JPS5820509B2 - Color video signal playback method - Google Patents

Color video signal playback method

Info

Publication number
JPS5820509B2
JPS5820509B2 JP50038318A JP3831875A JPS5820509B2 JP S5820509 B2 JPS5820509 B2 JP S5820509B2 JP 50038318 A JP50038318 A JP 50038318A JP 3831875 A JP3831875 A JP 3831875A JP S5820509 B2 JPS5820509 B2 JP S5820509B2
Authority
JP
Japan
Prior art keywords
signal
frequency
circuit
carrier
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50038318A
Other languages
Japanese (ja)
Other versions
JPS51113410A (en
Inventor
蒲原正宏
森尾稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP50038318A priority Critical patent/JPS5820509B2/en
Publication of JPS51113410A publication Critical patent/JPS51113410A/en
Publication of JPS5820509B2 publication Critical patent/JPS5820509B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、低域変換された搬送色信号と、搬送周波数が
この低域変換された搬送色信号のそれの4倍で主として
上側帯波の被平衡変調輝度信号と、上記低域変換された
搬送色信号の搬送周波数の2倍の周波数のパイロット信
号との合成信号が記録媒体上に記録されたカラー映像信
号を再生する方法に関し、特に安定した所期の再生カラ
ー映像信号が確実に得られるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a low-converted carrier chrominance signal and a balanced modulated luminance signal whose carrier frequency is four times that of the low-converted carrier chrominance signal and which is primarily upper sideband. , regarding a method for reproducing a color video signal recorded on a recording medium using a composite signal of the low-pass converted carrier color signal and a pilot signal having a frequency twice the carrier frequency, in particular, a method for reproducing a color video signal recorded on a recording medium, in which a stable desired reproduced color is obtained. This ensures that a video signal can be obtained.

以下、本発明によるカラー映像信号の再生方法゛を、図
について説明しよう。
Hereinafter, the method for reproducing a color video signal according to the present invention will be explained with reference to the drawings.

第1図はその一例で、入力端1よりのカラー映像信号を
ローパスフィルタ2に供給して、搬送色信号のもとの搬
送周波数をfS1後述のように低域変換したときの搬送
周波数をfLとすれば、fs−3fL までの成分の、
例えばこのカラー映像信号がNTSC信号であってf
s= 3.58 MHzであり、またその水平周波数を
fHとするときfL=迭ヱf H= 0.37 MHz
にする場合には、2、47 MHzまでの成分の輝度信
号YA(第3図A)を取出し、これを変調器3に供給し
、一方、発振器4よりのf S = 3.58 MHz
の信号と、可変周波数発振器5よりのf L = 0.
37 MHzの信号を周波数変換器6に供給して、これ
より、周波数がそれぞれ、f s−3f L = 2.
47MHz及びfs+fL= 3.95 MHzの3つ
の信号を得、そのfs−3fL= 2.47 MHzの
信号を変調器3に供給して輝度信号YAにて振幅変調例
えば平衡変調してこれより被変調輝度信号YB(第3図
B)を得る。
Fig. 1 shows an example of this, in which the color video signal from the input terminal 1 is supplied to the low-pass filter 2, and the carrier frequency when the original carrier frequency of the carrier color signal is low-pass converted as fS1 as described later is fL. Then, the components up to fs-3fL,
For example, if this color video signal is an NTSC signal and f
When s = 3.58 MHz and its horizontal frequency is fH, fL = 迭ヱ f H = 0.37 MHz
In this case, the luminance signal YA (FIG. 3A) with components up to 2.47 MHz is extracted and supplied to the modulator 3, while f S = 3.58 MHz from the oscillator 4
and f L = 0. from the variable frequency oscillator 5.
A signal of 37 MHz is supplied to the frequency converter 6, from which the frequencies are respectively f s - 3f L = 2.
Obtain three signals of 47 MHz and fs+fL=3.95 MHz, supply the fs-3fL=2.47 MHz signal to the modulator 3, perform amplitude modulation, for example, balance modulation, with the luminance signal YA, and then modulate it. A luminance signal YB (FIG. 3B) is obtained.

