JPS58205380A - Eliminating circuit of energy spread signal - Google Patents

Eliminating circuit of energy spread signal

Info

Publication number
JPS58205380A
JPS58205380A JP57088064A JP8806482A JPS58205380A JP S58205380 A JPS58205380 A JP S58205380A JP 57088064 A JP57088064 A JP 57088064A JP 8806482 A JP8806482 A JP 8806482A JP S58205380 A JPS58205380 A JP S58205380A
Authority
JP
Japan
Prior art keywords
signal
circuit
output
energy
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57088064A
Other languages
Japanese (ja)
Other versions
JPH0365713B2 (en
Inventor
Yoshihiro Konishi
小西 良弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP57088064A priority Critical patent/JPS58205380A/en
Publication of JPS58205380A publication Critical patent/JPS58205380A/en
Publication of JPH0365713B2 publication Critical patent/JPH0365713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)

Abstract

PURPOSE:To prevent the deterioration in picture quality, by feeding back an output of a low pass filter passing a signal component of a frequency band of an energy spread signal negatively so as to suppress the energy spread signal. CONSTITUTION:A received demodulating output video signal including noise component and on which the energy spread signal is superimposed is led to a video amplifier 7 via a subtractor 6, it amplified output signal is applied to a clamp circuit 8 and a phase inverter 9 in parallel, and outputs of the circuits 8, 9 are applied to a synthesizer 10, where the signals are synthesized. This synthesized output is led to the subtractor 6 via the low pass filter 11 and an attenuator 12 sequentially and subtracted from an input picture signal, and an amplified output signal of the video amplifier 7 is extracted as the output video signal eliminating the energy spread signal.

Description

【発明の詳細な説明】 本発明は、テレビジョンのgN星放送′延波のスペクト
ラムエネルギーY:蛍域内にて分散させるためのエネル
ギー拡散信号馨、受信した放送電波から除去するエネル
ギー拡赦悟号除夫(ロ)路に関し、特に1弱電界受信時
に伴うノイズ発止による1liII質劣化r防止し得る
工5にし1こものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the spectral energy Y of television's gN star broadcasts: an energy dispersion signal for dispersing within the firefly region, and an energy dispersion signal for removing it from received broadcast radio waves. With regard to the first (b) path, there is one thing that can be done to prevent quality deterioration due to noise generated during reception of a 1-weak electric field.

−Nに、テレビジョン衛星放送においては、放送゛It
波スペクトラムのエネルギーン放送借域内にてできるだ
け一様に分散させるrこめに、テレビジョン信号に三角
匝等の別のエネルギー広敷15号を蔦壷したうえで、F
M斐刺波にして放送している。
-N, in television satellite broadcasting, broadcasting
In order to disperse the wave spectrum energy as uniformly as possible within the energy broadcasting area, the television signal is placed in another energy shield No. 15 such as a triangular box, and then F
It is broadcast on M Hi-Shirami.

そのエネルギー拡散用三角波は、通例、15〜30Hz
の低い周波数のものが用いられ、受層1う°号からはこ
のエネルギー拡散用三角波を除去することが必要である
。このエネルギー拡散信号は、映像信号スペクトラムに
比して格段に低い周波数成分であるから、受信復θ曙し
て得定映像侶方については、同期信号先端の信号レベル
1.あるいはペデスタルレベルンクランプ回路により一
定レベルに保持することにより、映像信号に1畳されて
いるエネルギー拡散信号7−失するようにしている。
The triangular wave for energy dispersion is typically 15-30Hz.
It is necessary to remove this triangular wave for energy diffusion from the receiving layer 1. Since this energy spread signal has a much lower frequency component than the video signal spectrum, the signal level at the top of the synchronization signal is 1. Alternatively, by holding it at a constant level using a pedestal level clamp circuit, the energy diffusion signal 7 which is added to the video signal is lost.

かかる従来のエネルギー拡散信号除去回路の構成χ#I
1図に示す。この従来(ロ)路においては、受信したF
M波大入力FMuI調器lで復調して得た訣像信−@t
%映像増幅器コケ介してクランプ回路Jに導き、上述の
一定レベルにクランプ回路してエネルギー拡散用三角波
の1畳による信号レベルの変11.ン抑圧したうえで、
訳像増幅器qヶ介し、映像信号出力として取出してし・
る かかる従来のエネルギー拡散4cx号−大回路は。
The configuration of such a conventional energy spread signal removal circuit χ#I
Shown in Figure 1. In this conventional (b) route, the received F
Image signal obtained by demodulating with M-wave large input FMuI modulator l - @t
% video amplifier moss to the clamp circuit J, and the above-mentioned constant level is clamped by the circuit to change the signal level by 1 tatami of the triangular wave for energy diffusion11. After suppressing the
Take it out as a video signal output through the translation amplifier q.
Such a conventional energy dispersion No. 4cx-large circuit.

