JPS5820508B2 - Color video signal playback method - Google Patents

Color video signal playback method

Info

Publication number
JPS5820508B2
JPS5820508B2 JP50035784A JP3578475A JPS5820508B2 JP S5820508 B2 JPS5820508 B2 JP S5820508B2 JP 50035784 A JP50035784 A JP 50035784A JP 3578475 A JP3578475 A JP 3578475A JP S5820508 B2 JPS5820508 B2 JP S5820508B2
Authority
JP
Japan
Prior art keywords
signal
frequency
circuit
carrier
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50035784A
Other languages
Japanese (ja)
Other versions
JPS51110919A (en
Inventor
蒲原正宏
森尾稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP50035784A priority Critical patent/JPS5820508B2/en
Publication of JPS51110919A publication Critical patent/JPS51110919A/en
Publication of JPS5820508B2 publication Critical patent/JPS5820508B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、低域変換された搬送色信号と、搬送周波数が
この低域変換された搬送色信号のそれの3倍で主として
上側帯波の被平衡変調輝度信号と、低域変換された搬送
色信号の搬送周波数の2倍の周波数のパイロット信号と
の合成信号が記録媒体上に記録されたカラー映像信号を
再生する方法に関し、特に安定した所期の再生カラー映
像信号が確実に得られるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a low-converted carrier chrominance signal and a balanced modulated luminance signal whose carrier frequency is three times that of the low-converted carrier chrominance signal and which is primarily upper sideband. , relates to a method for reproducing a color video signal recorded on a recording medium by a composite signal of a low-pass converted carrier color signal and a pilot signal having a frequency twice the carrier frequency, and in particular, a method for reproducing a color video signal recorded on a recording medium in a stable manner. This ensures that the signal can be obtained reliably.

以下、本発明によるカラー映像信号の再生方法を、図に
ついて説明しよう。
Hereinafter, a method for reproducing a color video signal according to the present invention will be explained with reference to the drawings.

第1図はその一例で、入力端1よりのカラー映像信号を
ローパスフィルタ2Aに供給して、搬送色信号のもとの
搬送周波数をts、後述のように低域変換したときの搬
送周波数をfLとすれば、fs(Lまでの成分の、例え
ばこのカラー映像信号がNTSC信号であってf S
−3,58MHzであり、またその水平周波数をfHと
するときfL1 −TfH−0,4MH2にする場合には、3.18MH
2までの成分の輝度信号YA(第3図A)を取出し、こ
れを変調器3に供給し、一方、発振器4よりのf s=
3.58MHzの信号と、可変周波数発振器5よりの
f L = 0.4 MHzの信号を周波数変換器6A
に供給して、これより周波数がそれぞれfs−fL−3
,18MHz、 f s + f L = 3.98
MHz及びfs+ 2 f L = 4.38 MHz
の3つの信号を得、そのf s−f L=3.18MH
zの信号を変調器3に供給して輝度信号YAにて振幅変
調例えば平衡変調してこれより被変調輝度信号YB(第
3図B)を得る。
FIG. 1 is an example of this, in which the color video signal from the input terminal 1 is supplied to the low-pass filter 2A, and the original carrier frequency of the carrier color signal is ts, and the carrier frequency after low-pass conversion as described later is If fL is the component up to fs(L, for example, this color video signal is an NTSC signal and fS
-3,58MHz, and when its horizontal frequency is fH, fL1 -TfH-0,4MH2, 3.18MHz
The luminance signal YA (FIG. 3A) of up to 2 components is extracted and supplied to the modulator 3, while f s=
The 3.58 MHz signal and the f L = 0.4 MHz signal from the variable frequency oscillator 5 are transferred to the frequency converter 6A.
From this, the frequency becomes fs-fL-3, respectively.
, 18MHz, fs + fL = 3.98
MHz and fs+2 f L = 4.38 MHz
Obtain three signals of f s−f L=3.18MH
The signal z is supplied to the modulator 3 and subjected to amplitude modulation, for example balanced modulation, using the luminance signal YA, thereby obtaining a modulated luminance signal YB (FIG. 3B).

この平衡変調は、例えば第7図A及びBに示すように、
輝度信号YAの直線aで示す白レベルと水平同期信号s
Hの尖頭値レベルの中間のレベルでは振幅が零になり、
白レベル及び水平同期信号sHの尖頭値レベルで振幅が
最大になるようにする。
This balanced modulation, for example, as shown in FIGS. 7A and B,
The white level shown by the straight line a of the luminance signal YA and the horizontal synchronization signal s
At a level intermediate between the peak value level of H, the amplitude becomes zero,
The amplitude is maximized at the white level and the peak level of the horizontal synchronizing signal sH.

そして、この被変調輝度信号YBをfs−f L =
3.18MHzで6dB下がる特性のローパスフィルタ
7Aに供給して、その主として下側帯波成分Yc(第3
図C)を取出し、これを周波数変換器8Yに供給して周
波数変換器6Aよりのfs十2 f L = 4.38
MHzの信号にて周波数変換して、搬送周波数が(f
s+2fr、)−(fs−fL)= 3 f L =
1.2 MHzの主として上側帯波の被変調輝度信号Y
D(第3図D)を得、これをローパスフィルタ9Yを通
じて合成器10に供給する。
Then, this modulated luminance signal YB is expressed as fs−f L =
It is supplied to a low-pass filter 7A having a characteristic of lowering the frequency by 6 dB at 3.18 MHz.
Figure C) is taken out and supplied to the frequency converter 8Y, and fs12 f L = 4.38 from the frequency converter 6A.
Frequency conversion is performed using a MHz signal, and the carrier frequency becomes (f
s+2fr, )-(fs-fL)=3 fL=
1.2 MHz mainly upper sideband modulated luminance signal Y
D (FIG. 3D) is obtained and supplied to the synthesizer 10 through the low-pass filter 9Y.