そして、この被変調輝度信号YBをfs−3fL=2.
47MHzで6dB下がる特性のローパスフィルタ7に
供給して、その主として下側帯波成分Yc(第3図C)
を取出し、これを合成器8に供給する。
Then, this modulated luminance signal YB is converted to fs-3fL=2.
It is supplied to a low-pass filter 7 which has a characteristic of lowering the frequency by 6 dB at 47 MHz, and its main component is the lower sideband component Yc (Fig. 3C).
is taken out and supplied to the synthesizer 8.

入力カラー映像信号は、また、バンドパスフィルタ9に
供給して搬送周波数がf s= 3.58 M)(zの
搬送色信号C8を取出し、これを合成器8に供給する。
The input color video signal is also supplied to a bandpass filter 9 to extract a carrier color signal C8 having a carrier frequency of f s = 3.58 M) (z), which is supplied to a synthesizer 8 .

さらに、周波数変換器6よりのf S−f L=3.2
1MHz の信号をパイロット信号として合成器8に供
給する。
Furthermore, f S−f L=3.2 from the frequency converter 6
A 1 MHz signal is supplied to the combiner 8 as a pilot signal.

そして、合成器8において、被変調輝度信号Ycと、搬
送色信号Csと、パイロット信号P。
Then, in the synthesizer 8, the modulated luminance signal Yc, the carrier color signal Cs, and the pilot signal P.

を周波数多重し、その多重化信号Yc+C8+PC(第
3図D)を周波数変換器10を供給して周波数変換器6
よりのf 3+ f I、 = 3.95 MHzの信
号にて周波数変換して、搬送周波数が (f3+fL)−(fs 3fL)−=4fL=1.4
8MHzの主として上側帯波の被変調輝度信号YDと、
搬送周波数が(fs+fL)fs=fL=0.37MH
zの搬送色信号CLと、周波数が(f3+fL)(fs
−fL)=2fL=0.74MHzのパイロット信号F
Dを得る(第3図E)。
is frequency-multiplexed, and the multiplexed signal Yc+C8+PC (D in FIG. 3) is supplied to the frequency converter 10.
The carrier frequency is (f3+fL)-(fs 3fL)-=4fL=1.4 by frequency conversion using a signal of f3+fI, = 3.95 MHz.
an 8 MHz mainly upper sideband modulated luminance signal YD;
Carrier frequency is (fs+fL) fs=fL=0.37MH
The carrier color signal CL of z and the frequency (f3+fL)(fs
−fL)=2fL=0.74MHz pilot signal F
Obtain D (Fig. 3E).

そして、ローパスフィルタ11にてこれら信号YD、C
L及びPDの多重化信号(第3図F)を取出し、これを
記録アンプ12を通じて磁気ヘッド13に供給して例え
ば磁気テープ上に記録する。
These signals YD, C are then filtered through a low-pass filter 11.
The L and PD multiplexed signal (FIG. 3F) is taken out and supplied to the magnetic head 13 through the recording amplifier 12 to be recorded on, for example, a magnetic tape.

こノ場合、バンドパスフィルタ9よりの搬送色信号C8
をパーストゲート回路14に供給してバースト信号を取
出し、これにて発振器4を同期駆動し、さらに、入力カ
ラー映像信号を水平同期信号分離回路15に供給して水
平同期信号SHを取出し、これを位相比較回路16に供
給し、また可7 *8e*発&’155 r F) (7) t L−T
−i −H−2°゛°“MHzの信号を分周器17に供
給して七に分周して水平周波数fHの信号とし、これを
位相比較回路16に供給し、その比較誤差電圧を可変周
波数発振器5に供給してその発振周波数を制御する。
In this case, the carrier color signal C8 from the bandpass filter 9
is supplied to the burst gate circuit 14 to extract a burst signal, which synchronously drives the oscillator 4. Furthermore, the input color video signal is supplied to the horizontal synchronization signal separation circuit 15 to extract a horizontal synchronization signal SH, which is Supplied to the phase comparator circuit 16, and also outputs 7 *8e* &'155 r F) (7) t L-T
-i -H-2°゛°'' MHz signal is supplied to the frequency divider 17, divided by 7 to produce a signal with horizontal frequency fH, which is supplied to the phase comparator circuit 16, and the comparison error voltage is It is supplied to the variable frequency oscillator 5 to control its oscillation frequency.