エネルギー拡散(1号を充分に除去できるが、受信電界
か弱くてノイズがFM敦大入力混入し、復調恢の状像(
4号の8/Nが芯い4!台には、そのノイズ成>rのう
ち高域周仮数成分のノイズがクランプhJJ作にエリ低
域胸彼畝成分のノイズに変換される注Xン有している1
こめに、上述したように、偏祠出力訣鎗16号ン単に一
定レベルにクランプし1このでは、いわゆるラインノイ
ズとして低い周波数の水平ノイズρ;発生し、特に目立
ちやすい低周波ノイズか増大する欠点があつ1こ。以下
にかかるノイズ種火の理由ン評述する。
Energy dispersion (No. 1 can be removed sufficiently, but the received electric field is weak and noise is mixed into the FM Atsushi input, resulting in a demodulated image (
No. 4 8/N is a core 4! The table has a Note 1 in which the noise of the high-frequency mantissa component of the noise component > r is converted into the noise of the low-frequency ridge component using the clamp hJJ.
In addition, as mentioned above, if the eccentric output force is simply clamped to a constant level, 1 this will produce low-frequency horizontal noise ρ, which is so-called line noise, and the drawback is that the low-frequency noise that is particularly noticeable increases. There's one. The reasons for this noise are explained below.

従来のクランプ回路の2例ン第2図CA)およびLB)
 ニボす。第2図(A)に不すビーククランプ回關は、
結合コンデン? Cc 、ダイオード1)お工ひ入出力
抵抗R1r kL*よりなる。第λ図CB)に示す十N
形りランプ回路は、入力抵抗R,%結会コンデンサCc
 、ダイオードD、およびDa、抵抗ax 1R3、R
4k; J:び正および負パルスσ)入力組合用コンデ
ンサCppおよびCpn J−りなる。
Two examples of conventional clamp circuits (Figure 2 CA) and LB)
Nibosu. The beak clamp circuit shown in Figure 2 (A) is as follows:
Combined condensate? Cc, diode 1) consists of an input/output resistor R1r kL*. 10 N as shown in Figure λ CB)
The shaped lamp circuit consists of input resistance R,% coupling capacitor Cc
, diode D, and Da, resistor ax 1R3, R
4k; J: positive and negative pulses σ) input combination capacitors Cpp and Cpn J-.

これらクランプ回路に、第3図(A)に示jようにエネ
ルギー拡散信号やノイズなどからなる振幅Vの不要信号
国が1会した映像@号VWY供給し7ことする。その不
要信号DWの周波数fuがクランプ周期となる水平同期
周波数より充分に低いと、第3図(B、)に示すように
、その不要信号UWの振幅Vがり2ンプ回路5の出方側
ではyvty</)の大きさに圧縮される。すなわち、
クランプ回路5に1t−tしL結合コン゛デンサCcに
v’=v(/−y)なる逆電圧が充電されて、不要信号
UWY打消すように作用する。ここで、値yの理論値は
っぎのようになる。
To these clamp circuits, as shown in FIG. 3(A), an unnecessary signal of amplitude V consisting of an energy diffusion signal, noise, etc. is supplied with a video signal VWY. When the frequency fu of the unnecessary signal DW is sufficiently lower than the horizontal synchronization frequency that is the clamp period, the amplitude V of the unnecessary signal UW increases on the output side of the amplifier circuit 5, as shown in FIG. yvty</). That is,
At 1t-t, the clamp circuit 5 is charged with a reverse voltage of v'=v(/-y) in the L coupling capacitor Cc, which acts to cancel the unnecessary signal UWY. Here, the theoretical value of the value y is as follows.

TN ここに、TN:クランプパルスの鴨 Tr:水平同期の周期 ’l’c : Cc−)L R;クランプパルス4通時における 直列抵抗 例えば、Cc = /l00pF、  K= /、/k
Qの場合における不要信号圧&i!度1丁なわちノイズ
減衰−AUは、 を永めると、ノイズ周波数fuの変化に対して、第4図
に不すよつに貧化する。したかつて、低域間仮数にjj
いてはノイズ減衰蓋Auが大きい鎗となるが、島域周仮
数になるにつれて小さい値となる。
TN Here, TN: Clamp pulse duck Tr: Horizontal synchronization period 'l'c: Cc-)L R: Series resistance during 4 clamp pulses For example, Cc = /l00pF, K = /, /k
Unnecessary signal pressure in case of Q &i! When the frequency 1, that is, the noise attenuation -AU is made longer, the noise frequency FU becomes significantly poorer as shown in FIG. Once, the lower intermantissa was jj
In this case, the noise damping lid Au becomes a large spear, but as the island area circumference mantissa becomes smaller, the value becomes smaller.