入力カラー映像信号は、また、バンドパスフィルタ11
に供給して搬送周波数がf s= 3.58 MHzの
搬送色信号C8を取出し、これを合成器12に供給し、
さらに、周波数変換器6Aよりのfs−f L = 3
.18 MHzの信号を振幅変調器13に供給し、一方
、入力カラー映像信号を水平同期信号分離回路14に供
給して水平同期信号sHを取出し、これを振幅変調器1
3に供給してt4.−fL−3、18,MHzの信号を
水平同期信号sHで振幅変調して被変調パイロット信号
PCを得、これを合成器12に供給する。
The input color video signal is also passed through a bandpass filter 11.
and extracts a carrier color signal C8 having a carrier frequency fs=3.58 MHz, and supplies it to the combiner 12,
Furthermore, fs-f L = 3 from the frequency converter 6A
.. A 18 MHz signal is supplied to the amplitude modulator 13, while an input color video signal is supplied to the horizontal synchronization signal separation circuit 14 to extract the horizontal synchronization signal sH, which is sent to the amplitude modulator 1.
3 and t4. -fL-3, 18, MHz signal is amplitude-modulated with the horizontal synchronization signal sH to obtain a modulated pilot signal PC, which is supplied to the combiner 12.

そして、合成器12において、搬送色信号C8と、被変
調パイロット信号Poを周波数多重し、その多重化信号
cs+pc(第3図E)を周波数変換器8Cに供給して
周波数変換器6Aよりのfs+fL=3.98MHzの
信号にて周波数変換して搬送周波数が(fS+fL)−
f s= f L = 0.4MHzの搬送色信号CL
と、搬送周波数が(fs十fL)−(fs−fL)−2
fL−0,8M Hzの被変調パイロット信号PDを得
(第3図F)、これをローパスフィルタ9Cを通じて合
成器10に供給する。
Then, in the synthesizer 12, the carrier color signal C8 and the modulated pilot signal Po are frequency-multiplexed, and the multiplexed signal cs+pc (Fig. 3E) is supplied to the frequency converter 8C, and the frequency converter 6A outputs fs+fL. =3.98MHz signal, carrier frequency is (fS+fL)-
f s = f L = 0.4 MHz carrier color signal CL
and the carrier frequency is (fs + fL) - (fs - fL) -2
A modulated pilot signal PD of fL-0.8 MHz is obtained (FIG. 3F) and is supplied to the synthesizer 10 through the low-pass filter 9C.

そして、合成器10より信号YD、cL及びPDの多声
化信号(第3図G)を取出し、これを記録アンプ15を
通じて磁気ヘッド16に供給して例えば磁気テープ上に
記録する。
Then, polyphonic signals (FIG. 3G) of the signals YD, cL, and PD are taken out from the synthesizer 10, and supplied to the magnetic head 16 through the recording amplifier 15 to be recorded on, for example, a magnetic tape.

この場合、バンドパスフィルタ11よりの搬送色信号C
8をパーストゲート回路17に供給してバースト信号を
取出し、これにて発振器4を同期1駆動し、さらに、回
路14よりの水平同期信号sHを位相比較回路18に供
給し、また可変周波1 数発振器5よりのfL−T2fH=0.4MHzの信号
を分周器19に供給して百]に分周して水平周波数fH
の信号とし、これを位相比較回路18に供給し、その比
較誤差電圧を可変周波数発振器5に供給してその発振周
波数を制御する。
In this case, the carrier color signal C from the bandpass filter 11
8 is supplied to the burst gate circuit 17 to take out a burst signal, which drives the oscillator 4 in synchronization 1.Furthermore, the horizontal synchronization signal sH from the circuit 14 is supplied to the phase comparator circuit 18, and the variable frequency 1 A signal of fL-T2fH=0.4MHz from the oscillator 5 is supplied to the frequency divider 19 and divided into 100] to obtain the horizontal frequency fH.
This signal is supplied to the phase comparison circuit 18, and the comparison error voltage is supplied to the variable frequency oscillator 5 to control its oscillation frequency.

再生にあたっては、第2図に示すように、磁気ヘッド2
1にて再生された、上述の、搬送周波数が3 f L
= 1.2 MHzの主として上側帯波の被変調輝度信
号YDと、搬送周波数がf I、 = 0.4 MHz
の搬送色信号CLと、搬送周波数が2 f L=0.8
MHzの被変調パイロット信号PDとの多重化信号(
第3図G)を再生アンプ22を通じ、自動利得制御回路
23を通じて周波数変換器24Yに供給し、一方、固定
発振器25よりのf s= 3.58 MHzの信号を
別の周波数変換器26Aに供給し、また可変周波数発振
器27よりのf L = 0.4 MHzの信号をスイ
ッチ回路28を通じてこの別の周波数変換器26Aに供
給して、これより、周波数がそれぞれ、f s+f L
=3.98MHz、 f S+2 f L−4、38
MHz及びf B−f L=3.18MHzの3つの信
号を得、そのf 3+2 f L=4.38MHzの信
号を周波数変換器24Yに供給して再生された多重化信
号を周波数変換して、搬送周波数が(f3+2fL)−
3fL=fs−fL=3.18MHzの主として下側帯
波の被変調輝度信号Y。
During reproduction, as shown in Fig. 2, the magnetic head 2
1, the above-mentioned carrier frequency is 3 f L
= 1.2 MHz mainly upper sideband modulated luminance signal YD and carrier frequency f I, = 0.4 MHz
The carrier color signal CL and the carrier frequency are 2 f L = 0.8
Multiplexed signal with MHz modulated pilot signal PD (
G) in FIG. 3 is supplied to a frequency converter 24Y through a regenerative amplifier 22 and an automatic gain control circuit 23, while a signal of f s = 3.58 MHz from a fixed oscillator 25 is supplied to another frequency converter 26A. In addition, a signal of f L = 0.4 MHz from the variable frequency oscillator 27 is supplied to this other frequency converter 26A through the switch circuit 28, so that the frequencies are respectively f s + f L
=3.98MHz, f S+2 f L-4, 38
MHz and fB−fL=3.18MHz are obtained, and the f3+2fL=4.38MHz signal is supplied to the frequency converter 24Y to frequency convert the reproduced multiplexed signal. Carrier frequency is (f3+2fL)-
3fL=fs-fL=3.18 MHz mainly lower sideband modulated luminance signal Y.