再生にあたっては、第2図に示すように、磁気・・ラド
21にて再生された、上述の、搬送周波数が4 f L
= 1.48 MHzの主として上側帯波の被変調輝度
信号YDと、搬送周波数がf L−0,37MHzの搬
送色信号CLと、周波数が2 f L=0.74]’v
iHzのパイロット信号PDとの多重化信号(第3図F
)を再生アンプ22を通じ、自動利得制御回路23を通
じて周波数変換器24に供給し、一方、固定発振器25
よりのf s=3.58MHzの信号を別の周波数変換
器26に供給し、また可変周波数発振器2Tよりのf
L= 0.37 MHzの信号をこの別の周波数変換器
26に供給して、これより、周波数がそれぞれ、f s
+f I、=3.95MHz、 f s−3、f L=
2.47■h及びfs−fI、=3.21■hの3つの
信号を得、そのt s十fL=3.95MHzの信号を
周波数変換器24に供給して再生された多重化信号を周
波数変換して、搬送周波数が(f s+f L )−4
f L=f B −3fL=2.47MHzの主として
下側帯波の被変調輝度信号Ycと、搬送周波数が(f
s+fL )−f L=f S= 3.58 MHzの
搬送色信号C8と、周波数が(f s+fL)2f L
=f 5−fL=3.21MH2のパイロット信号PC
を得る(第3図G)。
During reproduction, as shown in FIG.
= 1.48 MHz mainly upper sideband modulated luminance signal YD, carrier frequency f L - 0, carrier color signal CL of 37 MHz, and frequency 2 f L = 0.74]'v
Multiplexed signal with iHz pilot signal PD (Fig. 3F)
) is supplied to the frequency converter 24 through the regenerative amplifier 22 and the automatic gain control circuit 23, while the fixed oscillator 25
The fs=3.58MHz signal from the variable frequency oscillator 2T is supplied to another frequency converter 26, and the fs=3.58MHz signal from the variable frequency oscillator 2T is supplied to another frequency converter 26.
A signal of L=0.37 MHz is fed to this further frequency converter 26, from which the frequency is respectively f s
+f I, = 3.95 MHz, f s-3, f L =
Three signals of 2.47■h and fs-fI, = 3.21■h are obtained, and the signals of tsfL = 3.95MHz are supplied to the frequency converter 24 to generate the reproduced multiplexed signal. After frequency conversion, the carrier frequency becomes (f s + f L )-4
The modulated luminance signal Yc of mainly lower sideband of fL=fB-3fL=2.47MHz and the carrier frequency
s+fL)-fL=fS=3.58 MHz carrier color signal C8 and frequency (fs+fL)2fL
=f5-fL=3.21MH2 pilot signal PC
(Figure 3G).

そして、ローパスフィルタ28にて搬送周波数がfs−
3fL−2、47ME(zの被変調輝度信号Ycを取出
し、これを復調器29に供給して周波数変換器26より
のfs 3fL=2.47MHzの信号にて復調し、復
調された輝度信号を合成器30に供給し、またバンドパ
スフィルタ31にて搬送周波数がfs=3.58MHz
の搬送色信号CSを取出し、これを合成器30に供給し
、出力端32に再生カラー映像信号を得る。
Then, the carrier frequency is changed to fs- by the low-pass filter 28.
The modulated luminance signal Yc of 3fL-2, 47ME (z is taken out, supplied to the demodulator 29, demodulated by the fs3fL=2.47MHz signal from the frequency converter 26, and the demodulated luminance signal is It is supplied to the synthesizer 30, and the carrier frequency is fs=3.58MHz in the bandpass filter 31.
A carrier color signal CS is taken out and supplied to a synthesizer 30, and a reproduced color video signal is obtained at an output terminal 32.

こ)場合、バンドパスフィルタ33にて周波数がf 5
−fL=3.21MHzのパイロット信号pcを取出し
、これを検波回路34に供給し、これよりの電圧を自動
利得制御回路23に供給して再生された多重化信号のレ
ベルを一定に制御する。
In this case, the bandpass filter 33 has a frequency of f 5
A pilot signal pc of −fL=3.21 MHz is taken out and supplied to the detection circuit 34, and the voltage from this is supplied to the automatic gain control circuit 23 to control the level of the reproduced multiplexed signal to be constant.

