JPS5820460B2 - wet photocell - Google Patents

wet photocell

Info

Publication number
JPS5820460B2
JPS5820460B2 JP51032460A JP3246076A JPS5820460B2 JP S5820460 B2 JPS5820460 B2 JP S5820460B2 JP 51032460 A JP51032460 A JP 51032460A JP 3246076 A JP3246076 A JP 3246076A JP S5820460 B2 JPS5820460 B2 JP S5820460B2
Authority
JP
Japan
Prior art keywords
ruthenium
ion
bipyridyl
photovoltaic cell
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51032460A
Other languages
Japanese (ja)
Other versions
JPS52116834A (en
Inventor
古田尚子
小林茂郎
島村修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP51032460A priority Critical patent/JPS5820460B2/en
Publication of JPS52116834A publication Critical patent/JPS52116834A/en
Publication of JPS5820460B2 publication Critical patent/JPS5820460B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明はルテニウム錯体における光電効果を利用した新
規な湿式光電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel wet photovoltaic cell that utilizes the photoelectric effect in a ruthenium complex.

従来、周知の電解液を用い一方の電極として半導体を利
用した湿式光電池例えば特公昭46−20182号に示
された如く公知である。
Conventionally, a wet photovoltaic cell using a well-known electrolytic solution and a semiconductor as one electrode is known, for example, as shown in Japanese Patent Publication No. 46-20182.

この場合の光起電力は電極であ5半導体が光エネルギー
を吸収することによって生じるものと考えられる。
It is thought that the photovoltaic force in this case is generated by the absorption of light energy by the semiconductor at the electrode.

本発明は電解質自体に光エネルギーを吸収させることに
よシ光起電力を得ることを目的とするものであり、さら
に本発明の目的はそれに基づいて新規な光電池を提供す
ることである。
The object of the present invention is to obtain photovoltaic force by absorbing light energy into the electrolyte itself, and a further object of the present invention is to provide a novel photovoltaic cell based thereon.

ガラスにつけたSnO2や白金の薄膜のような透明電極
を通して、ピリジル誘導体のルテニウムω)錯体イオン
の酸性水溶液に可視光を照射すると光電流が流れる効果
を本発明者等は発見した。
The present inventors have discovered that when an acidic aqueous solution of a pyridyl derivative ruthenium ω) complex ion is irradiated with visible light through a transparent electrode such as a thin film of SnO2 or platinum attached to glass, a photocurrent flows.

本発明で用いるビピリジル誘導体のルテニウム(■)錯
体イオンの例としてはトリス(2、2’−ビピリジル)
ルテニウム(II)イオン、トリス(0−フェナンスロ
リン)ルテニウム(II) イオン、4,7−ジフェニ
ル−〇−フェナンスロリンビス(2,2’−ビピリジル
)ルテニウム(II)イオンおよびジピリド[3、2−
a : 2’、 3’−c :)フェナジンビス(2゜
2仁ビピ9ジル)ルテニウム(II)イオンを挙げるこ
とができる。
An example of the ruthenium (■) complex ion of the bipyridyl derivative used in the present invention is tris(2,2'-bipyridyl).
Ruthenium(II) ion, tris(0-phenanthroline)ruthenium(II) ion, 4,7-diphenyl-〇-phenanthrolinebis(2,2'-bipyridyl)ruthenium(II) ion and dipyrid[3, 2-
a: 2', 3'-c:) phenazinebis(2゜2bipi9dyl)ruthenium(II) ion can be mentioned.

第1図は本発明の詳細な説明するだめの図であって、一
方の側壁に開口部を有する容器のその開口部を、例えば
ガラス板に5n02または白金の薄膜を張りつけてなる
透明電極1で密閉する。
FIG. 1 is a detailed illustration of the present invention, in which the opening of a container having an opening on one side wall is covered with a transparent electrode 1 made of, for example, a glass plate covered with a thin film of 5N02 or platinum. Seal tightly.

さらにこの容器内に飽和カロメル電極2を配置したうえ
容器にビピリジル誘導体のルテニウム(n)錯体イオン
を含んだ酸性電解液5を満たす。
Furthermore, a saturated calomel electrode 2 is placed in this container, and the container is filled with an acidic electrolytic solution 5 containing ruthenium (n) complex ions of a bipyridyl derivative.