しかしながら、ノイズ減涙誓Auはノイズ周波数fuが
さらに高くなり、fu二昏になると、上述O)理111
I値yが小さくなるにつれて丹び大きい値となる。これ
は、(1)式に従って理tM領yが水平開M同期Ill
 rD周lJJ関数となっているからであり、fu =
= n/ Tr L n = 0. /、λ、 −・・
= )  の周波数近傍においては、ノイズか充分に減
涙するように思えるが、この減衰は、躯に、クランプ回
路5のパルス導通時におけるクシンブ位箪のレベル変化
−のみか圧縮されているにiぎ−1、ノイズ成シナは′
7(際には圧縮されてはいない。テなわ工)、ノイズL
又5rン打消す工5に、結合コンデンサr九はする辿竜
圧が水平同期周期Trの期間のみ保持さ扛でいるので、
fu ””昏±Δfなる周波数のノイズ成5fに基つい
て、クランプ作用によりfu−Δfなる周NJi数のノ
イズ成分が、新1こに発生し1こことになる。
However, in the case of the noise reduction test Au, the noise frequency fu becomes even higher, and when the noise frequency becomes fu2,
As the I value y becomes smaller, it becomes a larger value. This means that according to equation (1), the logic tM region y is horizontally open M synchronization Ill
This is because it is a rD circumference lJJ function, and fu =
= n/Tr L n = 0. /, λ, −・・
It seems that the noise is sufficiently reduced in the vicinity of the frequency of = ), but this attenuation is due to the fact that only the change in the level of the clamping position when the pulse of the clamp circuit 5 is conducted is compressed. −1, the noise generation is ′
7 (not compressed at all), noise L
In addition, since the trace force applied to the coupling capacitor R9 is held only during the horizontal synchronization period Tr,
Based on the noise component 5f with a frequency of fu ``''±Δf, a noise component with a frequency of NJi of fu−Δf is generated at a new location and becomes 1 here due to the clamping action.

かかる新たなノイズ成分の発生の態徐ン第S図および第
6図について詳細に説明−fると、例えばfu=−なる
周波数のノイズ成分N〜Vが第S図にTr 示すように、クラン7回路5に印〃口され1こ場合にク
ランプ回路のパルプ尋進時には、當に同一電位Vに相当
する振幅のノイズ検出が行われるために、り2ンブ出力
側には、yvなる−の直流電圧が生ずる。ノイズ周波数
fuがクランプ周期と一致していると)で、クランプ回
路のパルス導aH8に現われるノイズ抄幅Vの値は、第
5図に示すように、ノイズ波形の位相角θによって足す
る一定値となる。ついで% fu =T、士Δfなる周
波数のノイズ成分NWがクランプ回路jに供給さすると
、ノイズm波数fuはクランプ周期TrよりΔfだけず
れているので、クランプ回路のパルス導通時にSけるノ
イズ検出電位が、周M数ずれΔfに応じて徐々に変化し
、そのノイズ検出電位の変化に応じた大きさの逆電圧が
結合コンデンサCcに保持される。これにより、第6図
の出力側に示すように、基本周波数Δfなる低域周波数
ノイズ成分が新たに発生することになる。この新たなノ
イズ成分の振@ンV′とすると、 v′=マ(/−y) となるから、クランプ作用が完全に行われるはどyはO
に近づき、v′はマに近づく。従って、エネルギー拡散
信号の除去ンクランブ作用によって完全に行わせるため
に、そのクランプ作用の効果か大きくなるように除去回
路ン構成すると、新たに発生する低域ノイズ取分の振幅
V′が増大してしまうことになる。
The manner in which such new noise components are generated will be explained in detail with respect to FIGS. S and FIG. 7 In this case, when the clamp circuit advances the pulp, a noise with an amplitude corresponding to the same potential V is detected, so that the output side of the circuit 5 is yv. A direct current voltage is generated. When the noise frequency fu matches the clamp period), the value of the noise ablation width V appearing in the pulse conductor aH8 of the clamp circuit is a constant value added by the phase angle θ of the noise waveform, as shown in Fig. 5. Become. Next, when a noise component NW with a frequency of % fu = T and Δf is supplied to the clamp circuit j, the noise m wave number fu deviates from the clamp period Tr by Δf, so the noise detection potential S at the time of pulse conduction of the clamp circuit gradually changes in accordance with the deviation in the number of cycles Δf, and a reverse voltage having a magnitude corresponding to the change in the noise detection potential is held in the coupling capacitor Cc. As a result, as shown on the output side of FIG. 6, a low frequency noise component having a fundamental frequency Δf is newly generated. Assuming the amplitude of this new noise component to be V', v'=ma(/-y), so how long will it take for the clamping effect to be completed?
, and v' approaches Ma. Therefore, in order to completely eliminate the energy spread signal by the clamping effect, if the canceling circuit is configured to increase the effect of the clamping effect, the amplitude V' of the newly generated low-frequency noise fraction will increase. It will end up being put away.