さらに、フィルタ33よりのパイロット信号PCを位相
比較回路35に供給し、また周波数変換器26よりのf
s fL=3.21MHzの信号を位相比較回路35に
供給し、その比較誤差電圧を可変周波数発振器27に供
給してその発振周波数を制御する。
Furthermore, the pilot signal PC from the filter 33 is supplied to the phase comparison circuit 35, and the f
A signal of s fL=3.21 MHz is supplied to the phase comparison circuit 35, and the comparison error voltage is supplied to the variable frequency oscillator 27 to control its oscillation frequency.

次に第2図の再生回路の動作を数式を用いて説明する。Next, the operation of the reproducing circuit shown in FIG. 2 will be explained using mathematical formulas.

今、搬送波をAcos4ωLtとする。そして、変調輝
度信号の角周波数を簡単のため単−周波数として考え、
その角周波数をP(P=2πf)とすれば変調輝度信号
はcosPtと表わせ、被変調輝度信号はA(1−hn
cosP t ) cos4 ωLtとなる。
Now, assume that the carrier wave is Acos4ωLt. Then, consider the angular frequency of the modulated luminance signal as a single frequency for simplicity,
If its angular frequency is P (P=2πf), the modulated luminance signal is expressed as cosPt, and the modulated luminance signal is A(1-hn
cosP t ) cos4 ωLt.

尚)Aは搬送波の振巾、mは変調度である。Note) A is the amplitude of the carrier wave, and m is the modulation degree.

ここで、A(1+mcosPt ) CO34ωL t
■ =Acos4ωL t +−HmA CO3(4ωL+
P)十−HmAcos (4ωL−P ) t である。
Here, A(1+mcosPt) CO34ωL t
■ =Acos4ωL t +-HmA CO3(4ωL+
P) 10-HmA cos (4ωL-P) t.

このうち、被変調輝度信号の残留側波帯成分YDをYD
=Eycos(4ωL+P)tとする。
Among these, the residual sideband component YD of the modulated luminance signal is
=Eycos(4ωL+P)t.

この被変調輝度信号の成分YDが自動利得制御回路23
の出力に表われる。
The component YD of this modulated luminance signal is
appears in the output of

また、パイロット信号PDをEpcos2ωLjN固定
発振器25よりの信号をcosω8”1可変周波数発振
器27よりの信号をcos (ωLt+θ)とすれば、
周波数変換器26をり周波数変換器24に供給される信
号はcos ((ω8+ωL)t+θ)となるので、フ
ィルタ28より得られる被変調輝度信号Ycは、 Eycos(4ωL+P ) t +cos ((ωS
+ωL)t+θ)→EY−cos((ωs−3ωL−P
)t+θ)となり、そして、周波数変換器26より復調
器29に供給される信号はcos((ωs−3ωL)t
−8θ)となるので、復調器29より得られる復調され
た輝度信号は、 Ey cosl (ωs−:3ωI、−p ) t+θ
)・cos((ωs−3ωb) を−3θ)→Ey c
os (P t−4θ)となる。
Further, if the pilot signal PD is Epcos2ωLjN, the signal from the fixed oscillator 25 is cosω8''1, and the signal from the variable frequency oscillator 27 is cos (ωLt+θ),
Since the signal supplied from the frequency converter 26 to the frequency converter 24 is cos ((ω8+ωL)t+θ), the modulated luminance signal Yc obtained from the filter 28 is Eycos(4ωL+P) t +cos ((ωS
+ωL)t+θ)→EY-cos((ωs-3ωL-P
)t+θ), and the signal supplied from the frequency converter 26 to the demodulator 29 is cos((ωs-3ωL)t
-8θ), the demodulated luminance signal obtained from the demodulator 29 is Ey cosl (ωs-:3ωI, -p) t+θ
)・cos((ωs−3ωb) −3θ)→Ey c
os (Pt-4θ).