を得(第3図H)、これをローパスフィルタ29Aを通
じて取出して復調器30に供給して周波数変換器26A
よりのf s−f L = 3.18 MHzの信号に
て復調し、復調された輝度信号を合成器31に供給する
(H in FIG. 3), which is taken out through a low-pass filter 29A and supplied to a demodulator 30 to be output to a frequency converter 26A.
The demodulated luminance signal is demodulated using a signal of fs−f L = 3.18 MHz, and the demodulated luminance signal is supplied to the synthesizer 31.

再生された多重化信号はさらに別の周波数変換器24C
に供給し、周波数変換器26Aよりのfs+ f L
= 3.98 MHzの信号をこの周波数変換器24C
に供給して再生された多重化信号を周波数変換して、搬
送周波数が(f S+f L )−f L=f s=
3.58MHzの搬送色信号Csと、搬送周波数が(f
s+f L ) −2f L=f s−f L=3.
18MI(zの被変調パイロット信号PQを得(第3図
■)、バンドパスフィルタ32にて搬送周波数がf3−
3、58 MHzの搬送色信号Csを取出し、これを合
成器31に供給し、出力端33に再生カラー映像信号を
得る。
The regenerated multiplexed signal is sent to another frequency converter 24C.
fs+f L from the frequency converter 26A
= 3.98 MHz signal to this frequency converter 24C
The frequency of the multiplexed signal supplied to and reproduced is converted so that the carrier frequency becomes (f S + f L ) - f L = f S
A carrier color signal Cs of 3.58 MHz and a carrier frequency (f
s+f L ) -2f L=f s-f L=3.
18 MI (z modulated pilot signal PQ is obtained (Fig. 3 ■), and the band pass filter 32 changes the carrier frequency to f3-
A carrier color signal Cs of 3.58 MHz is taken out and supplied to a synthesizer 31 to obtain a reproduced color video signal at an output terminal 33.

この場合、バンドパスフィルタ34にて周波数がf s
−f L=3.18MHzのパイロット信号P。
In this case, the bandpass filter 34 changes the frequency to f s
-f L=3.18 MHz pilot signal P.

を取出し、これを検波回路35に供給し、これよりの電
圧を自動利得制御回路23に供給して再生された多重化
信号のレベルを一定に制御する。
The output voltage is taken out and supplied to the detection circuit 35, and the voltage from this is supplied to the automatic gain control circuit 23 to control the level of the reproduced multiplexed signal to be constant.

一方、フィルタ34よりのパイロット信号P。On the other hand, the pilot signal P from the filter 34.

を位相比較回路36に供給し、また周波数変換器26A
よりのfs−fL=3.18MHzの信号を位相比較回
路36に供給し、その比較誤差電圧を可変周波数発振器
27に供給してその発振周波数を制御し、さらに、復調
器30よりの輝度信号をゲート回路37に供給し、また
フィルタ34よりの第4図Cに示すように振幅変調され
たパイロット信号Pを検波回路38に供給して水平同期
信号位置を検出し、その検出出力をゲート回路37に供
給して復調された輝度信号の水平同期信号sHを取出し
、これを極性判別回路39に供給して水平同期信号sH
の極性が正規の極性に対して反転するとき回路39の出
力によりスイッチ回路28を切換えて、可変周波数発振
器27よりのf L = 0.4 MHzの信号を位相
反転回路40を通じて周波数変換器26Aに供給する。
is supplied to the phase comparison circuit 36, and the frequency converter 26A
A signal of fs-fL=3.18 MHz is supplied to the phase comparison circuit 36, the comparison error voltage is supplied to the variable frequency oscillator 27 to control its oscillation frequency, and the luminance signal from the demodulator 30 is supplied to the phase comparison circuit 36. The signal is supplied to the gate circuit 37, and the amplitude-modulated pilot signal P from the filter 34 is supplied to the detection circuit 38 as shown in FIG. The horizontal synchronizing signal sH of the demodulated luminance signal is extracted and supplied to the polarity discrimination circuit 39 to generate the horizontal synchronizing signal sH.
When the polarity of is inverted with respect to the normal polarity, the switch circuit 28 is switched by the output of the circuit 39, and the f L = 0.4 MHz signal from the variable frequency oscillator 27 is sent to the frequency converter 26A through the phase inversion circuit 40. supply

次に第2図の再生回路の動作を数式を用いて説明する。Next, the operation of the reproducing circuit shown in FIG. 2 will be explained using mathematical formulas.

今、搬送波をACO53ωLtとする。そして、変調輝
度信号の角周波数を簡単のため単一周波数として考え、
その角周波数をP(P=2πf)とすれは変調輝度信号
はcosp tと表わせ、被変調輝度信号はA (1+
mC03P t )CO33(IJ L tとなる。
Now, assume that the carrier wave is ACO53ωLt. Then, consider the angular frequency of the modulated luminance signal as a single frequency for simplicity,
If its angular frequency is P (P=2πf), the modulated luminance signal is expressed as cosp t, and the modulated luminance signal is A (1+
mC03P t )CO33(IJ L t).

