JPS58204534A - Mask for x-ray lithography - Google Patents

Mask for x-ray lithography

Info

Publication number
JPS58204534A
JPS58204534A JP57086626A JP8662682A JPS58204534A JP S58204534 A JPS58204534 A JP S58204534A JP 57086626 A JP57086626 A JP 57086626A JP 8662682 A JP8662682 A JP 8662682A JP S58204534 A JPS58204534 A JP S58204534A
Authority
JP
Japan
Prior art keywords
mask
diamond
transparent
ray
constituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57086626A
Other languages
Japanese (ja)
Inventor
Hidehito Obayashi
大林 秀仁
Yoshitsugu Miura
三浦 義「より」
Takeshi Kimura
剛 木村
Kozo Mochiji
広造 持地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57086626A priority Critical patent/JPS58204534A/en
Publication of JPS58204534A publication Critical patent/JPS58204534A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a mask for X-ray lithography which is reduced in alignment errors, excellent in chemical resistance and transparent to even a visible light, by employing a thin film constituted by diamond or a mixture of diamond and amorphous carbon. CONSTITUTION:Since diamond has the highest thermal conductivity in the known materials, the employment of diamond makes it possible to quickly transmits to the outside the heat absorbed by an X-ray absorber, such as Au or the like, which is formed on a transparency, and minimize the rise in temperature of a mask due to exposure. As a result, it is possible to prevent any alignment error of a pattern. Moreover, since the mask is constituted by a transparent thin film, a visible light can be employed for alignment. To obtain an X-ray lithography mask, it is effective to form a transparent film constituted by diamond and amorphous carbon by employing magnetron sputtering or ion beam sputtering. Thus, a mask is obtained which has a sufficiently high film strength and an excellent light-transmitting property.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造等に用いられるリング2フ
イ用マスクに関し、特にX線リングラフィマスクの構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ring 2-fi mask used in the manufacture of semiconductor devices, and more particularly to the structure of an X-ray phosphorography mask.

X#lリングラフィ用マスクに必要な性質としては1)
Xi透過体の線吸収係数が小さい、1f)X線透過体の
位置安定性がすぐれている、111)耐薬品性。
The properties required for a mask for X#l phosphorography are 1)
The linear absorption coefficient of the Xi transparent body is small, 1f) The positional stability of the X-ray transparent body is excellent, 111) Chemical resistance.

耐湿性がすぐれている、IV)丈夫でかつ作成容易であ
る等があげられる。さらにマスク−ウェー71合せ音光
学的手法で行う場合を想定するとX線透過性のみならず
、可視光に対する透過性の大きい材料でおることが望ま
しい。
It has excellent moisture resistance, and IV) is durable and easy to produce. Furthermore, assuming that the mask-way 71 is to be carried out using an acousto-optic method, it is desirable to use a material that is not only transparent to X-rays but also highly transparent to visible light.

従来X緋すソグラフィ用マスク材としては、S L、 
8+sNa 、BN、 T i 、ポリイミド等の多数
の材料が検討されてきた。これらの材料は前記のマスク
に費求される性質のすべてを同時に満すものではなく、
一長一短である。
Conventional X scarlet lithography mask materials include S L,
A number of materials have been considered, such as 8+sNa, BN, Ti, polyimide, etc. These materials do not simultaneously satisfy all of the properties required for the above-mentioned masks;
There are pros and cons.

本発明はこれらの性質のうちとくに、位置安定性、耐薬
品性のすぐれた、可視光にも透明なマスクを提供するこ
とを目的とする。本発明では、これ全実現するため薄膜
ダイヤモンドを形成した。
Among these properties, it is an object of the present invention to provide a mask that has excellent positional stability and chemical resistance, and is also transparent to visible light. In the present invention, a thin film of diamond is formed to achieve all of this.