一方、周波数変換器26より周波数変換器24に供給さ
れる信号はcos ((ωS+ωL)t+θ)となるの
で、フィルタ33より得られるパイロット信号PCはE
Pcos((ωs−ωL)を十〇)となり、位相比較回
路35においては信号cos ((ωs−ωL ) t
−θ)とこのパイロット信号Epcos(ωS−ωL)
t+θ)とが位相比較されて、その位相差2θが2nπ
(n−0,1,2・・・)となるように即ちθ−nπと
なるように可変周波数発振器27が制御される。
On the other hand, since the signal supplied from the frequency converter 26 to the frequency converter 24 is cos ((ωS+ωL)t+θ), the pilot signal PC obtained from the filter 33 is E
P cos ((ωs-ωL) is 10), and in the phase comparator circuit 35, the signal cos ((ωs-ωL) t
-θ) and this pilot signal Epcos(ωS-ωL)
t+θ), and the phase difference 2θ is 2nπ
The variable frequency oscillator 27 is controlled so that (n-0, 1, 2...), that is, θ-nπ.

従って、復調された輝度信号は、EYcosPtとされ
、これはもとの変調輝度信号cosPtに対応し、従っ
て、常に所定の極性の復調輝度信号が得られる。
Therefore, the demodulated luminance signal is EYcosPt, which corresponds to the original modulated luminance signal cosPt, so that a demodulated luminance signal of a predetermined polarity is always obtained.

尚、第2図に於いて、低域変換された搬送周波数fL1
パイロット信号の周波数2fL1被変調輝度信号の搬送
波周波数4flが、テープ駆動系においてジッター変動
を含む場合には、再生回路の自動利得制御回路23の出
力に於いて夫々Δf L 、Δ2fL、Δ4fLの位相
変動成分を含むことになるが、これら位相変動成分は、
固定発振器25、位相比較回路35、可変周波数発振器
27を含む自動位相調整系により吸収されることはいう
までもない。
In addition, in FIG. 2, the carrier frequency fL1 after low frequency conversion
When the pilot signal frequency 2fL1 and the carrier frequency 4fl of the modulated luminance signal include jitter fluctuations in the tape drive system, phase fluctuations of ΔfL, Δ2fL, and Δ4fL occur at the output of the automatic gain control circuit 23 of the reproduction circuit, respectively. These phase fluctuation components are
Needless to say, it is absorbed by the automatic phase adjustment system including the fixed oscillator 25, the phase comparison circuit 35, and the variable frequency oscillator 27.

上述の本発明方法によれば、低域変換された搬送色信号
と、搬送周波数がこの低域変換された搬送色信号のそれ
の4倍で主として上側帯波の被平衡変調輝度信号と、低
域変換された搬送色信号の搬送周波数の2倍の周波数の
パイロット信号との合成信号が記録媒体上に記録された
カラー映像信号を再生するに、再生された合成信号中に
含まれたパイロット信号の振巾を検出して、合成信号の
再生信号の振巾を制御するとともに、このパイロット信
号の位相と基準信号発生器の基準位相とを比較し、この
位相比較信号に基づき周波数制御された信号にて被平衡
変調輝度信号を復調するようにしたものであるから、安
定した所期の再生カラー映像信号を得ることができる。
According to the method of the present invention described above, a low-band-converted carrier chrominance signal, a balanced modulated luminance signal whose carrier frequency is four times that of this low-band-converted carrier chrominance signal and whose carrier frequency is mainly upper sideband, When a composite signal of the range-converted carrier color signal and a pilot signal with a frequency twice the carrier frequency reproduces a color video signal recorded on a recording medium, the pilot signal included in the reproduced composite signal is The amplitude of the reproduced signal of the composite signal is detected and the amplitude of the reproduced signal of the composite signal is controlled, and the phase of this pilot signal is compared with the reference phase of the reference signal generator, and the frequency of the signal is controlled based on this phase comparison signal. Since the balanced modulated luminance signal is demodulated at , a stable and desired reproduced color video signal can be obtained.

尚、低域変換された搬送色信号と、搬送周波数がこの低
域変換された搬送色信号のそれの4倍で主として上側帯
波の被平衡変調輝度信号と、低域変換された搬送色信号
の搬送周波数の2倍の周波数のパイロット信号との合成
信号が記録媒体上に記録されることにより、S/Nがよ
くなり、ヘッドの空隙と記録媒体との間隙による損失、
いわゆるスペーシングロスを小さくできる。
It should be noted that a carrier color signal that has been low-band converted, a balanced modulated luminance signal that has a carrier frequency four times that of the carrier color signal that has been low-band converted and is mainly an upper band, and a carrier color signal that has been low band converted. By recording on the recording medium a composite signal with a pilot signal having a frequency twice the carrier frequency of
So-called spacing loss can be reduced.