上述のような新たな低域ノイズ成分の発生の態様ン等価
回路で示すと第7図のLつになる。すなわち、周波数Δ
fなる新たなノイズ発生源MS、からのノイズ成分は、
入力信号中に含まれている周波数fuなるノイズ発生源
NS1からのノイズ成分なり2ンプパルスにエリサンプ
ルして検出したノイズを圧値とは、逆符合の電圧として
結合コンデンサCcに直列に発生することになる。
The manner in which the new low-frequency noise components are generated as described above is represented by L circuits shown in FIG. 7 using an equivalent circuit. That is, the frequency Δ
The noise component from a new noise source MS, f is,
The noise component from the noise source NS1 with the frequency fu included in the input signal is eli-sampled into two pump pulses and detected noise is generated in series to the coupling capacitor Cc as a voltage with the opposite sign to the pressure value. become.

以上のように、単なるクランプ回路からなる従来のエネ
ルギー拡散信号除去回路においては、充分な除去効果が
得られるようにするほど、fu =−!−(n=八−1
・・・・・・)なる周波数の近傍のノイズr 成分から、新瓦な低域ノイズ成分が発生するので再生画
像の信号対ノイズ比が却って着しく低下する欠点があつ
1こ。
As described above, in the conventional energy diffusion signal removal circuit consisting of a simple clamp circuit, the more a sufficient removal effect can be obtained, the more fu = -! -(n=8-1
One drawback is that the signal-to-noise ratio of the reproduced image deteriorates rather sharply because a new low-frequency noise component is generated from the noise component near the frequency r.

本発明の目的は、上述した従来の欠点ン除去し。The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology.

訣像信号に重畳したエネルギー拡散侶号ン充分に除去し
得るのみならず、従来生じてい1こような新瓦な低域ノ
イズ成分の発竺ン九分に防止しL工坏ルギー拡散信号除
云回路ン提供することにある。
Not only can it sufficiently remove the energy diffusion noise superimposed on the optical image signal, but it can also completely prevent the generation of the low-frequency noise component that has conventionally occurred. The goal is to provide information.

jなわち、本発明にlt、エネルギー拡散信号ン含む、
画像入力信号と帰少信号とン合成する第一合成回路と、
該第−合成回路からの合成信号Yクランプするクランプ
回路と、前記合成信号の位相ン反転させる位相反転回路
と、その位相反転信号と前記クランプ回路の出力信号と
Y合成する第二合成回路と、該第二合成回路の出カンろ
波する少くとも前記エネルギー拡散信号の周波数帯域の
信号成分ケ通過させる低域ろ波器と馨具え、iiJ記低
域ろ波器の出刃を前記帰還信号として第−合成回路に負
帰還の形態で供給してエネルギー拡散信号ン抑圧するこ
と乞特徴とするものである。
That is, the present invention includes an energy diffusion signal,
a first synthesis circuit that synthesizes the image input signal and the reduced signal;
a clamp circuit that Y-clamps the synthesized signal from the first synthesis circuit; a phase inversion circuit that inverts the phase of the synthesized signal; and a second synthesis circuit that Y-synthesizes the phase inverted signal with the output signal of the clamp circuit; a low-pass filter for passing at least signal components in the frequency band of the energy spread signal to be filtered by the second synthesis circuit; - It is characterized in that it is supplied to the synthesis circuit in the form of negative feedback to suppress the energy spread signal.

以下に、図面を番照して不発明の詳細な説明する。The invention will now be described in detail with reference to the drawings.

ます、本発明除去回路の回路構成の一例を第を図に示す
。図示の構成例においては、ノイズ成分ン含み、さらに
エネルギー拡散信号が重畳した受信復調出力映倫信号ケ
、減算器6を介し、映像増1IllIi器7に導いて適
切に増幅し、その増幅出力信号ンクランブ回路r−y工
び位相反転器9に並列に供給し、これらの回路f、?の
出力信号ン合成器10に供給して互いにQ IJAし、
その合成器カン低域通過ろ波器l/および減衰器/2ン
介次に介して減算器乙に導き、人力1IilII像信号
から差引くとともに、映像増幅器7の増幅出力信号ンエ
ネルギー拡散信号除去出力峡像信号として取出す。なお
、映像増幅器の入力映像信号は同極性(+)になるもの
とし、以下、各部回路にて図示のづ・lllスフととる
ものとする。
First, an example of the circuit configuration of the removal circuit of the present invention is shown in FIG. In the illustrated configuration example, the received demodulated output video signal containing noise components and further superimposed with an energy diffusion signal is guided to the video intensifier 7 via the subtracter 6, where it is appropriately amplified, and the amplified output signal is subtracted. The circuits ry and ? are supplied in parallel to the phase inverter 9, and these circuits f, ? The output signals are supplied to the output signal combiner 10 and QIJA'd with each other.
The synthesizer is guided through a low-pass filter L/2 and an attenuator/2 to a subtracter B, where it is subtracted from the image signal and the amplified output signal of the video amplifier 7 is removed from the energy spread signal. Extract as an output isthmus image signal. It is assumed that the input video signals of the video amplifier have the same polarity (+), and hereinafter, each circuit is assumed to have the same polarity as shown in the figure.

