JPS5820518B2 - Manufacturing method of speaker diaphragm - Google Patents

Manufacturing method of speaker diaphragm

Info

Publication number
JPS5820518B2
JPS5820518B2 JP129476A JP129476A JPS5820518B2 JP S5820518 B2 JPS5820518 B2 JP S5820518B2 JP 129476 A JP129476 A JP 129476A JP 129476 A JP129476 A JP 129476A JP S5820518 B2 JPS5820518 B2 JP S5820518B2
Authority
JP
Japan
Prior art keywords
fibers
fine particles
diaphragm
foam
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP129476A
Other languages
Japanese (ja)
Other versions
JPS5284726A (en
Inventor
哲雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onkyo Corp
Original Assignee
Onkyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onkyo Corp filed Critical Onkyo Corp
Priority to JP129476A priority Critical patent/JPS5820518B2/en
Publication of JPS5284726A publication Critical patent/JPS5284726A/en
Publication of JPS5820518B2 publication Critical patent/JPS5820518B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】 この発明は含泡性微粒子を混入した低密度のスピーカー
用振動板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a low-density speaker diaphragm containing foam-containing fine particles.

スピーカー用振動板の物理的特偏としてはその動作の理
論的解析はもとより実際的にも動作の安定性、周波数特
性の立場よりして可能な限りピストン運動をすることが
望ましく、 その為に剛性が大きく、かつ適当な機械的内部損失を有
すること、又スピーカーの音響輻射能率の観点よりして
軽量であることが必要となり、剛性が大きく、かつ密度
の小さい振動板が要求される。
As for the physical characteristics of a speaker diaphragm, it is desirable not only to theoretically analyze its operation but also to have a piston motion as much as possible from the standpoint of operational stability and frequency characteristics. It is necessary that the diaphragm has a large diaphragm and an appropriate mechanical internal loss, and that it is lightweight from the viewpoint of the acoustic radiation efficiency of the speaker, and a diaphragm that has high rigidity and low density is required.

従来、この様な低密度の振動板を得るには叩解度の低い
繊維を使用して抄造を行なっていたが、この様な繊維を
使用した振動板は繊維間の結合が極めて弱く振動板とし
て要求される剛性を満たすことができない。
Conventionally, in order to obtain such a low-density diaphragm, papermaking was performed using fibers with a low degree of beating, but diaphragms using such fibers had extremely weak bonds between the fibers, making them difficult to use as a diaphragm. The required rigidity cannot be met.

又反対に叩解度の高い繊維を使用すると剛性が高くなる
とともに密度も大きくなり振動板の重量が増大する。
On the other hand, if fibers with a high degree of beating are used, the rigidity and density will increase, resulting in an increase in the weight of the diaphragm.

この様な相反する現象の解決手段の一つとして含泡性微
粒子を混合して低密度化を計った振動板があり、その製
造法として次の様な方法がすでに公知になっている。
One of the solutions to these contradictory phenomena is a diaphragm whose density is lowered by mixing foam-containing fine particles, and the following methods are already known as methods for manufacturing this diaphragm.

(1)未発泡微粒子を繊維に混合し、水溶性ポリアミド
樹脂、合成樹脂酸コロイド等のサイズ剤を加えて微粒子
を繊維に定着せしめ、抄造後金型内で加熱加圧して成形
と同時に発泡せしめる方法。
(1) Mix unfoamed fine particles with fibers, add a sizing agent such as water-soluble polyamide resin or synthetic resin acid colloid to fix the fine particles to the fibers, and after papermaking, heat and pressurize in a mold to foam at the same time as forming. Method.

(2)既発泡の含泡性微粒子を繊維に混合し、合成ゴム
エマルジョン、合成樹脂酸コロイド等のサイズ剤を添加
して含泡性微粒子を繊維に定着させ抄造後加熱加圧成形
する方法。
(2) A method in which foamed fine particles are mixed with fibers, a sizing agent such as a synthetic rubber emulsion or a synthetic resin acid colloid is added, the foamed fine particles are fixed to the fibers, and the paper is formed and then heated and pressure molded.