ダイヤモンドは周知の如く、既知材料中で最も熱伝導率
の大きな吻質の一つでアシ、これを使用すめことによシ
透過体上に形成されたAu等のX線吸収体がX線を吸収
した除虫ずる熱を速やかに糸外に伝達することができ、
従ってXM真光にともなうマスクの磁度上昇〉低く抑え
ることが可能にな負、この粕来、熱膨張によるパターン
位置ずれを最小におさえることができる。又、透明薄膜
であるため位置合せにHe−Neレーザ等の可視領域の
光倉用いることができる。
As is well known, diamond is one of the materials with the highest thermal conductivity among known materials, and by using diamond, an X-ray absorber such as Au formed on the transparent material can absorb X-rays. The heat absorbed by the insect repellent can be quickly transferred to the outside of the thread,
Therefore, it is possible to suppress the increase in magnetic field of the mask due to XM light, and to minimize the pattern positional deviation due to thermal expansion. Furthermore, since it is a transparent thin film, a visible light source such as a He-Ne laser can be used for alignment.

従来、炭素の蒸着は真空中にあ−いて炭素電極を用いて
アーク族tinして行っていたが、この方法では形成さ
れる炭素薄膜は無定形炭素およびグラファイトの混合物
となり、100Å以上の膜はカッ色から黒色となり光透
過性は悪く、かつ膜強度も十分なものが得られず、従っ
てX線すングフフイのマスクに用いることはできなかっ
た。
Conventionally, carbon vapor deposition was carried out in a vacuum using a carbon electrode in an arc group, but with this method, the carbon thin film formed was a mixture of amorphous carbon and graphite, and a film of 100 Å or more was The color changed from dark brown to black, and the light transmittance was poor, and a film with sufficient strength could not be obtained, so it could not be used as a mask for X-ray radiation.

本発明では蒸層法としてマグネトロンスパッタ法や、イ
オンビームスパッタ法を用いることによってダイヤモン
ドと無短形炭素とからなる透明膜を形成し、これkX?
Wl)ソグラフイ用マスクとして用いる。以下実施例に
従って評しく説明する。
In the present invention, a transparent film made of diamond and rectangular carbon is formed by using a magnetron sputtering method or an ion beam sputtering method as a vapor deposition method.
Wl) Used as a mask for lithography. The following is a detailed explanation based on examples.

第1図は本発明の第1の実施例で、1はリード、2はア
ノード、3は基板、4はターゲット、5は磁石、6はカ
ソード、7は真空系を示す。
FIG. 1 shows a first embodiment of the present invention, in which 1 is a lead, 2 is an anode, 3 is a substrate, 4 is a target, 5 is a magnet, 6 is a cathode, and 7 is a vacuum system.

第1図に示すように、プレーナマグネトロンスパッタ法
に用いた装[dターゲット4近傍に直行′電磁界を形成
し、尚密度プラズマを発生させる方法である。    
   〜 ターゲットに成形ブラフアイトラ用い、スパッタガスに
はアルゴン又は窒素を用いた。基&3には(111)S
i  (100)Si又は′IR向研磨した石英ガラス
を用いた。
As shown in FIG. 1, this is a method in which a perpendicular electromagnetic field is formed in the vicinity of the target 4 used in the planar magnetron sputtering method to generate high-density plasma.
~ A molded bluff eye trap was used as the target, and argon or nitrogen was used as the sputtering gas. (111)S for base &3
i (100)Si or IR-polished silica glass was used.

スパッタ蒸着により、基板上に0,2〜3μm厚の炭素
膜を形成した。
A carbon film with a thickness of 0.2 to 3 μm was formed on the substrate by sputter deposition.

第2図は本発明の第2の実施例で、21はフィラメント
、22はアノード、23はグリッド電極、24はニュー
トライザ、25はターゲット、26は基板、27はN、
カス入口、28は真空排気系、29は真空系を示す。
FIG. 2 shows a second embodiment of the present invention, in which 21 is a filament, 22 is an anode, 23 is a grid electrode, 24 is a neutralizer, 25 is a target, 26 is a substrate, 27 is an N,
28 is a vacuum exhaust system, and 29 is a vacuum system.