上述の回路構成によるエネルギー拡散信号除去の作用効
果ン説明する。エネルギー拡散信号が重畳しん増幅出力
映像信号馨クランプ1珀jに供給すると、従来回路につ
き前述したところと同様にして、そのクランプ出力映像
信号からはエネルギー拡赦イざ号は除*されており、一
方、同じくエネルギー拡散(,4号が1畳した増幅出力
訣像g1号ン供給した位相反転器9の位相反転出力にお
いては、エネルギー拡散信号はそのまま1畳されている
The effects of energy diffusion signal removal using the above-mentioned circuit configuration will be explained. When the energy diffusion signal is supplied to the superimposed amplified output video signal clamp 1, the energy amplification signal is removed from the clamp output video signal in the same manner as described above for the conventional circuit. On the other hand, at the phase inverted output of the phase inverter 9, which also supplies the amplified output signal g1 with the energy spread signal (4) being 1 volt, the energy diffusion signal is 1 volt as it is.

(ロ)路fと9との出力kRk i5勺I沫互いに逆極
ピGニなっているので、それらの映像信号ン差動的に8
反しγこ合成器/θの合成出力としては訣像侶号が打消
さn、主にエネルギー拡散信号が取出さnる。かかる合
成出力信号ン、低域通過ろ波器// g !び適切な減
り量の減衰器/2ン順次に介して減算器乙に供給すると
、エネルギー拡散信号か映像増幅器7の入力側に負帰還
されて、入力映像信号に重畳したエネルギー拡散信号が
相殺除去される。従って、映像増幅器7からは、エネル
ギー拡散信号を除去しL映像信号が取出さnることにな
る。
(b) Since the outputs of paths f and 9 are opposite to each other, their video signals are differentially 8
As the combined output of the anti-gamma synthesizer/θ, the optical signal is canceled out, and the energy diffusion signal is mainly extracted. Such a combined output signal is filtered by a low-pass filter. When the energy spread signal is supplied to the subtracter B through an attenuator/2-in sequence with an appropriate reduction amount, the energy spread signal is negatively fed back to the input side of the video amplifier 7, and the energy spread signal superimposed on the input video signal is canceled out and removed. be done. Therefore, the L video signal is extracted from the video amplifier 7 with the energy diffusion signal removed.

かかるエネルギー拡散信号除去の信号処理過程に?いて
%@述した周波数” = Trtljf不要信号成分か
ら発止する尚波数Δfの低域ノイズ成分について述べる
と%まず第9図に示すように、映像増幅器7の入力映像
信号に周波数fu=−士r Δfの不要信号が混入していると、第6図?よひ第7図
につぎ@述し1こように、クランプ回路/θに直列に周
波数Δfのノイズ発主源N82ン挿入したのと等価に作
用し、周波数fuの不要信号のサンプル値とは逆符合の
低域ノイズ成分が映像信号に新たに混入する。したがっ
て、第9図に示すように、当初の周波数fuの不要ノイ
ズ成分とは逆極性の新たな低域ノイズ成分−Ifのみが
低域通過ろ波@//および減衰器/2ン介して映像増@
器70入力側に負帰還されて、入力映像信号中の当初の
ノイズ成分子uと合成され、再びクランプ回路9に印加
されることになる。したがって、クランプ回路9におい
て、クランプパルスにより再度サンプルされる際には、
周波数fuのノイズ成分のサンフル値ト周波数Δfの低
域ノイズ成分のサンプル値とが逆符合になり、相殺除去
さ才りる方11号に作用する。すなわち、周波数Δfの
低域ノイズ成分については負帰還が施されることになる
In the signal processing process of such energy spread signal removal? Let's talk about the low-frequency noise component of the wave number Δf that originates from the unnecessary signal component.First, as shown in FIG. If an unnecessary signal of r Δf is mixed in, as shown in Figure 6 and Figure 7, the noise generation source N82 with frequency Δf is inserted in series with the clamp circuit/θ as shown in Figure 7. , and a low-frequency noise component with the opposite sign to the sample value of the unnecessary signal at frequency fu is newly mixed into the video signal.Therefore, as shown in Fig. 9, the unnecessary noise component at the original frequency fu Only the new low-frequency noise component -If with the opposite polarity is added to the image through the low-pass filter @// and the attenuator/2.
The signal is negatively fed back to the input side of the circuit 70, combined with the original noise component u in the input video signal, and applied to the clamp circuit 9 again. Therefore, when sampled again by the clamp pulse in the clamp circuit 9,
The sample value of the noise component of the frequency fu and the sample value of the low frequency noise component of the frequency Δf have opposite signs, and act on the canceling method 11. That is, negative feedback is applied to the low frequency noise component of frequency Δf.

