JPS58204122A - Surface hardening method of steel material - Google Patents
Surface hardening method of steel materialInfo
- Publication number
- JPS58204122A JPS58204122A JP57086868A JP8686882A JPS58204122A JP S58204122 A JPS58204122 A JP S58204122A JP 57086868 A JP57086868 A JP 57086868A JP 8686882 A JP8686882 A JP 8686882A JP S58204122 A JPS58204122 A JP S58204122A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- heating
- temperature
- primary
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
- C21D1/10—Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は誘導加熱による鋼材の表面焼入n方法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface hardening steel materials by induction heating.
鋼材、例えば軸状鋼材の所定部位に表面焼入社を施す場
合には、第1図に示すように、鋼材1をその外径よシ若
干大きい適宜径に巻いた加熱コイル2内に挿入した状態
にて加熱コイル2に高周波電流を通じ、鋼材1の所定部
位の表面層を焼入れに必要な所定温度にまで昇温し、然
る後に鋼材1を移動させ(図においては上昇させ)、加
熱コイル2に近接配置(図においては加熱コイル2の上
方に配置)さnている冷却リング3内に前記所定部位を
位置させ、該冷却リング3によシ注水冷却することによ
り、鋼拐1の所定部位に表面焼入社を施す方法がとらす
る。When surface hardening is applied to a predetermined portion of a steel material, for example, a shaft-shaped steel material, as shown in FIG. A high-frequency current is passed through the heating coil 2 to raise the temperature of the surface layer of a predetermined portion of the steel material 1 to a predetermined temperature required for hardening, and then the steel material 1 is moved (raised in the figure) and the heating coil 2 is heated. By positioning the predetermined portion in a cooling ring 3 which is disposed close to the heating coil 2 (in the figure, placing it above the heating coil 2), and cooling the predetermined portion by injecting water into the cooling ring 3, the predetermined portion of the steel plate 1 is cooled. The method is to apply surface hardening to the surface.
斯かる表面焼入れ方法において、誘導加熱の条件はその
一次電圧を一定にするのが普通であるが、そのような条
件にて鋼材1を加熱する場合には、鋼材lはその外表面
に近い表面層から発熱し、昇温していき、更に昇温し続
けてその温度がキュリ一点を越えると加熱コイル2と鋼
材1との間の磁気的結合が弱くなるので、負荷力率が低
下することとなり、一定の一次電圧にて鋼材1を誘導加
熱しても鋼材1の昇温に寄与する電力は漸減していき、
経時的に暖か熱状態になっていく。また鋼材1の表面層
の温度がキュリ一点を越えるとその内部側のキュリ一点
を越えていない部分に誘起電流が流扛やすくなるので、
次第に鋼材1の内部側が加熱さnることとなる。従って
鋼材lの表面層の温度を焼入扛に必要な所定温度にまで
加熱する間に鋼材1表面より深い箇所が相当高温にまで
なってしまうこととなり、加熱後において鋼材1全その
外表面から水冷することにより抜熱しても鋼材lの内部
から外表面へ熱伝導による熱流が発生し、鋼材1の表面
層における冷却速度が遅くなり、鋼材1の表面硬度が低
く焼入n硬化深度も深くする 。In such a surface hardening method, the induction heating conditions are usually such that the primary voltage is constant; however, when heating the steel material 1 under such conditions, the steel material 1 has a surface close to its outer surface. Heat is generated from the layer, the temperature rises, and when the temperature continues to rise and the temperature exceeds the Curie point, the magnetic coupling between the heating coil 2 and the steel material 1 becomes weaker, so the load power factor decreases. Therefore, even if the steel material 1 is heated by induction at a constant primary voltage, the electric power contributing to the temperature rise of the steel material 1 gradually decreases.
It becomes warmer and hotter over time. In addition, when the temperature of the surface layer of the steel material 1 exceeds the Curie point, the induced current tends to flow in the inner part that does not exceed the Curie point.