第2図に示すイオンビームスパッタ装置は比較的低真空
のイオンソース部と比較的低真空のスパッタ部とからな
る。イオンソース部はアースに対し100OVの電位に
設定した。イオンビームからスパッタ部へのイオン引出
し用にグリッド電極23を設は接地する。こうして加速
されたイオンがターゲット25をたたき基板26に析出
する。
The ion beam sputtering apparatus shown in FIG. 2 consists of an ion source section with a relatively low vacuum and a sputter section with a relatively low vacuum. The ion source section was set at a potential of 100 OV with respect to ground. A grid electrode 23 is provided and grounded for extracting ions from the ion beam to the sputtering section. The ions accelerated in this manner strike the target 25 and are deposited on the substrate 26.

ターゲットとしては第1の実施例と同様成形グラファイ
トt−用い、スパッタガスにはN!を用い、基板には(
111)8i、(100)Si及び石英板を用いた。
As in the first embodiment, molded graphite T- was used as the target, and N! was used as the sputtering gas. , and the board is (
111)8i, (100)Si and quartz plates were used.

ガス圧t” 10−’forr以下とし、基板上に0.
5〜3μm厚の炭糸膜を形成した。
The gas pressure t'' is 10-'forr or less, and 0.
A carbon fiber membrane with a thickness of 5 to 3 μm was formed.

第1および第2の実施例において形成した膜の結晶化学
的性)xを反射電子線回折によって測定した結果および
、基板をエツチング除去後の目視による色、Aを第1表
にまとめた。
Table 1 summarizes the results of measuring the crystal chemical properties (x) of the films formed in the first and second examples by reflection electron diffraction, and the visual color A after etching the substrate.

D=ダイヤモンド型 −に一ニー無定形 G:グラファイト型 この表かられかるように、実施例1,2とも形成される
炭素膜はダイヤモンド實の炭素を主成分とする透明度の
よい膜でおる。
D=diamond-shaped, amorphous G: graphite-type As can be seen from this table, the carbon films formed in both Examples 1 and 2 are highly transparent films containing diamond-like carbon as a main component.

第1戎において不等号は成分比の大小関係を示し、例え
ばD)AはDがAなら多いことを示す。
In the first equation, the inequality sign indicates the magnitude relationship of the component ratio, for example, D)A indicates that if D is A, there is more.

第3図は本発明のig3の実施例で、基板として(11
1)8131 k用イ2 μm厚に炭素膜32を形成し
たものを例としてX線リングラフィマスクとして用いる
場合の作成方法を示した。−この上からT133を蒸着
によpo、oiμm形成し、常法に使いレジストハター
ン34を形成する。これをパターニングマスクとして金
メッキをして約0.5μm厚の雀パターン35を形成し
、パターン形成した面を保護する工夫をしてSi基板3
1を裏面からHF +HNOs+ CH,C0OHの混
液によシ除去しマスクを得た。
Figure 3 shows an embodiment of ig3 of the present invention, with (11
1) For 8131k A A method for making a 2 μm thick carbon film 32 is used as an X-ray phosphorography mask as an example. - From above, T133 is formed to a thickness of po and oi .mu.m by vapor deposition, and a resist pattern 34 is formed using a conventional method. Using this as a patterning mask, gold plating was performed to form a sparrow pattern 35 with a thickness of about 0.5 μm, and the Si substrate 3 was devised to protect the patterned surface.
1 was removed from the back side using a mixed solution of HF + HNOs + CH, COOH to obtain a mask.