したがって、第1図もしくは第9図に示した回路構成に
おける帰還ループ利得YAけりとすると。
Therefore, if the feedback loop gain YA in the circuit configuration shown in FIG. 1 or FIG. 9 is assumed.

エネルギー拡散信号は、その周波数f (E)につき。The energy spread signal has a frequency f (E).

ズ成分は、+え6.f)に減少する。The Z component is +E6. f).

すなわち、第j図示の構成による本発明除去口ドによれ
は、従来の1jLなるクランプ回tjのみ力1らなる除
去回路によるより5、/ + A tljf)だけ周波
数Δfの低域ノイズ成分が1組されることになるっなお
、第ざ図示の桐反例における低域通過ろ波器//にエネ
ルギー拡散信号のみン通過させる通過帯域特注ンもたせ
、低域ノイズ成分Δfか映像増幅器7に全く加わらない
ようにすることもできる。
In other words, the noise component of the frequency Δf is reduced by 5, / + A tljf) by the conventional removal circuit of the present invention with the configuration shown in the j-th diagram. In addition, the low-pass filter in the paulownia filter example shown in Figure 1 has a custom-made pass band that allows only the energy spread signal to pass, so that the low-frequency noise component Δf is not added to the video amplifier 7 at all. You can also choose not to have one.

しかし、その場合には、低域通過ろ波器は、第r図示の
回路構成に記ける負帰還の安定条件を満す限りにおいて
、急峻な遮断特性、例えば10dB /オクターブに近
い遮断特性にするのか望ましい。
However, in that case, the low-pass filter should have a steep cutoff characteristic, for example close to 10 dB/octave, as long as it satisfies the negative feedback stability condition described in the circuit configuration shown in Figure R. Is it desirable?

つぎに1本発明エネルギー拡散信号除去回路の他の構成
例ン第10図に示す。ここでは、第を図示の綱取例にR
ける減算器6、映像増幅器7および位相反転器9ン一体
構敗にした差動増幅器/3ン用いるほかは、第を図示の
構灰例と同様であるが、差動増幅器/3の入力側にRい
て負帰還入力端子と映像信号入力端子とン互いに遊離さ
せ得るので、この除去回路に前置する@激増幅器との整
合が容易となる利点もある。
Next, another example of the configuration of the energy spread signal removal circuit according to the present invention is shown in FIG. Here, the R
The structure is the same as the example shown in the figure, except that a differential amplifier/3 is used in which the subtracter 6, video amplifier 7, and phase inverter 9 are integrated; however, the input side of the differential amplifier/3 is Since the negative feedback input terminal and the video signal input terminal can be separated from each other in R, there is also the advantage that matching with the amplifier provided in front of this removal circuit is facilitated.

つぎに、本発明エネルギー拡散信号除去回路のさらに他
の構成例X第1/図に示す。図示の構成例においては、
第70図示の構成例におけろクランプ回路lに印加する
クランプパルスの代わりに、差動増幅器/3の2個の差
動増幅出力映倫偏号乞用いるようにしてあり、クランプ
用ダイオードDI+D2のスイフチングに用いる差動増
殉出力訣像信号の信号レベルに比して、結合コンテン9
Ceフ介し、クランプ用ダイオードに供給してクランプ
する方の差動増幅出力映像(6号の侶号しベル?常に小
さくしておく必要があるので、結言コンデンサCcに直
列に減衰器ATT /ン介挿しである。また、減衰器A
TT−は合成器10の2人力1M号のig号レしルン揃
えるためのものであり、減B 姦ArTJは負帰還量ン
調整するためのものである。
Next, still another configuration example of the energy spread signal removal circuit of the present invention is shown in FIG. In the illustrated configuration example,
In the configuration example shown in Figure 70, instead of the clamp pulse applied to the clamp circuit l, two differential amplification outputs of the differential amplifier /3 are used, and the switching of the clamp diodes DI+D2 is used. The combined content 9
The differential amplified output image of the one that is supplied to the clamping diode and clamped via the Ce capacitor (No. 6 and the bell) must be kept small at all times, so an attenuator ATT/N is connected in series with the connecting capacitor Cc. In addition, attenuator A
TT- is for aligning the two-man power of the 1M unit of the synthesizer 10, and ArTJ is for adjusting the amount of negative feedback.

