recovery of uranium from seawater using amidoxime hollow fibers
Abou Taleb et al. Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-gN, N-dimethylamino ethylmethacrylate) graft copolymer
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
CA1049954A (en) Hydrophobic substrate with grafted hydrophilic inclusions
US4196065A (en) Hydrophobic substrate with grafted hydrophilic inclusions
JPS6258774B2 (en)
JP3200458B2 (en) Electric regeneration type desalination equipment
Saito et al. Novel hollow fiber membrane for the removal of metal ion during permeation: preparation by radiation-induced cografting of a crosslinking agent with reactive monomer
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP2772010B2 (en) Method for producing chelating resin adsorbent having iminodiacetic acid group
JP2007007575A (en) Microorganism carrier and its production method
WO2005102512A1 (en) Adsorbents carrying extracting reagents and process for production thereof
US6333078B1 (en) Collector of dissolved metal from sea water having an amidoxime group and a hydrophilic group, a method for production thereof
JP2000254446A (en) Iodine removing filter carrying silver and iodine removing device
JPS58205543A (en) Uranium adsorbent and its production
Ueki et al. Study and optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent
JPS58205545A (en) Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production
JPH1085572A (en) Filter membrane and its manufacture
CN111330465B (en) Preparation method of adsorbing material for adsorbing gold ions
JPH0380057B2 (en)
WO2002096560A1 (en) Anion exchangers and processes for preparing them
JP2000178531A (en) Scavenger, scavenger cassette obtained by laminating same, and method for adsorbing and recovering dissolved metal from seawater by using the scavenger cassette