透明電極1と飽和カロメル電極2の間に電流計3、電圧
計4および定電圧電源6を並列接続して測定回路を設け
である。
A measuring circuit is provided between the transparent electrode 1 and the saturated calomel electrode 2 by connecting an ammeter 3, a voltmeter 4, and a constant voltage power source 6 in parallel.

この装置を用いて飽和カロメル電極2に対して一定電位
を設定したときの電流量を光照射の有無について測定す
ると、SnO□透明電極を用いた場合第2図に示すよう
な結果が得られる。
When using this device to measure the amount of current with or without light irradiation when a constant potential is set for the saturated calomel electrode 2, results as shown in FIG. 2 are obtained when a SnO□ transparent electrode is used.

この結果から明らかなように、酸素の発生に相当する電
位よ勺負の電位では光照射時にカソード方向に電流が流
れる。
As is clear from this result, at a potential more negative than the potential corresponding to the generation of oxygen, a current flows toward the cathode during light irradiation.

電解液5にビオロゲンを添加すると、この光電流は少く
とも数倍に増加することがわかった。
It was found that when viologen was added to electrolyte 5, this photocurrent increased at least several times.

またこの時の開回路光起電力は光量の対数に対して、第
3図に示すような傾き0.027Vの直線関係があるこ
とがわかった。
It was also found that the open circuit photovoltaic force at this time had a linear relationship with the logarithm of the light amount, with a slope of 0.027V as shown in FIG.

ビオロゲンとしてはメチルビオロゲン、エチルビオロゲ
ン、ベンジルビオロゲン、メチルエチルビオロゲン、メ
チルベンジルビオロゲン等のアルキルビオロゲンを好適
に使用できる。
As the viologen, alkyl viologens such as methyl viologen, ethyl viologen, benzyl viologen, methyl ethyl viologen, and methylbenzyl viologen can be suitably used.

このような光起電力はルテニウム(II)錯体イオンと
これが光を吸収して励起され系中に存在する酸素または
ビオロゲンに電子を渡して生成した透明電極近傍のルテ
ニウム(「)錯体イオンとの酸化還元対によるものと解
釈できる。
Such photovoltaic force is caused by the oxidation of ruthenium (II) complex ions near the transparent electrode, which are generated when ruthenium (II) complex ions absorb light, are excited, and transfer electrons to oxygen or viologen present in the system. This can be interpreted as a reduction pair.

ルテニウム([)錯体イオンによる可視光吸収がこの現
象の原因であることは、光電流の照射光波長に対する依
存性(第4図に示す)がこのイオンの可視吸収スペクト
ルと一致したことで確認された。
The fact that visible light absorption by the ruthenium ([) complex ion is the cause of this phenomenon was confirmed because the dependence of the photocurrent on the wavelength of the irradiated light (shown in Figure 4) matched the visible absorption spectrum of this ion. Ta.

第5図は可視光電池としての1実施例を示すもので、1
は5n02透明電極、2は白金などからなる対極、3は
寒天やポリアクリルアミドをつかった塩橋、4は内部抵
抗24オームのアンペアメーター、5はルテニウム(n
)錯体イオンとビオロゲンを含む酸性水溶液、6はアル
カリ性電解液を示す。
Figure 5 shows an example of a visible photocell.
is a 5n02 transparent electrode, 2 is a counter electrode made of platinum, etc., 3 is a salt bridge using agar or polyacrylamide, 4 is an ampere meter with an internal resistance of 24 ohms, and 5 is a ruthenium (n
) Acidic aqueous solution containing complex ions and viologen; 6 indicates an alkaline electrolyte.

500Wキセノンランプを光源として可視光を透明電極
を通して照射すると透明電極面積Lca当り約13μA
の光電流が流れた。
When visible light is irradiated through a transparent electrode using a 500W xenon lamp as a light source, it is approximately 13 μA per transparent electrode area Lca.
photocurrent flowed.

両電極を直結して可視光照射を続けると電極2で気体が
発生した。
When both electrodes were directly connected and visible light irradiation was continued, gas was generated at electrode 2.

これを捕集して質量分析計で分析した結果、酸素である
ことがわかった。
When this was collected and analyzed using a mass spectrometer, it was determined that it was oxygen.

6時間の可視光照射で約5 X 10 ’mmole
の酸素が捕集された。
Approximately 5 x 10' mmole after 6 hours of visible light irradiation
of oxygen was collected.