以上の説明から明らかなように、本発明によれば、衛晶
放送電波の帯域内スペクトルエネルギー分布の均一化の
ために、映像信号に菖費したエネルギー拡り信号ン受信
復調出力映像信号から除去するためのエネルギー拡散偏
分除去回路において。
As is clear from the above description, according to the present invention, in order to equalize the in-band spectral energy distribution of satellite broadcasting waves, the energy spread signal added to the video signal is removed from the received demodulated output video signal. In the energy diffusion polarization removal circuit for.

玩砥界冗15時に任来兜任して扮住隨j餉乞″堪じ〈劣
化させていた低域ノイズの発lFEン光分に押庄して良
好な1貿の画像ン丹伍することかできる。
At 15 o'clock in the game world, I took over and sat down to pretend to be there.I suppressed the low frequency noise that was causing the deterioration and produced a good image. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエイ・ルギー拡敏信号除云回路の佑成ケ
示すブロンク?#!図、第2図(AJゴロよびCB)は
同じくその構成に用いるピーククランプ形?よび平衡形
のクランプ回路の鍜成ンそ托ぞれ示す回路図、第3図L
A)〜C,D)は同じくそのクランプ回路における低域
ノイズ成分EE縮の鉤程ン順次に示す線図、第を図は神
」じくその低域ノイズ成分圧縮の形層ン示す特性曲線図
、第5図によび第6図にそれぞれ1i」じくそのクラン
ツブ回路による新たな低域ノイズの発注の態様の説明画
、第7図は同じくそのWfrたな低域ノイズ発主の態様
ン示す等仕口り図、第r図はll」エイ・ルギー拡散侶
方除云回路の構成例馨示すブロンク縁図、第9図に第g
図示の栴戚例馨ノイズ臥分についてσ)等価的に示すブ
ロンク組図、第io図おLひ第1/図は本発明エネルギ
ー拡散信号除去回路の他の構成例ンそnぞれ示すブロン
ク耐図である。 l・・・7N復wa器、     λ、参、7・−・映
像増幅器。 J、 j、 lr・・・クランプ回路、 6・−減算器
。 デ・・・位相反転器、    10・・・合成器、//
・・・低域通過ろ波器、   ll・・・減衰器。 13・・・差動増幅器、    8N、 、 8N、 
・・・ノイズ発生源、            Cc・
・・結合コンデンサ、D、 D、 、 D、・・・クラ
ンプダイオード、ATT/、 ATTJ、 ATTJ・
・・減衰器。 特許出願人 日本放送協会 λjT  ]!  、・ 憤 箭2図
Figure 1 shows the structure of the conventional A/L amplification signal removal circuit. #! Figure 2 (AJ grounder and CB) is also a peak clamp type used for that configuration? and a circuit diagram showing the construction of a balanced type clamp circuit, Figure 3L.
A) to C, D) are also graphs showing the low-frequency noise component EE compression in the clamp circuit in sequence, and the second figure is the characteristic curve that shows the shape of the low-frequency noise component compression. Figures 5 and 6 are respectively explanatory pictures of a new mode of low-frequency noise generation by the Kranzub circuit, and Figure 7 is an illustration of the mode of low-frequency noise generator such as Wfr. The isometric diagram shown in Fig.
σ) Equivalently shown bronch set diagrams, Figures 1 and 1, respectively, show other configuration examples of the energy dispersion signal removal circuit of the present invention. It is durable. l...7N repeater, λ, reference, 7...video amplifier. J, j, lr...clamp circuit, 6.-subtractor. D...phase inverter, 10...synthesizer, //
...Low pass filter, ll...Attenuator. 13...Differential amplifier, 8N, , 8N,
...Noise source, Cc・
・・Coupling capacitor, D, D, , D, ・・・Clamp diode, ATT/, ATTJ, ATTJ・
...Attenuator. Patent applicant: Japan Broadcasting Corporation λjT]! ,・ Angers 2

Claims (1)