尚、Aは搬送波の振巾、mは変調度である。Note that A is the amplitude of the carrier wave, and m is the modulation degree.

ここで、 A (1+mC03P t )CO33ωL を−AC
O33ωL t+LmAcO3(3(Z)L+P )
t2 ±7mACO8(3ωL−P)t である。
Here, A (1+mC03P t )CO33ωL is −AC
O33ωL t+LmAcO3(3(Z)L+P)
t2 ±7mACO8(3ωL-P)t.

このうち、被変調輝度信号の残留側波帯成分YDをYD
−EYCO8(3ωL十P)tとする。
Among these, the residual sideband component YD of the modulated luminance signal is
−EYCO8(3ωL×P)t.

この被変調輝度信号の成分YDが自動利得制御回路23
の出力に表われる。
The component YD of this modulated luminance signal is
appears in the output of

又、パイロット信号PDをEPCO52ωLt、固定発
振器25よりの信号をCOSωSt、可変周波数発振器
27よりの信号をCO3(ωLt十〇)とすれば、周波
数変換器26Aより周波数変換器24Yに供給される信
号はcos((ωS+2ωL)t+20)となるので、
フィルタ29Aより得られる被変調輝度信号Y。
Further, if the pilot signal PD is EPCO52ωLt, the signal from the fixed oscillator 25 is COSωSt, and the signal from the variable frequency oscillator 27 is CO3(ωLt10), the signal supplied from the frequency converter 26A to the frequency converter 24Y is cos((ωS+2ωL)t+20), so
Modulated luminance signal Y obtained from filter 29A.

は、E Ycos (3ωL十P ) t −CO3(
(ωS+2ωL)t+2θ) →E Ycos ((ωS−ωL−P)t+2θ)とな
り、そして、周波数変換器26Aより復調器30に供給
される信号はcos((ωS−ωL)t−θ)きなるの
で、復調器30より得られる復調された輝度信号は、 EYCO3((ωS−ωL−P)t+2θ)・C08(
(ωS−ωL)を−θ) →B Ycos(P t −3θ) となる。
is E Ycos (3ωL0P) t -CO3(
(ωS+2ωL)t+2θ) →E Ycos ((ωS-ωL-P)t+2θ), and the signal supplied from the frequency converter 26A to the demodulator 30 becomes cos((ωS-ωL)t-θ). , the demodulated luminance signal obtained from the demodulator 30 is expressed as EYCO3((ωS-ωL-P)t+2θ)・C08(
(ωS-ωL) becomes -θ) →B Ycos(P t -3θ).

一方、周波数変換器26Aより周波数変換器24Cに供
給される信号はcos((ωS+ωL)を十θ)となる
ので、フィルタ34より得られるパイロット信号Pcは
E pC,O3((ωS (IJ L ) t +θ
)となり、位相比較回路36においては信号cos((
ωS−ωL)を−θ)とこのパイロット信号EPCO3
((ωS−ωL)t+θ)とが位相比較されて、その位
相差2θが2nπ(n−0,1,2、・・・・・・)と
なるように即ちθ−nπとなるように可変周波数発振器
27が制御される。
On the other hand, since the signal supplied from the frequency converter 26A to the frequency converter 24C is cos ((ωS+ωL) is 10θ), the pilot signal Pc obtained from the filter 34 is E pC,O3((ωS (IJ L ) t+θ
), and in the phase comparison circuit 36, the signal cos((
ωS−ωL) and −θ) and this pilot signal EPCO3
((ωS-ωL)t+θ) is compared in phase, and the phase difference 2θ is variable so that it becomes 2nπ (n-0, 1, 2, ...), that is, θ-nπ. A frequency oscillator 27 is controlled.

従って、復調された輝度信号は、θ−0,2π、・・・
・・・のときはE YCO3p tとなり、θ=π、3
π・・・のときは−E YCO8P 1となる。
Therefore, the demodulated luminance signal is θ-0, 2π,...
When..., E YCO3p t, θ=π, 3
When π..., it becomes -E YCO8P 1.

しかしながらθ−π、3π、・・・となって復調された
輝度信号が−Ey CO8p tとなるときは、極性判
別回路39の出力によりスイッチ回路28が切換えられ
て可変周波数発振器27よりの信号が位相反転回路40
により位相反転されて周波数変換器26Aに供給されて
ただちにθ−0,2π、・・・とされ、よって復調され
た輝度信号はただちにE YCO3P tとされ、これ
はもとの変調輝度信号osp tに対応し、従って、常
に所・定の極性の復調輝度信号が得られる。
However, when the demodulated luminance signal becomes -Ey CO8p t due to θ-π, 3π, . Phase inversion circuit 40
The phase of the demodulated luminance signal is immediately inverted and supplied to the frequency converter 26A as θ-0, 2π, . . . , and the demodulated luminance signal is immediately converted into E Therefore, a demodulated luminance signal of a predetermined polarity is always obtained.

尚、第2図に於いて、低域変換された搬送周波数fL、
パイロット信号の周波数2fl、被変調輝度信号の搬送
波周波数3flが、テープ駆動系においてジッター変動
を含む場合には、再生回路の自動利得制御回路23の出
力に於いて夫々△fl、△2fL、△3flの位相変動
成分を含むことになるが、これら位相変動成分は、固定
発振器25、位相比較回路36、可変周波数発振器27
を含む自動位相調整系により吸収されることはいうまで
もない。
In addition, in FIG. 2, the carrier frequency fL after low-frequency conversion,
If the pilot signal frequency 2fl and the carrier wave frequency 3fl of the modulated luminance signal include jitter fluctuations in the tape drive system, the output of the automatic gain control circuit 23 of the reproduction circuit will have △fl, △2fL, and △3fl, respectively. These phase fluctuation components include the fixed oscillator 25, the phase comparator circuit 36, and the variable frequency oscillator 27.
Needless to say, it is absorbed by the automatic phase adjustment system including the following.