本発明の効果t−明らかにするため第3の実施例で得た
マスクに波長8.34人のX−を照射しその除の温度上
昇を調べた。マスク面上でのX線強度は1 mw/ら2
とした。金パターンはマスク面の40%を占める球にし
、X吻照射を真空中、1’l’orrlle中、空気中
において2分後のマスク温度上昇を調べたところ、真空
中では0.IC程度の上昇があったが、ITOrrHe
および空気中では測定下限(O,OSo)以Fでめった
。ちなみに同様の条件で既存の3μm厚のポリイミドの
温度上昇を調べたところ真空中で約1.2 CX仝空気
中も0.2C程度上温度上昇があった。
In order to clarify the effect of the present invention, the mask obtained in the third embodiment was irradiated with X- of 8.34 wavelength and the temperature rise was investigated. The X-ray intensity on the mask surface is 1 mw/ra2
And so. The gold pattern was made into a sphere occupying 40% of the mask surface, and the mask temperature rise after 2 minutes of X-ray irradiation in vacuum, 1'l'orrlle, and air was investigated, and it was found that in vacuum it was 0. Although there was an increase of about IC, ITOrrHe
In air, the temperature was below the lower measurement limit (O, OSo). By the way, when we investigated the temperature rise of existing polyimide with a thickness of 3 μm under similar conditions, we found that the temperature rise was about 1.2 CX in vacuum and about 0.2 C in air.

これによってダイヤモンド實を中心組成とする炭素マス
クの温度変化が小さく従って寸法安定性が高いことを証
明された。
This proves that the carbon mask, whose main composition is diamond, has small temperature changes and high dimensional stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を通用したプレーナマグネトロンスパッ
タ装置の原理図、1@2図は本発明を適用したイオンビ
ームスパッタ装置の原理図、第3図は本発明を通用した
マスク作成プロセスを示す図でおる。 11 図 ′lil!12I21 茅 3 図
Fig. 1 is a diagram showing the principle of a planar magnetron sputtering device to which the present invention is applied, Figure 1@2 is a diagram showing the principle of an ion beam sputtering device to which the present invention is applied, and Fig. 3 is a diagram showing a mask making process to which the present invention is applied. I'll go. 11 Figure 'lil! 12I21 Kaya 3 Figure

Claims (1)

【特許請求の範囲】[Claims] ダイヤモンドまたはダイヤモンドと無定形炭素の混合物
からなる薄膜をX線透過体として有することe%徴とす
るXiミリングラフィマスク。
A Xi milligraphy mask characterized by having a thin film made of diamond or a mixture of diamond and amorphous carbon as an X-ray transmitter.
JP57086626A 1982-05-24 1982-05-24 Mask for x-ray lithography Pending JPS58204534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57086626A JPS58204534A (en) 1982-05-24 1982-05-24 Mask for x-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57086626A JPS58204534A (en) 1982-05-24 1982-05-24 Mask for x-ray lithography

Publications (1)

Publication Number Publication Date
JPS58204534A true JPS58204534A (en) 1983-11-29

Family

ID=13892230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57086626A Pending JPS58204534A (en) 1982-05-24 1982-05-24 Mask for x-ray lithography

Country Status (1)

Country Link
JP (1) JPS58204534A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639932A (en) * 1986-06-30 1988-01-16 Hoya Corp Mask for x-ray exposure
JPS6337619A (en) * 1986-08-01 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> X-ray mask
JPS63254727A (en) * 1987-04-10 1988-10-21 Nissin Electric Co Ltd X-ray exposure mask and manufacture thereof
JPH0247824A (en) * 1988-07-28 1990-02-16 Korea Electron Telecommun Manufacture of x-ray lithography mask utilizing amorphous carbon support film
US5111491A (en) * 1990-08-28 1992-05-05 Sumitomo Electric Industries, Ltd. X-ray lithography mask and method for producing same
WO2005034229A1 (en) * 2003-09-12 2005-04-14 Micron Technology, Inc. Transparent amorphous carbon structure in semiconductor devices
US7129180B2 (en) 2003-09-12 2006-10-31 Micron Technology, Inc. Masking structure having multiple layers including an amorphous carbon layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128031A (en) * 1981-01-30 1982-08-09 Nippon Telegr & Teleph Corp <Ntt> Exposure mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128031A (en) * 1981-01-30 1982-08-09 Nippon Telegr & Teleph Corp <Ntt> Exposure mask