【特許請求の範囲】 1)工坏ルギー拡散信号X含む画像入力信号と帰還信号
と乞合成する第一合成回路と、該第−合成回路からの合
成信号ケクランプするクランプ回路と、前記合成信号の
位相を反転させる位相反転回路と、その位相反転信号と
前記クランプ回路の出力とン合成する第二合成回路と、
該第二合成回路の出カンろ波する少くとも前記エネルギ
ー拡散信号の周波数帯域の信号成分を通過させる低域ろ
波器とを具え、@記低域ろ波器の出力を前記帰還信号と
して第−甘酸回路に負帰還の形態で供給してエネルギー
拡散信号ン抑EEすることン特徴とするエネルギー拡散
信号除去回路。 2、特許請求の範囲第1項記載の除去回路において、別
記クランプip!回路ン平賛形パルスクランプ回路で構
成するとともに、前記第−合成回鵜による合成信号お工
ひAiJ gd合成1d号の反転16号ン前記クランプ
回路のクランプパルスとし1こことン特徴とするエネル
ギー拡散侶号除゛云回路。 幻 待irf請求の範囲第1項Mr2畝の除去回路にお
いて、前記第一合成回路ン差動増輻器で構成し、該増1
1il!器の一方の端子に前記入力毎号を同他方の端子
に前記帰還信号ン供給するとともに、剖紀増幅器の第一
の出力端子から前記合bi、揖号馨、第二の出力端子か
らIIJ記反転信りvkUり出すこと乞特徴とするエネ
ルギー拡散1d号除去l1g回路。
[Scope of Claims] 1) A first synthesis circuit that synthesizes an image input signal including the energy diffusion signal X and a feedback signal, a clamp circuit that clamps the synthesized signal from the first synthesis circuit, and a phase inversion circuit that inverts the phase; a second synthesis circuit that synthesizes the phase inversion signal with the output of the clamp circuit;
a low-pass filter that passes at least signal components in the frequency band of the energy spread signal output from the second combining circuit; - An energy diffusion signal removal circuit characterized in that the energy diffusion signal is suppressed by supplying it to the sweet-acid circuit in the form of negative feedback. 2. In the removal circuit according to claim 1, the separate clamp ip! The circuit is composed of a flat pulse clamp circuit, and the synthesized signal is generated by the first synthesis circuit. Diffusion member removal circuit. Phantom IRF Claim 1. In the Mr2 ridge removal circuit, the circuit comprises the first combining circuit and a differential amplifier;
1il! The input signal is supplied to one terminal of the amplifier, and the feedback signal is supplied to the other terminal of the amplifier, and the input signal is input from the first output terminal of the amplifier, and the input signal is input from the second output terminal of the amplifier. An energy dispersion 1d removal l1g circuit characterized by reliable vkU output.
JP57088064A 1982-05-26 1982-05-26 Eliminating circuit of energy spread signal Granted JPS58205380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57088064A JPS58205380A (en) 1982-05-26 1982-05-26 Eliminating circuit of energy spread signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57088064A JPS58205380A (en) 1982-05-26 1982-05-26 Eliminating circuit of energy spread signal

Publications (2)

Publication Number Publication Date
JPS58205380A true JPS58205380A (en) 1983-11-30
JPH0365713B2 JPH0365713B2 (en) 1991-10-14

Family

ID=13932417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57088064A Granted JPS58205380A (en) 1982-05-26 1982-05-26 Eliminating circuit of energy spread signal

Country Status (1)

Country Link
JP (1) JPS58205380A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431875A2 (en) * 1989-12-04 1991-06-12 Matsushita Electric Industrial Co., Ltd. Energy dispersal signal adding apparatus and energy dispersal signal removing apparatus
JPH0485876U (en) * 1990-11-27 1992-07-27
EP0535742A2 (en) * 1991-10-02 1993-04-07 Philips Electronics Uk Limited Signal clamping

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431875A2 (en) * 1989-12-04 1991-06-12 Matsushita Electric Industrial Co., Ltd. Energy dispersal signal adding apparatus and energy dispersal signal removing apparatus
EP0431875A3 (en) * 1989-12-04 1992-02-26 Matsushita Electric Industrial Co., Ltd. Energy dispersal signal adding apparatus and energy dispersal signal removing apparatus
JPH0485876U (en) * 1990-11-27 1992-07-27
EP0535742A2 (en) * 1991-10-02 1993-04-07 Philips Electronics Uk Limited Signal clamping

Also Published As

Publication number Publication date
JPH0365713B2 (en) 1991-10-14

Similar Documents

Publication Publication Date Title
US4814715A (en) Mixer arrangement for suppression of oscillator interference in quadrature demodulators
US4139866A (en) Stereophonic television sound transmission system
US3860873A (en) Fm transmission system
JPH0127636B2 (en)
JPH0628338B2 (en) Phase locked loop and direct mixed sync AM receiver using the same
JPS58205380A (en) Eliminating circuit of energy spread signal
JP3169690B2 (en) Receiver
US3470472A (en) Transceiver using common compression amplifier for transmission and reception
JPH0430771B2 (en)
RU2123240C1 (en) Device for signal processing
JPS5853805B2 (en) Pilot signal removal device
JPS5958979A (en) Television audio information detector
US7016659B1 (en) Amplitude modulation with time- and spectrum-shared sidebands
JPS5966281A (en) Sound first detector
JPS61129924A (en) Television braodcast receiver
CA1210142A (en) Fm television signal receiving circuit
GB2205717A (en) Energy-dispersal signal rejection
GB390565A (en) System of electrical picture transmission
US3315038A (en) Device for the stereophonic reproduction of signals
CN207896968U (en) A kind of power line carrier detection device
AT91298B (en) Device for simultaneous telegraphing and telephoning with or without wire.
JPS62181582A (en) Sound multiplex broadcasting receiver
KR200217783Y1 (en) IF amplifier for TV
JPH0127288Y2 (en)
KR800001019B1 (en) Video record player switching system