即ち、磁気テープなどの記録・再生特性は比較的低い例
えばI MHz前後の周波数のところでピークを呈する
が、被変調輝度信号の搬送周波数を低域変換された搬送
色信号のそれの4倍にして例えば1.48 MHzとい
う低い周波数にするものであるから、このピークの前後
にその搬送周波数がくるようになり、従って輝度信号の
S/Nがよくなる。
That is, the recording/reproducing characteristics of magnetic tape etc. exhibit a peak at a relatively low frequency, for example, around I MHz, but if the carrier frequency of the modulated luminance signal is set to four times that of the carrier color signal that has been low frequency converted, For example, since the frequency is set to be as low as 1.48 MHz, the carrier frequency comes before and after this peak, and therefore the S/N ratio of the luminance signal is improved.

また、スペーシングロスは、信号の周波数が高くなるほ
ど大きくなるので、このように輝度信号の搬送周波数を
低くすることによってそのスペーシングロスを小さくで
きるち 上述の例は輝度信号を振幅変調した場合であるが、例え
ば位相変調してもよい。
Also, the spacing loss increases as the signal frequency increases, so by lowering the carrier frequency of the luminance signal, the spacing loss can be reduced. However, for example, phase modulation may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一例の記録系の系統図、第2図は
その再生系の系統図、第3図はその説明のためのスペク
トル図である。 1はカラー映像信号の入力端、2,7及び11はローパ
スフィルタ、3は振幅変調器、9はバンドパスフィルタ
、10は周波数変換器である。
FIG. 1 is a system diagram of a recording system according to an example of the method of the present invention, FIG. 2 is a system diagram of its reproducing system, and FIG. 3 is a spectrum diagram for explaining the same. 1 is an input end for a color video signal; 2, 7, and 11 are low-pass filters; 3 is an amplitude modulator; 9 is a band-pass filter; and 10 is a frequency converter.

Claims (1)