そのとき酸性水溶液5を陽イオン交換樹脂に通した後、
ポーラログラフイー、過マンガン酸カリウム滴定、ヨー
ドメトリーで分析した結果、約1.6 X 10−2m
moleの過酸化水素が生成していた。
At that time, after passing the acidic aqueous solution 5 through a cation exchange resin,
As a result of analysis by polarography, potassium permanganate titration, and iodometry, it is approximately 1.6 x 10-2m.
A mole of hydrogen peroxide was produced.

このことは光励起されたルテニウム(II)錯体イオン
がビオロゲンに電子を渡して還元型ビオロゲンとルテニ
ウム(2)錯体イオンを与え、前者が溶存酸素を還元し
て過酸化水素にする一方、ルテニウム(2)錯体イオン
は透明電極から電子を取りルテニウム(「)錯体イオン
にもどると同時に対極において水を酸化していることを
示している。
This means that the photoexcited ruthenium (II) complex ion transfers electrons to viologen to give reduced viologen and ruthenium (2) complex ion, and the former reduces dissolved oxygen to hydrogen peroxide, while ruthenium (II) complex ion This shows that the ) complex ion takes electrons from the transparent electrode and returns to the ruthenium ( ) complex ion, while at the same time oxidizing water at the opposite electrode.

つまり、この可視光電池は、外部において電気的仕事を
なすだめの電流を取シ出すこと以外に、水を還元剤とし
て作用させるために可視光を利用することを可能にする
装置でもある。
In other words, this visible light cell is a device that makes it possible to use visible light to cause water to act as a reducing agent, in addition to extracting current to perform electrical work externally.

第6a図は本発明の他の実施例を示し、第6b図は第6
a図におけるB−B線に沿った断面図である。
FIG. 6a shows another embodiment of the invention, and FIG. 6b shows a sixth embodiment of the invention.
It is a sectional view along the BB line in figure a.

この実施例は第1図に示す原理に基づくものであり、透
明電極10と対向電極12と例えばゴム等からなるスペ
ーサ兼バンキング16によシ容器を形成しそれに電解液
5を充填したものである。
This embodiment is based on the principle shown in FIG. 1, and consists of a transparent electrode 10, a counter electrode 12, and a spacer/banking 16 made of, for example, rubber to form a container, which is filled with an electrolytic solution 5. .

対向電極側には保護板18を、そして透明電極側には適
当な開口20を有する保護板18を設ける。
A protection plate 18 is provided on the counter electrode side, and a protection plate 18 having a suitable opening 20 is provided on the transparent electrode side.

透明電極10には導電性リード板14aを、そして対向
電極口にはりニド14bを接続して電力の取出し端子と
する。
A conductive lead plate 14a is connected to the transparent electrode 10, and a lead plate 14b is connected to the opposite electrode port to serve as a power extraction terminal.

電力発生に伴いガスの出入りがあるために、バッキング
16の適当な位置に小さい気孔15を設けるとよい。
Since gas flows in and out as electricity is generated, small pores 15 may be provided at appropriate positions in the backing 16.

第6図の実施例は電解液としてルテニウム(「)錯体イ
オンを含む酸性水溶液5のみを用いている。
The embodiment shown in FIG. 6 uses only an acidic aqueous solution 5 containing ruthenium complex ions as the electrolyte.

第7図に示す他の実施例は第5図の実施例に対応するも
のであシ、第6図の容器内を例えばイオン交換樹脂膜の
ような適当な隔壁22をもって二分割し、一方には酸性
水溶液5を、他方にはアルカリ性電解液6を満したもの
である。
Another embodiment shown in FIG. 7 corresponds to the embodiment shown in FIG. 5, in which the inside of the container shown in FIG. One is filled with an acidic aqueous solution 5, and the other is filled with an alkaline electrolyte 6.