しかるに、上記(1)の方法においては、繊維と未発泡
微粒子とを強力に結合する手段が存在しないので大部分
の未発泡微粒子が抄紙時の排水中に流出し、未発泡微粒
子のロスが大きく経済的に不利であり、又(2)の方法
においては、既発泡の含泡性微粒子が浮上して繊維と分
離しやすく、それを防ぐ為に多量の合成ゴムエマルジョ
ン等のキイズ剤を使用すると、振動板重量が増大して含
泡性微粒子による軽量化の効果が相殺されてしまう欠点
がある。
However, in the method (1) above, since there is no means to strongly bond the fibers and unfoamed fine particles, most of the unfoamed fine particles flow out into the waste water during paper making, resulting in a large loss of unfoamed fine particles. It is economically disadvantageous, and in method (2), the already foamed foam-containing fine particles tend to float and separate from the fibers, and in order to prevent this, a large amount of a keying agent such as a synthetic rubber emulsion is used. However, there is a drawback that the weight of the diaphragm increases and the weight reduction effect of the foam-containing fine particles is offset.

又含泡性微粒子が振動板の密度を下げる働きには2つの
作用が考えられ、その一つは単に含泡性微粒子自体の体
積に相当する空間によるものと、もう一つは繊維間に介
在して繊維が密に堆積することを防げ含泡性微粒子が排
除する空間以下に繊維間に新しい空隙を作る作用である
In addition, there are two possible functions of the foam-containing fine particles to lower the density of the diaphragm: one is simply due to the space corresponding to the volume of the foam-containing fine particles themselves, and the other is due to the space between the fibers. This function prevents the fibers from being densely deposited and creates new voids between the fibers below the spaces eliminated by the foam-containing fine particles.

この観点からみると、(1)の方法のごとく抄紙後発泡
される方法では抄紙によって一度密な紙層を形成して後
、発泡によって膨張せしめるので発泡により膨張した含
泡性微粒子の体積に相当する分しか繊維を排除せず、繊
維間に含泡性微粒子による空間以外に空隙を形成する作
用は期待できない。
From this point of view, in the method (1) in which foaming is performed after papermaking, a dense paper layer is formed once during papermaking and then expanded by foaming, so the volume corresponds to the volume of foam-containing fine particles expanded by foaming. Since only the amount of fibers removed is removed, no effect of forming voids other than the spaces created by the foam-containing fine particles between the fibers can be expected.

又微粒子の体積が抄造時紙層中に自然に形成される空隙
に比べて小さい場合、その空隙内におちこんだ微粒子は
単に空隙部を充填するのみで振動板の低密度化には全く
関与しない。
In addition, if the volume of the fine particles is smaller than the voids that are naturally formed in the paper layer during papermaking, the fine particles that fall into the voids simply fill the voids and do not contribute at all to lowering the density of the diaphragm. .

更に繊維間に介在する微粒子であっても抄造時に発生す
る空隙が隣接していると、発泡時に体積増加によって繊
維をおし上げて繊維間に空隙を作るよりは抵抗の少ない
空隙に向って膨張し低密度化には関与できない結果とな
る。
Furthermore, even if the particles are intervening between fibers, if they are adjacent to the voids that occur during papermaking, they will expand toward the voids with less resistance, rather than pushing the fibers up due to volume increase during foaming to create voids between the fibers. As a result, it cannot be involved in lowering the density.

上記のごとく振動板の構造はその殆んどが繊維が抄網に
堆積する瞬間に決定されるので抄紙時点で含泡性微粒子
をいかに有効に働らかせるかが密度の小さい振動板の作
る上での問題となる。
As mentioned above, most of the structure of the diaphragm is determined at the moment the fibers are deposited on the papermaking screen, so how effectively the foam-containing particles are used at the time of paper making is a key factor in creating a diaphragm with a low density. This becomes a problem.

この発明はこの点を改良した製造方法であって微小中空
球体を振動板の低密度化に有効に作用せしめるとともに
、微粒子の繊維への定着を促進せしめ、材料のロスを極
めて小さくしたものである。
This invention is a manufacturing method that improves this point, and uses micro hollow spheres to effectively reduce the density of the diaphragm, as well as promoting the fixation of fine particles to the fibers, thereby minimizing material loss. .

この発明を更に詳しく説明すると、高度に叩解(C8F
200〜300 cc )、 したセルローズ繊維、又
は非セルローズ繊維との混合繊維に、塩化ビニリデンア
クリロニトリル微小中空球体の未発泡微粒子を繊維に混
合し、ポリエチレンイミン、ポリアクリルアミド等の高
分子凝集剤を混入して未発泡微粒子を繊維に定着させた
後、加熱して未発泡微粒子を発泡せしめて繊維間に微小
中空球体を形成せしめる。
To explain this invention in more detail, highly refined (C8F)
(200 to 300 cc), cellulose fibers or mixed fibers with non-cellulose fibers, unfoamed fine particles of vinylidene chloride acrylonitrile micro hollow spheres are mixed with the fibers, and a polymer flocculant such as polyethyleneimine or polyacrylamide is mixed into the fibers. After fixing the unfoamed fine particles to the fibers, the unfoamed fine particles are heated to foam them to form micro hollow spheres between the fibers.