The inside of the steel material 1 will gradually become heated. Therefore, while the temperature of the surface layer of the steel material 1 is heated to the predetermined temperature required for quenching, parts deeper than the surface of the steel material 1 reach a considerably high temperature. Even if heat is removed by water cooling, a heat flow is generated from the inside of the steel material 1 to the outer surface due to thermal conduction, and the cooling rate in the surface layer of the steel material 1 is slow, and the surface hardness of the steel material 1 is low and the hardening depth is also deep. do .
ことができない。I can't.
本発明は斯かる事情に鑑みてなさnたものであり、鋼材
の表面焼入n方法において、鋼材の表面層における加熱
後の冷却速度を速くし、鋼材の焼入れ硬化深度を深くす
ることを目的とする。The present invention was made in view of the above circumstances, and an object of the present invention is to increase the cooling rate after heating in the surface layer of the steel material and deepen the quench hardening depth of the steel material in a method for surface hardening of steel materials. shall be.
本発明に係る鋼材の表面焼入n方法は、鋼材表面を誘導
加熱した後、急冷することにより鋼材に表面焼入nを施
す方法において、加熱のための一次電力(−次電流゛×
−次電圧×負荷力率)を、加熱開始時から又は加熱中途
から経時的に増加させることを特徴とする。The surface hardening method for steel materials according to the present invention is a method in which the surface of the steel material is induction heated and then rapidly cooled to subject the surface hardening to the steel material.
- next voltage x load power factor) is increased over time from the start of heating or from the middle of heating.
次に本発明方法に係る条件を限定するために行った調査
の結果を示す図面に基づいて詳述する。Next, a detailed description will be given based on drawings showing the results of an investigation conducted to limit the conditions related to the method of the present invention.
第2図(a) (b)(c)は第1図に示した方法にて
鋼材の所定部位に表面焼入れを施すべく誘導加熱を行う
場合の一次電力パターンをその最大値が1となるように
正規化して示したグラフであシ、横軸に時間をとり、縦
軸に一次′亀力をとって示している。(a)の−次電力
パターンはその一次電力を加熱開始時に最大値として漸
減させ、加熱後半においては一定の条件とするものであ
!D、(b)の−次電力パターンはその一次電力を加熱
中、常に一定の条件とするものであり、(C)の−次電
力パターンはその一次電力を加熱前半において最大値の
約30%の電力にて一定に保ち、加熱後半においては、
漸増させて加熱終了時に最大値とするものである。(b
)の条件が従来から行わnている条件に近く、また(c
)の条件が後述するように優れておシ、本発明に係る条
件である。Figure 2 (a), (b), and (c) show the primary power pattern when induction heating is performed to surface harden a predetermined part of a steel material using the method shown in Figure 1, so that the maximum value is 1. This is a normalized graph, with time plotted on the horizontal axis and primary force on the vertical axis. In the negative power pattern of (a), the primary power is set to a maximum value at the start of heating and gradually decreases, and is kept constant in the second half of heating! D, the -order power pattern in (b) keeps the primary power constant during heating, and the -order power pattern in (C) keeps the primary power at approximately 30% of the maximum value in the first half of heating. The power is kept constant during the second half of heating.
The temperature is gradually increased to reach the maximum value at the end of heating. (b
) is close to the conventional conditions, and (c
) are excellent conditions according to the present invention, as will be described later.