【特許請求の範囲】 1 低域変換された搬送色信号cLと、搬送周波数がこ
の低域変換された搬送色信号のそれの4倍で主として上
側帯波の被平衡変調輝度信号YDと、上記低域変換され
た搬送色信号cLの搬送周波数の2倍の周波数のパイロ
ット信号PDとの合成信号が記録媒体上に記録されたカ
ラー映像信号を再生するに、少なくとも自動利得制御回
路と、上記自動利得制御回路に接続され上記低域変換さ
れた搬送色信号cLと上記パイロット信号PDを高域周
波数に変換する第1の周波数変換回路と、上記自動利得
制御回路に接続され上記被平衡変調輝度信号YDの搬送
波を高域周波数に変換する第2の周波数変換回路と、上
記第2の周波数変換回路に接続され上記第2の周波数変
換回路で周波数変換された被平衡変調輝度信号Ycを復
調する復調回路と、上記第1の周波数変換回路に接続さ
れ上記第1の周波数変換回路で高域変換されたパイロッ
ト信号Pcの振巾を検出する振巾検出回路と、上記第1
の周波数変換回路に接続され上記パイロット信号PCの
位相と基準信号発生器の基準位相を比較する位相比較回
路と、上記第1.第2の周波数変換回路と被平衡変調輝
度信号Y。 の復調回路に所定の周波数及び位相を有する信号を供給
する変換・復調用信号発生回路とを有し、上記振巾検出
回路の出力により上記合成信号の再生信号の振巾を上記
自動利得制御回路にて制御するとともに、上記位相比較
回路の位相比較信号に基づき上記変換・復調用信号発生
回路の出力信号の周波数及び位相を制御し、この周波数
及び位相の制御された発振信号を上記第1.第2の周波
数変換回路と輝度信号復調回路に供給して上記搬送色信
号cLの周波数変換及び上記被平衡変調輝度信号YCの
復調をするようにしたカラー映像信号の再生方法。
[Scope of Claims] 1. A low-band-converted carrier chrominance signal cL, a balanced modulated luminance signal YD whose carrier frequency is four times that of this low-band-converted carrier chrominance signal and whose carrier frequency is mainly an upper sideband; In order to reproduce a color video signal recorded on a recording medium by a composite signal of the low-pass converted carrier color signal cL and a pilot signal PD having a frequency twice the carrier frequency, at least an automatic gain control circuit and the above-mentioned automatic gain control circuit are required. a first frequency conversion circuit connected to the gain control circuit and converting the low frequency converted carrier color signal cL and the pilot signal PD to high frequency; a first frequency conversion circuit connected to the automatic gain control circuit and converting the balanced modulated luminance signal; a second frequency conversion circuit that converts the YD carrier wave to a high frequency; and a demodulation circuit that is connected to the second frequency conversion circuit and demodulates the balanced modulated luminance signal Yc frequency-converted by the second frequency conversion circuit. an amplitude detection circuit that is connected to the first frequency conversion circuit and detects the amplitude of the pilot signal Pc that has been high-frequency converted by the first frequency conversion circuit;
a phase comparison circuit that is connected to the frequency conversion circuit of the first frequency converter and compares the phase of the pilot signal PC with the reference phase of the reference signal generator; a second frequency conversion circuit and a balanced modulated luminance signal Y; a conversion/demodulation signal generation circuit that supplies a signal having a predetermined frequency and phase to the demodulation circuit of the automatic gain control circuit, and the amplitude of the reproduced signal of the composite signal is determined by the output of the amplitude detection circuit. At the same time, the frequency and phase of the output signal of the conversion/demodulation signal generation circuit are controlled based on the phase comparison signal of the phase comparison circuit, and the oscillation signal whose frequency and phase have been controlled is transmitted to the first oscillation signal. A method for reproducing a color video signal, which is supplied to a second frequency conversion circuit and a luminance signal demodulation circuit to convert the frequency of the carrier color signal cL and demodulate the balanced modulated luminance signal YC.
JP50038318A 1975-03-28 1975-03-28 Color video signal playback method Expired JPS5820509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50038318A JPS5820509B2 (en) 1975-03-28 1975-03-28 Color video signal playback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50038318A JPS5820509B2 (en) 1975-03-28 1975-03-28 Color video signal playback method

Publications (2)

Publication Number Publication Date
JPS51113410A JPS51113410A (en) 1976-10-06
JPS5820509B2 true JPS5820509B2 (en) 1983-04-23

Family

ID=12521925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50038318A Expired JPS5820509B2 (en) 1975-03-28 1975-03-28 Color video signal playback method

Country Status (1)

Country Link
JP (1) JPS5820509B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499139A (en) * 1972-05-12 1974-01-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499139A (en) * 1972-05-12 1974-01-26

Also Published As

Publication number Publication date
JPS51113410A (en) 1976-10-06

Similar Documents

Publication Publication Date Title
JPS5923154B2 (en) Color video signal reproducing device
JPS5820509B2 (en) Color video signal playback method
US5621537A (en) Color signal processing circuit in color VTR
JPS5831076B2 (en) Time axis fluctuation removal device for reproduced carrier color signal
JP2638791B2 (en) Demodulator
US4520402A (en) Video apparatus with burst locked heterodyne chroma converter and residual time base error correction
JPS60149291A (en) Recording and reproducing device of color video signal
JPS5820508B2 (en) Color video signal playback method
JPS5832835B2 (en) Carrier signal forming circuit with line offset
JPS5812793B2 (en) Eizoushingouno Kirokusaiseiki
JP2715542B2 (en) Color signal processing device
JPS6328393B2 (en)
JPH0691666B2 (en) Video signal recording / reproducing device
JPS61265995A (en) Video signal reproducing device
JPS5943695A (en) Picture recorder and reproducer
JPS6038916B2 (en) Color video signal recording and playback method
JPS634393B2 (en)
JPS5816310Y2 (en) magnetic recording and reproducing device
JPS5819194B2 (en) Recording/playback device
JPS61102896A (en) Color signal processoring circuit
JPS5940354B2 (en) Chromaticity signal recording and playback method
JPS612489A (en) Signal recording and reproducing circuit
JPS63141492A (en) Video signal reproducing device
JPS585555B2 (en) Color video signal recording method
JPS6010477B2 (en) Video signal recording method