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639932A (en) * 1986-06-30 1988-01-16 Hoya Corp Mask for x-ray exposure
JPS6337619A (en) * 1986-08-01 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> X-ray mask
JPS63254727A (en) * 1987-04-10 1988-10-21 Nissin Electric Co Ltd X-ray exposure mask and manufacture thereof
JPH0247824A (en) * 1988-07-28 1990-02-16 Korea Electron Telecommun Manufacture of x-ray lithography mask utilizing amorphous carbon support film
US5111491A (en) * 1990-08-28 1992-05-05 Sumitomo Electric Industries, Ltd. X-ray lithography mask and method for producing same
WO2005034229A1 (en) * 2003-09-12 2005-04-14 Micron Technology, Inc. Transparent amorphous carbon structure in semiconductor devices
US7129180B2 (en) 2003-09-12 2006-10-31 Micron Technology, Inc. Masking structure having multiple layers including an amorphous carbon layer
US7132201B2 (en) 2003-09-12 2006-11-07 Micron Technology, Inc. Transparent amorphous carbon structure in semiconductor devices
US7220683B2 (en) 2003-09-12 2007-05-22 Micron Technology, Inc. Transparent amorphous carbon structure in semiconductor devices
US7298024B2 (en) 2003-09-12 2007-11-20 Micron Technology, Inc. Transparent amorphous carbon structure in semiconductor devices
US7341957B2 (en) 2003-09-12 2008-03-11 Micron Technology, Inc. Masking structure having multiple layers including amorphous carbon layer

Similar Documents

Publication Publication Date Title
Smith Fabrication techniques for surface-acoustic-wave and thin-film optical devices
JPH0764273A (en) Phase shift mask
US4701391A (en) Mask with magnesium diaphragm for X-ray lithography
JPS58204534A (en) Mask for x-ray lithography
US4994141A (en) Method of manufacturing a mask support of SiC for radiation lithography masks
JPS5842003A (en) Polarizing plate
Johnson et al. Radiation damage effects in boron nitride mask membranes subjected to x‐ray exposures
JP3229446B2 (en) Halftone phase shift photomask and blank for halftone phase shift photomask
JPH0689847A (en) X-ray mask structure and its manufacture, x-ray exposure using the structure, and device manufactured by using the structure
US5882826A (en) Membrane and mask, and exposure apparatus using the mask, and device producing method using the mask
KR100211012B1 (en) Lithographic mask structure and method of producing the same and manufacturing device
Maier-Komor et al. Thickness calibration of carbon foils
US5035478A (en) Material for micro optical component and optical component using the same
JPS60122944A (en) Manufacture of mask for making pattern
JPS6430220A (en) Alignment mark
JPS6013432B2 (en) Method for forming Al or Al alloy pattern
Noguchi et al. Fabrication of x-ray mask from a diamond membrane and its evaluation
Shoki et al. Accelerated radiation damage studies of antireflection materials on SiC x‐ray mask membrane
Okuyama et al. Synchrotron irradiation stability of x-ray masks utilizing stress-free W-Ti absorbers and SiC membranes
JPH0294421A (en) X-ray exposure mask
Hawryluk Transmission diffraction gratings for soft x-ray spectroscopy and spatial period division
JPS5826018B2 (en) Method for creating colored transparent photomask blank material using ion plating method
JPH08167555A (en) X-ray mask, manufacture therefor, and producing method of device using x-ray mask
JPH03208329A (en) X-ray mask, method of correcting x-ray mask, and x-ray exposure system
JPH0572737A (en) Chemical amplification type resist and production of mask for exposing using this resist