この形成の湿式光電池の応用分野は当業者には容易に推
考可能であり、またその利点は例えば前記特公昭46−
20182号に記載されるものは勿論であり、さらに本
発明では可視光をそのまま使用でき、また使用する電極
材料も安価である。
The field of application of a wet photovoltaic cell with this structure can be easily deduced by those skilled in the art, and its advantages can be seen, for example, in the above-mentioned Japanese Patent Publication No.
Of course, the method described in No. 20182 can be used as is, and furthermore, visible light can be used as is in the present invention, and the electrode materials used are also inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成を示す図、第2図は第1図の
構成により得られる標準電極に対する光起電流を示す図
、第3図は光量に対する出力電圧を示す図、第4図は光
の波長に対する出力電流を示す図、第5図は本発明の他
の構成を示す図、第6図は本発明の他の構成を示す図、
第1図は本発明のさらに他の構成を示す断面図である。 1.10・・・透明電極、2.12・・・対向電極、1
4・・・リード条件、16・・・バッキング、18・・
・保護板、20・・・開口、22・・・塩橋、5,6・
・・電解液。
Fig. 1 is a diagram showing the principle configuration of the present invention, Fig. 2 is a diagram showing the photovoltaic current for a standard electrode obtained by the configuration of Fig. 1, Fig. 3 is a diagram showing the output voltage with respect to the amount of light, and Fig. 4 5 is a diagram showing the output current versus the wavelength of light, FIG. 5 is a diagram showing another configuration of the present invention, FIG. 6 is a diagram showing another configuration of the present invention,
FIG. 1 is a sectional view showing still another configuration of the present invention. 1.10...Transparent electrode, 2.12...Counter electrode, 1
4... Lead condition, 16... Backing, 18...
・Protective plate, 20...opening, 22...salt bridge, 5,6・
... Electrolyte.

Claims (1)

【特許請求の範囲】 1 導電性透明電極と対向電極をビピリジル誘導体のル
テニウム(n)錯体イオンを含む酸性水溶液を介して対
設し、上記透明電極を通じて上記酸性水溶液に入射する
光により、上記両電極間に電気的出力を得ることを特徴
とする湿式光電池。 2、特許請求の範囲第1項において、該酸性水溶液がさ
らにビオロゲンを含むことを特徴とする湿式光電池。 3 特許請求の範囲第1項において、該光が可視光であ
ることを特徴とする湿式光電池。 4 ビピリジル誘導体のルテニウム(II)錯体イオン
がトリス(2’、2’−ビピリジル)ルテニウム(II
)イオン、トリス(0−フェナンスロリン)ルテニウム
(ff)イオン、4,7−ジフェニル−〇−フエナンス
ロ9ンビス(2,2’−ビピリジル)ルテニウム(I[
)イオンまたはジピ9ド(3、2−a : 2’、 3
’−c、lフェナジンビス(2,2’−ビピリジル)ル
テニウム(n)イオンである特許請求の範囲第1、第2
または第3項に記載の湿式光電池。 5 導電性透明電極と対向電極との間を適当な塩橋部材
をもって二分し、透明電極側にビピリジル誘導体のルテ
ニウム(■履体イオンを含む酸性水溶液を、上記対向電
極側にアルカリ性水溶液を配置し、上記透明電極を通じ
て入射する光によシ両電極間に電気的出力を得ることを
特徴とする湿式光電池。 6 特許請求の範囲第5項において、該酸性水溶液がさ
らにビオロゲンを含むことを特徴とする湿式光電池。 7 特許請求の範囲第5項において、該塩橋部材がイオ
ン交換樹脂であることを特徴とする湿式光電池。 8 ビピリジル誘導体のルテニウム(IF)錯体イオン
がトリス(2、2’−ビピリジル)ルテニウム(II)
イオン、トリス(0−フェナンスロリン)ルテニウム(
II)イオン、4,7−ジフェニル−〇−フェナンスロ
リンビス(2,2’−ビピリジル)ルテニウム(n)イ
オンまたはジピリド〔3、2−a : 2’、 3’−
C)フェナジンビス(2,2’−ジピリジル)ルテニウ
ム(「)イオンである特許請求の範囲第5、第6または
第7項に記載の湿式光電池。
[Scope of Claims] 1. A conductive transparent electrode and a counter electrode are placed opposite to each other with an acidic aqueous solution containing ruthenium (n) complex ions of a bipyridyl derivative interposed therebetween, and light incident on the acidic aqueous solution through the transparent electrode causes both of the above-mentioned A wet photovoltaic cell characterized by obtaining electrical output between electrodes. 2. The wet photovoltaic cell according to claim 1, wherein the acidic aqueous solution further contains viologen. 3. The wet photovoltaic cell according to claim 1, wherein the light is visible light. 4 The ruthenium(II) complex ion of the bipyridyl derivative is tris(2',2'-bipyridyl)ruthenium(II)
) ion, tris(0-phenanthroline) ruthenium (ff) ion, 4,7-diphenyl-〇-phenanthroline 9-bis(2,2'-bipyridyl)ruthenium (I[
) ion or dipi9d(3,2-a: 2', 3
'-c,l phenazine bis(2,2'-bipyridyl)ruthenium (n) ion Claims 1 and 2
Or the wet photovoltaic cell according to item 3. 5 Divide the space between the conductive transparent electrode and the counter electrode into two with a suitable salt bridge member, place an acidic aqueous solution containing bipyridyl derivative ruthenium (■) ions on the transparent electrode side, and place an alkaline aqueous solution on the counter electrode side. A wet photovoltaic cell, characterized in that an electrical output is obtained between both electrodes by light incident through the transparent electrode. 6. In claim 5, the acidic aqueous solution further contains viologen. 7. A wet photovoltaic cell according to claim 5, characterized in that the salt bridge member is an ion exchange resin. 8. A ruthenium (IF) complex ion of a bipyridyl derivative is a tris(2,2'- bipyridyl)ruthenium(II)
ion, tris(0-phenanthroline)ruthenium (
II) ion, 4,7-diphenyl-〇-phenanthroline bis(2,2'-bipyridyl)ruthenium (n) ion or dipyrid [3,2-a: 2', 3'-
C) Wet photovoltaic cell according to claim 5, 6 or 7, which is phenazinebis(2,2'-dipyridyl)ruthenium (') ion.
JP51032460A 1976-03-26 1976-03-26 wet photocell Expired JPS5820460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51032460A JPS5820460B2 (en) 1976-03-26 1976-03-26 wet photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51032460A JPS5820460B2 (en) 1976-03-26 1976-03-26 wet photocell