第4図の例は、被変調輝度信号と、搬送色信号と、パイ
ロット信号を一緒に、周波数変換する場合の例で、入力
端1よりのカラー映像信号をローパスフィルタ2Bに供
給してf 3−2 fj =2.78MHzまでの成分
の輝度信号YA(第6図A)を取出し、これを変調器3
に供給し、一方、発振器4よりのf s−= 3.58
MHzの信号と、可変周波数発振器5よりのf L=
0.4 MHzの信号を周波数変換器6Bに供給して
、これより、周波数がそれぞれ、fs−2f L= 2
.78MI(7,fs−f L=3.1.8MHz及び
f s+ f L = 3.98MHzの3つの信号を
得、そのf s−2f L = 2.78 MHzの信
号を変調器3に供給して輝度信号YAにて振幅変調例え
ば上述と同様に平衡変調してこれより被変調輝度信号Y
B(第6図B)を得る。
The example in FIG. 4 is an example in which a modulated luminance signal, a carrier color signal, and a pilot signal are frequency-converted together, and the color video signal from the input terminal 1 is supplied to the low-pass filter 2B. -2 fj = 2.78 MHz, the luminance signal YA (Fig. 6A) is taken out and sent to the modulator 3.
while f s−=3.58 from oscillator 4
MHz signal and f L= from variable frequency oscillator 5
A 0.4 MHz signal is supplied to the frequency converter 6B, and from this the frequency becomes fs-2f L=2.
.. 78 MI (7, obtain three signals of fs-f L = 3.1.8 MHz and f s + f L = 3.98 MHz, and supply the f s-2f L = 2.78 MHz signal to modulator 3. Then, the luminance signal YA is subjected to amplitude modulation, for example, balanced modulation as described above, and from this, the modulated luminance signal Y
B (Figure 6B) is obtained.

そしてこの被変調輝度信号YBをfs 2fL=2.7
8MHzで6dB下がる特性のローパスフィルタ7Bに
供給して、その主として下側帯波成分Yc(第6図C)
を取出し、これを合成器20に供給する。
And this modulated luminance signal YB is fs 2fL=2.7
It is supplied to a low-pass filter 7B with a characteristic of lowering the frequency by 6 dB at 8 MHz, and its main component is the lower sideband component Yc (Fig. 6C).
is taken out and supplied to the synthesizer 20.

入力カラー映像信号は、また、バンドパスフィルタ11
に供給して搬送周波数がf s= 3.58MHzの搬
送色信号C8を取出し、これを合成器20に供給する。
The input color video signal is also passed through a bandpass filter 11.
A carrier color signal C8 having a carrier frequency f s = 3.58 MHz is extracted from the carrier color signal C8, and is supplied to the synthesizer 20.

さらに、周波数変換器6Bよりのf s−f L =
3.1.8 MHzの信号を振幅変調器13に供給し
、一方、入力カラー映像信号を水平同期信号分離回路1
4に供給して水平同期信号S F(を取出し、これを振
幅変調器13に供給してfs−fL=3.18MHzの
信号を水平同期信号S Hで振幅変調して被変調パイロ
ット信号PCを得、これを合成器20に供給する。
Furthermore, f s−f L = from the frequency converter 6B
3.1.8 MHz signal is supplied to the amplitude modulator 13, while the input color video signal is supplied to the horizontal synchronization signal separation circuit 1.
4, extracts the horizontal synchronizing signal S F (and supplies it to the amplitude modulator 13 to amplitude modulate the fs-fL=3.18 MHz signal with the horizontal synchronizing signal S H to generate the modulated pilot signal PC. and supplies it to the synthesizer 20.

そして、合成器20において、被変調輝度信号Ycと、
搬送色信号C8と、被変調パイロット信号Pcを周波数
多重し、その多重化信号Yc+C8+PC(第6図D)
を周波数変換器8に供給して周波数変換器6Bよりのf
S+ f L= 3.98MHzの信号にて周波数変
換して、搬送周波数が(fs+f L )−(f s−
2fL)=3 fL=1.2MHzの主として上側帯波
の被変調輝度信号YDと、搬送周波数が(f s+
f L) f 5=fL−’1.4MHzの搬送色信
号CI、と、搬送周波数が(fs+fLニー (f s
−f L ) −2f L = 0.8 MHzの被変
調パイロット信号PDを得る(第6図E)。
Then, in the synthesizer 20, the modulated luminance signal Yc,
The carrier color signal C8 and the modulated pilot signal Pc are frequency-multiplexed to produce the multiplexed signal Yc+C8+PC (FIG. 6D)
is supplied to the frequency converter 8, and f from the frequency converter 6B is
The carrier frequency is (fs+fL)-(fs-
2fL)=3 fL=1.2MHz mainly upper sideband modulated luminance signal YD and carrier frequency (f s+
fL) f5=fL-'1.4MHz carrier color signal CI, and the carrier frequency is (fs+fLknee (fs
-f L ) -2f L = 0.8 MHz modulated pilot signal PD is obtained (FIG. 6E).

そして、ローパスフィルタ9にてこれら信号YD1CL
及びPDの多重化信号(第6図F)を取出し、これを記
録アンプ15を通じて磁気ヘッド16に供給して例えば
磁気テープ上に記録する。
These signals YD1CL are then filtered through the low-pass filter 9.
and PD multiplexed signal (FIG. 6F) is extracted and supplied to the magnetic head 16 through the recording amplifier 15 and recorded on, for example, a magnetic tape.