第3図(a)(b)(C)は第2図(a) (b) (
C)夫々に示す一次電力パターンにて夫々加熱した場合
の加熱終了時における鋼材の温度分布を、横軸に鋼材表
面からの深さをと9、縦軸に鋼材の温度をとって示して
い□
る。図よC(b)の条件即ち加熱時の一次電力を常に一
定とする条件又は(a)の条件即ち一次電力を経時的に
低減させる条件にて鋼材を加熱した場合は、鋼材の表面
から内部への温度勾配が緩やかになっているのに対し、
(C)の条件即ち加熱時の一次電力を加熱中途から経時
的に増加させる条件にて鋼材を加熱した場合は、鋼材の
表面から内部への温度勾配が急峻になっていることが分
かる。こ扛は、誘導加熱により鋼材表面層が加熱さ扛て
その温度がキュリ一点を越えた後、その内部側へ誘起電
流が流れやすくなり、その内部側が加熱されやすくなる
こと、またその熱が鋼材表面層へ伝導することにより、
鋼材の表面から内部への温度勾配が緩和さnる傾向を、
(c)の条件にて、即ち加熱時の一次電力を経時的に増
加させて鋼材表面を急熱することにより回避することが
できるからである。Figure 3 (a) (b) (C) is shown in Figure 2 (a) (b) (
C) The temperature distribution of the steel material at the end of heating when heated with each of the primary power patterns shown in each case is shown, with the horizontal axis representing the depth from the surface of the steel material9 and the vertical axis representing the temperature of the steel material □ Ru. If a steel material is heated under the condition shown in Figure C (b), that is, the condition in which the primary power during heating is always constant, or the condition in (a), that is, the condition that the primary power is reduced over time, from the surface of the steel material to the inside. While the temperature gradient to
It can be seen that when the steel material is heated under the condition (C), that is, the primary power during heating is increased over time from the middle of heating, the temperature gradient from the surface to the inside of the steel material becomes steep. This is because after the surface layer of the steel material is heated by induction heating and its temperature exceeds a single point, an induced current flows more easily to the inside of the steel material, which becomes more likely to be heated, and that heat is transferred to the steel material. By conducting to the surface layer,
The tendency of the temperature gradient from the surface to the inside of the steel material to be relaxed,
This is because it can be avoided under the condition (c), that is, by increasing the primary power during heating over time to rapidly heat the surface of the steel material.
第4図(a) (b) (c)は第2図(a) (1:
、) (c)に示す一次電力パターンにて夫々加熱した
場合の加熱終了後、冷却過程における鋼材の表面からの
深さが異なる各部分の温度の経時的変化を、横軸に時間
をと9、縦軸に温度をとって示している。図において、
実線は鋼材表面の部分、破線は表面から211mの深さ
の部分、一点鎖線は表面から4鰭の深さの部分、二点鎖
線は表面から6 amの深さの部分、三点鎖線は表面か
らs mmの深さの部分についてのデータを夫々示して
いる。なお第4図の(a) (b) (Q)は第2図の
(a)Cb)、(C)に夫々対応している。図よシ、例
えは鋼材表面から4鰭の深さの部分の8oO℃から35
0℃1での冷却時間は(a)の場合で11.5秒、(b
)の場合で10.8秒、(C)の場合で7.5秒である
ことが分かる。この結果からも(C)の条件の如く、加
熱のだめの一次電力を加熱中途から経時的に増加させる
こととすれば加熱後の鋼材表面層の冷却速度を速くする
ことができ、鋼材の焼入n硬化深度を深くすることがで
きることが分かる。Figure 4 (a) (b) (c) is shown in Figure 2 (a) (1:
,) The horizontal axis represents the change in temperature of each part at different depths from the surface of the steel material over time during the cooling process after heating is completed when heating is performed using the primary power pattern shown in (c). , temperature is shown on the vertical axis. In the figure,
The solid line is the part of the steel surface, the dashed line is the part 211 m deep from the surface, the one-dot chain line is the part 4 fins deep from the surface, the two-dot chain line is the part 6 am deep from the surface, and the three-dot chain line is the surface The data are shown for a depth of s mm from . Note that (a), (b), and (Q) in FIG. 4 correspond to (a), Cb), and (C) in FIG. 2, respectively. For example, from 8oO℃ to 35℃ at a depth of 4 fins from the steel surface.