Publications (2)

Publication Number Publication Date
JPS52116834A JPS52116834A (en) 1977-09-30
JPS5820460B2 true JPS5820460B2 (en) 1983-04-23

Family

ID=12359573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51032460A Expired JPS5820460B2 (en) 1976-03-26 1976-03-26 wet photocell

Country Status (1)

Country Link
JP (1) JPS5820460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129146U (en) * 1983-02-18 1984-08-30 三菱電機株式会社 circuit break

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129146U (en) * 1983-02-18 1984-08-30 三菱電機株式会社 circuit break

Also Published As

Publication number Publication date
JPS52116834A (en) 1977-09-30

Similar Documents

Publication Publication Date Title
Clark et al. Photogalvanic cells
Papageorgiou et al. The performance and stability of ambient temperature molten salts for solar cell applications
Palomares et al. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al 2 O 3 coated nanoporous TiO 2 films
Potter Jr et al. Efficiency of some iron-thionine photogalvanic cells
Swain et al. Tetrahexylammonium benzoate, a liquid salt at 25. degree., a solvent for kinetics or electrochemistry
Aroutiounian et al. Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3–Nb2O5
de Freitas et al. The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells
Kamat et al. Time-resolved photoelectrochemistry. A laser-induced coulostatic flash study of n-titanium dioxide in acetonitrile
Hofmanova et al. The transfer of alkali metal ions across the water-nitrobenzene interface facilitated by neutral macrocyclic ionophores
Wildes et al. Correlation of open-circuit voltage and short-circuit current of the totally illuminated, thin-layer iron-thionine photogalvanic cell with photostationary composition
JP4081084B2 (en) Solar cell and solar power generation device using the same
Middaugh et al. Kinetics of Electrochemical Oxidative Coupling of Decahydroclovodecaborate (2-) in Acetonitrile1
Tsubomura et al. “Wet-type” solar cells with semiconductor electrodes
Maness et al. Electrochemiluminescence in low ionic strength solutions of 1, 2-dimethoxyethane
Dixit et al. Microemulsions as photogalvanic cell fluids. The surfactant thionine-iron (II) system
JPS5820460B2 (en) wet photocell
JPS5610219A (en) Ultraviolet integral detecting element and ultraviolet integral detector
Compton et al. Photoelectrochemical electron spin resonance. Part 2.—The reduction of crystal violet in acetonitrile
Baron et al. Photoelectron emission by solutions
EP0892412B1 (en) Photoelectrochemical cell with a high response speed
Genwa et al. Optimum Efficiency of Photogalvanic Cell for Solar Energy Conversion: Lissamine Green B-Ascorbic Acid-NaLS System
US4138532A (en) N-methylphenazine photogalvanic cell
Tien et al. Hydrogen generation from artificial sea hater in a semiconductor septum electrochemical photovoltaic cell
Bhowmik et al. Photoelectrochemical cell with phenosafranin coated electrode
US4190705A (en) Photogalvanic cell comprising complexing agents