次に抄紙して抄網に堆積した繊維層を乾燥、あるいは必
要ならば軽くプレスして成形する。
Next, paper is made and the fiber layer deposited on the paper screen is dried or, if necessary, lightly pressed to shape it.

この発明方法による微粒子の繊維への定着機構は次のご
とくである。
The mechanism for fixing fine particles to fibers according to the method of this invention is as follows.

すなわち、高度に叩解され、充分にフィブリル化した繊
維、あるいは微細繊維間に位置した微粒子は凝集剤の作
用によって繊維が凝集する際、繊維間に包み込まれる様
に付着する。
That is, highly beaten and sufficiently fibrillated fibers or fine particles located between fine fibers adhere to the fibers so as to be wrapped around them when the fibers are aggregated by the action of the flocculant.

したがって、微粒子と繊維との結合が極めて犬であり、
少々の外力によっては容易に脱落しない又繊維、微粒子
基質の表面電荷を有するので凝集剤としてカチオン系凝
集剤を使用すれば静電引力による結合力が加わって更に
強力に付着せしめることができる。
Therefore, the bond between fine particles and fibers is extremely poor.
In addition, since the fibers and fine particle substrates have a surface charge, they do not fall off easily even with a slight external force, so if a cationic flocculant is used as the flocculant, the bonding force due to electrostatic attraction is added and the adhesion can be made even stronger.

この様に微粒子を定着した後、加熱発泡せしめて、微小
中空球体を形成し、その後抄紙するので、抄紙時に微小
中空球体により密な堆積層を作りに<<、繊維間に微小
中空球体が存在し、繊維間に膨張した微小中空球体が作
る空間の他に、繊維間に介在して繊維間にそれ以外の空
隙を作るうえにおいても効果的である。
After fixing the fine particles in this way, they are heated and foamed to form microscopic hollow spheres, and then paper is made.In order to create a denser deposited layer of microscopic hollow spheres during paper making, microscopic hollow spheres exist between the fibers. However, in addition to the spaces created by the expanded micro hollow spheres between the fibers, it is also effective in creating other voids between the fibers by intervening between the fibers.

、次にこの発明の実施例について説明すると、ま
ずC3F260ccに叩解したNBKPに10重量係ポ
リ塩化ビニリデンアクリロニトリル微小中空球体の未発
泡微粒子を混合し、更に2〜3重量係のポリエチレンイ
ミンを添加して繊維を凝集せしめ、微粒子を定着する。
Next, an example of the present invention will be described. First, unfoamed fine particles of polyvinylidene acrylonitrile microscopic hollow spheres of 10 parts by weight were mixed with NBKP beaten into 260 cc of C3F, and further 2 to 3 parts by weight of polyethyleneimine was added. Coagulates fibers and fixes fine particles.

これを80°〜90℃に加熱して微粒子を発泡せしめ、
次に抄紙して乾燥する。
This is heated to 80° to 90°C to foam the fine particles,
Next, paper is made and dried.

このようにして得た振動板とNBKPのみを使用した振
動板の物性を第1表に示す。
Table 1 shows the physical properties of the diaphragm thus obtained and the diaphragm using only NBKP.

表から明らかな様に、この発明方法による振動板は 密度は著しく低下するのに対し、ヤング率(E)はほと
んど変らず、E/ρは増大、内部損失(tanδ)も若
干増大することが分る。
As is clear from the table, although the density of the diaphragm manufactured by the method of this invention is significantly reduced, the Young's modulus (E) remains almost unchanged, E/ρ increases, and the internal loss (tanδ) also slightly increases. I understand.

この様にこの発明の製造方法によれは、単に含泡性微粒
子の排除する空間のみでなく、繊維間に介在する含泡性
微粒子によって、それ以外の空隙を繊維間に形成するこ
とができ低密度化の効果を充分に発輝することができる
とともに、 微粒子の繊維への定着作用は繊維の凝集作用や静電作用
を利用するものであるので凝集剤は少量でよく、ゴムエ
マルジョンによる定着の方法のごとく樹脂自体が沈着す
ることを前提としていないので、定着剤の付着による重
量増力r等の低密度振動板の利点を相殺するごとき要因
はまったくない。
As described above, according to the manufacturing method of the present invention, not only the spaces excluded by the foam-containing fine particles, but also other voids can be formed between the fibers by the foam-containing fine particles interposed between the fibers. Not only can the densification effect be fully demonstrated, but since the fixation of fine particles to fibers utilizes the agglomeration and electrostatic effects of the fibers, only a small amount of coagulant is required, and the fixation by rubber emulsion is much easier. Since the method does not assume that the resin itself is deposited, there are no factors that offset the advantages of the low-density diaphragm, such as the weight increase due to adhesion of the fixing agent.