The cooling time at 0℃1 is 11.5 seconds in case (a), (b
), it is 10.8 seconds, and in case (C), it is 7.5 seconds. This result also shows that if the primary power of the heating tank is increased over time from the middle of heating as in condition (C), the cooling rate of the surface layer of the steel material after heating can be increased, and the quenching of the steel material can be increased. It can be seen that the curing depth can be increased.
次に本発明方法の実施例について説明する。第5図は本
発明方法により、機械構造用炭素鋼(:rxs規格:
538c)からなシ、外径が110mmである丸棒の所
定部位に対し、表面焼入社を施した結果を、従来法によ
る場合と対比させて示したものである。Next, examples of the method of the present invention will be described. Figure 5 shows how carbon steel for machine structures (rxs standard:
538c), the results of surface hardening applied to a predetermined portion of a round bar with an outer diameter of 110 mm are shown in comparison with the conventional method.
図は横軸に鋼材表面からの深さをと9、縦軸にビッカー
ス硬さをとって鋼材の硬さ分布を示したものであシ、実
線は本発明方法による場合、破線は従来法による場合を
夫々示している。図よりビッカース硬さが400である
部分の深さを検討するに、従来法による場合に比して本
発明方法による場合は、約111m深くなっていること
が分かる。この深さは通常4 mm前後であるので本発
明方法により1111m程度深くなることにより、鋼材
の強度を向上させる上で多大の効果がある。The figure shows the hardness distribution of the steel material, with the horizontal axis representing the depth from the surface of the steel material, and the vertical axis representing the Vickers hardness. Each case is shown. Examining the depth of the part where the Vickers hardness is 400 from the figure, it can be seen that it is approximately 111 m deeper in the case of the method of the present invention than in the case of the conventional method. Since this depth is usually around 4 mm, the method of the present invention increases the depth to about 1111 m, which has a great effect on improving the strength of the steel material.
なお本発明方法における加熱時の一次電力を増加させる
方法としては、鋼材表面の温度がキュリ一点に達するま
では一定とし、その温度がキュリ一点に達した後に経時
的に増加させる方法、即ち第2図(c)に示した条件に
おいて電力を変化させる時期を鋼材表面温度がキュリ一
点に達した時期とする加熱法が鋼材加熱を均一にし、焼
入n後の品質を安定させる上で最も好ましい。しかし加
熱開始時から一次電力を経時的に増加させることとして
も有効である。また加熱時の一次電力を増加させる方法
として、第2図(c)に示したような連続的に増加させ
る方法でなく、段階的に増加させる方法としてもよい。In addition, as a method for increasing the primary power during heating in the method of the present invention, the temperature of the surface of the steel material is kept constant until it reaches the single point, and then it is increased over time after the temperature reaches the single point, that is, the second method. A heating method in which the power is changed under the conditions shown in Figure (c) at the time when the surface temperature of the steel material reaches the single point is most preferable in terms of uniform heating of the steel material and stable quality after quenching. However, it is also effective to increase the primary power over time from the start of heating. Further, as a method of increasing the primary power during heating, a method of increasing it stepwise may be used instead of a method of increasing it continuously as shown in FIG. 2(c).
以上詳述した如く、本発明は鋼材に表面焼入社を施す場
合に、加熱のための一次電力を加熱開始時から又は加熱
中途から経時的に増加させることにより、鋼材の表面層
における加熱後の冷却速度を速くすることができるので
、鋼材の焼入′n硬化深度を深くすることが可能となり
、その結果、加熱電力の削減も可能となる。従って本発
明は鋼材を表面焼入nを施して使用する場合にその強度
を向上させることが可能となり、鋼材の機械構造用等の
用途を増大させることとなる。As described in detail above, the present invention, when surface hardening a steel material, increases the primary power for heating from the start of heating or from the middle of heating over time, so that the surface layer of the steel material can be heated. Since the cooling rate can be increased, it is possible to deepen the hardening depth of the steel material, and as a result, it is also possible to reduce heating power. Therefore, the present invention makes it possible to improve the strength of steel materials when they are used after surface hardening, thereby increasing the use of steel materials for mechanical structures and the like.