再生にあたっては、第5図に示すように、磁気ヘッド2
1にて再生された、上述の、搬送周波数が3 f L
= 1.2MHzの主として上側帯波の被変調輝度信号
YDと、搬送周波数がf L = 0.4 MHzの搬
送色信号CLと、搬送周波数が2 f L 、= o、
8 MHzの被変調パイロット信号PDとの多重化信
号(第6図F)を再生アンプ22を通じ、自動利得制御
回路23を通じて周波数変換器24に供給し、一方、固
定発振器25よりのf s= 3.58 MHzの信号
を別の周波数変換器26Bに供給し、また可変周波数発
振器27よりのfL = O−4MHzの信号スイッチ
回路28を通じてこの別の周波数変換器26Aに供給し
て、これより、周波数がそれぞれ、f s+f L=3
.98MHz、 f s−2f L =2.78MH
z及びf 3−f L = 3.18MHzの3つの信
号を得、そのf 3 +f L = 3.98 MHz
の信号を周波数変換器24に供給して再生された多重化
信号を周波数変換して、搬送周波数が(fs+fL)
−3fL−f B 2 f L = 2.78 MH
zの主として下側帯波の被変調輝度信号Ycと、搬送周
波数が(fs+fL ) −fL=f s=3.58M
Hzの搬送色信号Csと、搬送周波数が(f s+fL
)−2fI、−f s−f L= 3.18MI(zの
パイロット信号PCを得る(第6図G)。
During reproduction, as shown in FIG.
1, the above-mentioned carrier frequency is 3 f L
= a mainly upper sideband modulated luminance signal YD of 1.2 MHz, a carrier chrominance signal CL with a carrier frequency of f L = 0.4 MHz, and a carrier frequency of 2 f L , = o,
A multiplexed signal (FIG. 6F) with the modulated pilot signal PD of 8 MHz is supplied to the frequency converter 24 through the regenerative amplifier 22 and the automatic gain control circuit 23, while f s = 3 from the fixed oscillator 25. A signal of .58 MHz is supplied to another frequency converter 26B, and a signal of fL = O-4 MHz from the variable frequency oscillator 27 is supplied to this other frequency converter 26A through the switch circuit 28, from which the frequency are respectively f s+f L=3
.. 98MHz, fs-2fL = 2.78MH
We obtained three signals of z and f3-fL = 3.18 MHz, and that f3 + fL = 3.98 MHz.
The signal is supplied to the frequency converter 24, and the reproduced multiplexed signal is frequency-converted so that the carrier frequency becomes (fs+fL).
−3fL−f B 2 f L = 2.78 MH
The modulated luminance signal Yc is mainly a lower sideband of z, and the carrier frequency is (fs+fL) -fL=fs=3.58M
Hz carrier color signal Cs and carrier frequency (f s + fL
)-2fI, -f s-f L=3.18MI (obtain the pilot signal PC of z (Fig. 6G).

そして、ローパスフィルタ29にて搬送周波数がf s
2 f I、 = 2.78MHzの被変調輝度信号y
oを取出し、これを復調器30に供給して周波数変換器
26Bよりのfs−2f L = 2.78 MHzの
信号にて復調し、復調された輝度信号を合成器31に供
給し、またバンドパスフィルタ32にて搬送周波数がf
s= 3.58 MHzの搬送色信号C8を取出し、
これを合成器31に供給し、出力端33に再生カラー映
像信号を得る。
Then, the carrier frequency is changed to f s by the low-pass filter 29
2 f I, = 2.78 MHz modulated luminance signal y
o is taken out, and supplied to the demodulator 30, demodulated with the fs-2f L = 2.78 MHz signal from the frequency converter 26B, and the demodulated luminance signal is supplied to the synthesizer 31, and the band The carrier frequency is f in the pass filter 32.
Take out the carrier color signal C8 of s=3.58 MHz,
This is supplied to a synthesizer 31, and a reproduced color video signal is obtained at an output terminal 33.

この場合モ、バンドパルスフィルタ34よす周波数がf
s−f L = 3.18 MHzのパイロン]・信
号Pcを取出して第2図の場合と同様の制御をする。
In this case, the frequency of the band pulse filter 34 is f
s-f L = 3.18 MHz pylon] - Take out the signal Pc and perform the same control as in the case of Fig. 2.

上述の本発明方法によれば、低域変換された搬送色信号
と、搬送周波数がこの低域変換された搬送色信号のそれ
の3倍で主として上側帯波の被平衡変調輝度信号と、低
域変換された搬送色信号の搬送周波数の2倍の周波数の
パイロット信号との合成信号が記録媒体上に記録された
カラー映像信号を再生するに、再生された合成信号中に
含まれたパイロット信号の振巾を検出して、合成信号の
再生信号の振巾を制御するとともに、このパイロット信
号の位相と基準信号発生器の基準位相とを比較し、この
位相比較信号に基づき周波数制御された信号にて被平衡
変調輝度信号を復調するようにしたものであるから、安
定した所期の再生カラー映像信号を得ることができる。
According to the method of the invention described above, a low-pass converted carrier chrominance signal, a balanced modulated luminance signal whose carrier frequency is three times that of the low-pass converted carrier chrominance signal and whose carrier frequency is mainly upper sideband; When a composite signal of the range-converted carrier color signal and a pilot signal with a frequency twice the carrier frequency reproduces a color video signal recorded on a recording medium, the pilot signal included in the reproduced composite signal is The amplitude of the reproduced signal of the composite signal is detected and the amplitude of the reproduced signal of the composite signal is controlled, and the phase of this pilot signal is compared with the reference phase of the reference signal generator, and the frequency of the signal is controlled based on this phase comparison signal. Since the balanced modulated luminance signal is demodulated at , a stable and desired reproduced color video signal can be obtained.