以上のごとく、この発明製造方法によれば、低・密度、
剛性大、内部損失大なる振動板を提供することができる
とともに、材料のロスが少なく経済的にも極めて有利で
ある等すぐれた長所を有するものである。
As described above, according to the manufacturing method of this invention, low density,
It has excellent advantages such as being able to provide a diaphragm with high rigidity and high internal loss, and having little loss of material and being very economically advantageous.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニリデンーアクリロニ) IJル微小中空球
体の未発泡微粒子を叩解して充分にフィブリル化したセ
ルローズ繊維、又は非セルローズ繊維と混合したものに
混合して、更に高分子凝集剤を添加して前記微粒子を定
着せしめ、しかる後、加熱発泡させ、抄紙、乾燥あるい
は必要なら軽くプレス成形することを特徴とするスピー
カー用振動板の製造方法。
1 Vinylidene chloride-acryloni) Unfoamed microparticles of IJ Le micro hollow spheres are beaten and mixed with sufficiently fibrillated cellulose fibers or non-cellulose fibers, and a polymer flocculant is further added. A method for manufacturing a diaphragm for a speaker, which comprises fixing the fine particles, followed by heating and foaming, paper-making, drying, or, if necessary, light press molding.
JP129476A 1976-01-06 1976-01-06 Manufacturing method of speaker diaphragm Expired JPS5820518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP129476A JPS5820518B2 (en) 1976-01-06 1976-01-06 Manufacturing method of speaker diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP129476A JPS5820518B2 (en) 1976-01-06 1976-01-06 Manufacturing method of speaker diaphragm

Publications (2)

Publication Number Publication Date
JPS5284726A JPS5284726A (en) 1977-07-14
JPS5820518B2 true JPS5820518B2 (en) 1983-04-23

Family

ID=11497435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP129476A Expired JPS5820518B2 (en) 1976-01-06 1976-01-06 Manufacturing method of speaker diaphragm

Country Status (1)

Country Link
JP (1) JPS5820518B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195397A (en) * 1982-05-10 1983-11-14 Onkyo Corp Manufacture of speaker diaphragm
JPS58195398A (en) * 1982-05-10 1983-11-14 Onkyo Corp Manufacture of speaker diaphragm
JPS58200693A (en) * 1982-05-17 1983-11-22 Onkyo Corp Diaphragm for speaker
JPH0610300A (en) * 1992-02-14 1994-01-18 Sony Corp Pulp mold material

Also Published As

Publication number Publication date
JPS5284726A (en) 1977-07-14

Similar Documents

Publication Publication Date Title
JPH0341798A (en) Emi shielding fiber reinforcing polymer structure and its manufacture
CN1655647A (en) Vibrating board and its producing method, and speaker
US8025769B2 (en) Highly acoustical, wet-formed substrate
US3994363A (en) Composite noise absorption product
JPS5820518B2 (en) Manufacturing method of speaker diaphragm
CN113079451B (en) Foaming cone for loudspeaker and preparation method and application thereof
JPH0410800A (en) Diaphragm for electroacoustic transducer
EP0296233B1 (en) Low density frothed mineral wool panel and method
JPS6254664B2 (en)
JP2506498Y2 (en) Vibration plate for electro-acoustic transducer
JPS5816679B2 (en) speaker horn
JP2002339213A (en) Heat-insulating sound-absorbing plate and method for producing the same
JPS58159094A (en) Diaphragm for electroacoustic transducer
JPH0156176B2 (en)
JPS6154749B2 (en)
JP3828032B2 (en) Waterproof diaphragm for electroacoustic transducer
KR102238872B1 (en) Composite material preform board and method for preparing the same
KR102200957B1 (en) Porous fiber reinforced composite material
JPH0156600B2 (en)
JP2003009282A (en) Speaker diaphragm and its manufacturing method
JPH0372325B2 (en)
JPS623986Y2 (en)
JPS6187500A (en) Diaphragm for loudspeaker
JPH0644835B2 (en) Electro-acoustic transducer
JPS5819910Y2 (en) Diaphragm for speakers