尚、低域変換された搬送色信号と、搬送周波数がこの低
域変換された搬送色信号のそれの3倍で主として上側帯
波の被平衡変調輝度信号と、低域変換された搬送色信号
の搬送周波数の2倍の周波数のパイロット信号との合成
信号が記録媒体上に記録されることにより、S/Nがよ
くなり、ヘッドの空隙と記録媒体との間隙による損失、
いわゆるスペーシングロスを小さくできる。
It should be noted that a carrier color signal that has been low-band converted, a balanced modulated luminance signal that has a carrier frequency three times that of the carrier color signal that has been low-band converted and is mainly an upper band, and a carrier color signal that has been low band converted. By recording on the recording medium a composite signal with a pilot signal having a frequency twice the carrier frequency of
So-called spacing loss can be reduced.

即ち、磁気テープなどの記録・再生特性は比較的低い例
えば1MHz前後の周波数のところでピークを呈するが
、被変調輝度信号の搬送周波数を低域変換された搬送色
信号のそれの3倍にして例えば1.2 MHzという低
い周波数に関するものであるから、このピークの前後に
その搬送周波数がくるようになり、従って輝度信号のS
/Nがよくなる。
That is, although the recording/reproducing characteristics of magnetic tape etc. exhibit a peak at a relatively low frequency, for example, around 1 MHz, if the carrier frequency of the modulated luminance signal is three times that of the carrier chrominance signal that has been low-band converted, for example, Since it concerns a low frequency of 1.2 MHz, its carrier frequency comes before and after this peak, and therefore the S of the luminance signal
/N gets better.

また、スペーシングロスは、信号の周波数が高くなるほ
ど大きくなるので、このように輝度信号の搬送周波数を
低くすることによってそのスペーシングロスを小さくで
きる。
Furthermore, since the spacing loss increases as the signal frequency increases, the spacing loss can be reduced by lowering the carrier frequency of the luminance signal in this manner.

また、輝度信号を3MHz前後の比較的広い帯域まで取
出して記録することができる。
Furthermore, it is possible to extract and record luminance signals up to a relatively wide band of around 3 MHz.

また、図の例のように、このパイロット信号を振幅変調
することによって再生時に水平同期信号位置を検出する
ようにすれは、輝度信号の変調は第7図に示すように白
レベルと水平同期信号sHの尖頭値レベルで振幅が最大
になるようにでき、第8図A及びBに示すように直線す
で示す白レベルと黒レベルの中間のレベルで振幅が零に
なり、同期信号sHに相当する部分が他の部分の振幅よ
りも大きくなるように変調して再生時この振幅の差によ
り水平同期信号位置を検出する場合に比べてより深い変
調ができる。
In addition, as shown in the example in the figure, if the horizontal synchronizing signal position is detected during playback by amplitude modulating this pilot signal, the modulation of the luminance signal is performed by adjusting the white level and horizontal synchronizing signal as shown in Figure 7. The amplitude can be maximized at the peak level of sH, and as shown in Figure 8A and B, the amplitude becomes zero at a level halfway between the white level and black level shown by the straight line, and the synchronization signal sH. It is possible to perform deeper modulation than in the case where the corresponding portion is modulated to have a larger amplitude than the other portions and the horizontal synchronization signal position is detected based on this amplitude difference during reproduction.

上述の例は輝度信号を振幅変調した場合であるが、例え
は位相変調してもよい。
Although the above example is a case where the luminance signal is amplitude-modulated, it may also be phase-modulated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一例の記録系の系統図、第2図は
その再生系の系統図、第3図はその説明のためのスペク
トル図、第4図は本発明方法の他の例の記録系の系統図
、第5図はその再生系の系統図、第6図はその説明のた
めのスペクトル図、第7図及び第8図は変調の状態を示
す波形図である。 1はカラー映像信号の入力端、2A、2B。 7A、7B、9Y、9C及び9はローパスフィルタ、3
及び13は振幅変調器、8Y、8C及び8は周波数変換
器、11はバンドパスフィルタ、14は水平同期信号分
離回路である。
FIG. 1 is a system diagram of a recording system as an example of the method of the present invention, FIG. 2 is a system diagram of its reproducing system, FIG. 3 is a spectrum diagram for explaining the same, and FIG. 4 is another example of the method of the present invention. FIG. 5 is a system diagram of the recording system, FIG. 5 is a system diagram of the reproducing system, FIG. 6 is a spectrum diagram for explaining the same, and FIGS. 7 and 8 are waveform diagrams showing the modulation state. 1 is the color video signal input end, 2A, 2B. 7A, 7B, 9Y, 9C and 9 are low pass filters, 3
and 13 are amplitude modulators, 8Y, 8C and 8 are frequency converters, 11 is a band pass filter, and 14 is a horizontal synchronizing signal separation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 低域変換された搬送色信号CLと、搬送周波数がこ
の低域変換された搬送色信号のそれの3倍で主として上
側帯波の被平衡変調輝度信号YDと、上記低域変換され
た搬送色信号CLの搬送周波数の2倍の周波数のパイロ
ット信号PDとの合成信号が記録媒体上に記録されたカ
ラー映像信号を再生するに、少なくとも自動利得制御回
路と、上記自動利得制御回路に接続され上記低域変換さ
れた搬送色信号CLと上記パイロット信号PDを高域周
波数に変換する第1の周波数変換回路と、上記自動利得
制御回路に接続され上記被平衡変調輝度信号YDの搬送
波を高域周波数に変換する第2の周波数変換回路と、上
記第2の周波数変換回路に接続され上記第2の周波数変
換回路で周波数変換された被平衡変調輝度信号Ycを復
調する復調回路と、上記第1の周波数変換回路に接続さ
れ上記第1の周波数変換回路で高域変換されたパイロッ
ト信号Pcの振巾を検出する振巾検出回路と、上記第1
の周波数変換回路に接続され上記パイロット信号PCの
位相と基準信号発生器の基準位相を比較する位相比較回
路と、上記第1.第2の周波数変換回路と被平衡変調輝
度信号Ycの復調回路に所定の周波数及び位相を有する
信号を供給する変換・復調用信号発生回路とを有し、上
記振巾検出回路の出力により上記合成信号の再生信号の
振巾を上記自動利得制御回路にて制御するとともに、上
記位相比較回路の位相比較信号に基づき上記変換・復調
用信号発生回路の出力信号の周波数及び位相を制御し、
この周波数及び位相の制御された発振信号を上記第1.
第2の周波数変換回路と輝度信号復調回路に供給して上
記搬送色信号cLの周波数変換及び上記被平衡変調輝度
信号Ycの復調をするようにしたカラー映像信号の再生
方法。
1 a low-band-converted carrier chrominance signal CL, a balanced modulated luminance signal YD whose carrier frequency is three times that of this low-band-converted carrier chrominance signal and is mainly in the upper band, and the above-mentioned low-converted carrier; In order to reproduce a color video signal recorded on a recording medium, a composite signal of the color signal CL and a pilot signal PD having a frequency twice the carrier frequency is connected to at least an automatic gain control circuit and the automatic gain control circuit. A first frequency conversion circuit converts the carrier color signal CL subjected to the low frequency conversion and the pilot signal PD to a high frequency frequency; and a first frequency conversion circuit connected to the automatic gain control circuit converts the carrier wave of the balanced modulated luminance signal YD into a high frequency a second frequency conversion circuit that converts the frequency into a frequency; a demodulation circuit that is connected to the second frequency conversion circuit and demodulates the balanced modulated luminance signal Yc frequency-converted by the second frequency conversion circuit; an amplitude detection circuit that is connected to the frequency conversion circuit and detects the amplitude of the pilot signal Pc that has been high-frequency converted by the first frequency conversion circuit;
a phase comparison circuit that is connected to the frequency conversion circuit of the first frequency converter and compares the phase of the pilot signal PC with the reference phase of the reference signal generator; a second frequency conversion circuit and a conversion/demodulation signal generation circuit for supplying a signal having a predetermined frequency and phase to a demodulation circuit for the balanced modulated luminance signal Yc; controlling the amplitude of the signal reproduction signal with the automatic gain control circuit, and controlling the frequency and phase of the output signal of the conversion/demodulation signal generation circuit based on the phase comparison signal of the phase comparison circuit;
This frequency and phase controlled oscillation signal is transmitted to the first.
A method for reproducing a color video signal, the signal being supplied to a second frequency conversion circuit and a luminance signal demodulation circuit to convert the frequency of the carrier color signal cL and demodulate the balanced modulated luminance signal Yc.
JP50035784A 1975-03-25 1975-03-25 Color video signal playback method Expired JPS5820508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50035784A JPS5820508B2 (en) 1975-03-25 1975-03-25 Color video signal playback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50035784A JPS5820508B2 (en) 1975-03-25 1975-03-25 Color video signal playback method

Publications (2)

Publication Number Publication Date
JPS51110919A JPS51110919A (en) 1976-09-30
JPS5820508B2 true JPS5820508B2 (en) 1983-04-23

Family

ID=12451516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50035784A Expired JPS5820508B2 (en) 1975-03-25 1975-03-25 Color video signal playback method

Country Status (1)

Country Link
JP (1) JPS5820508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127310U (en) * 1984-07-20 1986-02-18 三洋電機株式会社 high voltage variable resistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499139A (en) * 1972-05-12 1974-01-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499139A (en) * 1972-05-12 1974-01-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127310U (en) * 1984-07-20 1986-02-18 三洋電機株式会社 high voltage variable resistor

Also Published As

Publication number Publication date
JPS51110919A (en) 1976-09-30

Similar Documents

Publication Publication Date Title
CS235051B2 (en) Method of complete colour television signal record and reproduction and device for application of this method
US3660596A (en) Recording and reproducing system for color video signal
JPS5820508B2 (en) Color video signal playback method
US4115820A (en) System for reproducing a video signal
US5621537A (en) Color signal processing circuit in color VTR
JP2539407B2 (en) Television signal transmitter, recorder, receiver
JPS6038916B2 (en) Color video signal recording and playback method
JP2625051B2 (en) Magnetic playback device
JP2638791B2 (en) Demodulator
JPS5832835B2 (en) Carrier signal forming circuit with line offset
JPS5820509B2 (en) Color video signal playback method
JP2918603B2 (en) Color signal processing device
JPS5816310Y2 (en) magnetic recording and reproducing device
JPS634393B2 (en)
JPH0523119B2 (en)
JPS585555B2 (en) Color video signal recording method
JPS5812793B2 (en) Eizoushingouno Kirokusaiseiki
JP2635846B2 (en) Magnetic recording device
JPS5849071B2 (en) Carrier color signal processing circuit
KR880000412Y1 (en) Recording apparatus of colour picture signal
JP2514154B2 (en) Color video signal recorder
JP2641633B2 (en) Color signal processing device
JPS594917B2 (en) Color television signal recording and reproducing device
JPS598884B2 (en) Video signal recording method
JPS6010477B2 (en) Video signal recording method