第1図は鋼材に表面焼入れを施している状態を示す模式
図、第2図(a)(b)(c)は鋼材に表面焼入nを施
すべく誘導加熱する場合の加熱条件を示すグラフ、第3
図(a) (b) (C)は鋼材を誘導加熱した場合の
加熱終了時における鋼材の温度分布を示すグラフ、第4
図(a) (b) (C)は鋼材を誘導加熱した後の冷
却過程□
における鋼材温度の経時的変化を示すグラフ、第5図は
本発明方法の効果を示すグラフである。
1・・・鋼材 2・・・加熱コイル 3・・・冷却リン
グ時間(枦j)
簿1硲 算 23算 5
目Fig. 1 is a schematic diagram showing a state in which a steel material is surface hardened, and Fig. 2 (a), (b), and (c) are graphs showing heating conditions when induction heating is applied to surface hardening a steel material. , 3rd
Figures (a), (b), and (C) are graphs showing the temperature distribution of the steel material at the end of heating when the steel material is induction heated.
Figures (a), (b), and (c) are graphs showing changes in steel material temperature over time during the cooling process □ after induction heating of the steel material, and Fig. 5 is a graph showing the effect of the method of the present invention. 1... Steel material 2... Heating coil 3... Cooling ring time (枦j) Book 1 calculation 23 calculation 5
eye
Claims (1)
材に表面焼入nを施す方法において、加熱のための一次
電力を、加熱開始時から又は加熱中途から経時的に増加
させることを特徴とする鋼材の表面焼入n方法。1. A method of surface hardening a steel material by induction heating and then rapid cooling, characterized in that the primary power for heating is increased over time from the start of heating or from the middle of heating. Method for surface hardening of steel materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57086868A JPS58204122A (en) | 1982-05-21 | 1982-05-21 | Surface hardening method of steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57086868A JPS58204122A (en) | 1982-05-21 | 1982-05-21 | Surface hardening method of steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58204122A true JPS58204122A (en) | 1983-11-28 |
Family
ID=13898793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57086868A Pending JPS58204122A (en) | 1982-05-21 | 1982-05-21 | Surface hardening method of steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58204122A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013532233A (en) * | 2010-07-02 | 2013-08-15 | アクティエボラゲット・エスコーエッフ | Machine component and surface hardening method |
-
1982
- 1982-05-21 JP JP57086868A patent/JPS58204122A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013532233A (en) * | 2010-07-02 | 2013-08-15 | アクティエボラゲット・エスコーエッフ | Machine component and surface hardening method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3257865A (en) | Crankshafts | |
US2424794A (en) | Surface hardening of ferrous metal by self-quenching | |
JP5026175B2 (en) | Workpiece manufacturing method | |
JPS58204122A (en) | Surface hardening method of steel material | |
JP3557327B2 (en) | Steel member manufacturing method | |
JPH03274221A (en) | Method and apparatus for high-frequency shifting quenching and tempering | |
JPS5839729A (en) | Partial tempering method for carburized and hardened parts | |
US3231434A (en) | Method of surface hardening steel bodies of revolution | |
JPH04183822A (en) | Method for heating metal wire | |
JPS6048565B2 (en) | High frequency heat treatment method | |
JPS58213828A (en) | Induction hardening method of inside surface of bottomed cylindrical body | |
JPH0237406B2 (en) | ||
JP3159478B2 (en) | Method for uniform heating of steel ball surface | |
US3167460A (en) | Method of surface-hardening steel workpieces in the form of bodies of revolution | |
JPH05320741A (en) | Induction heat treatment of cylindrical parts | |
JPH01184234A (en) | Production of coil spring having high fatigue strength | |
JPS60224714A (en) | Method for cooling member to be induction-hardened | |
JPH0565620A (en) | Surface hardening method of titanium or titanium alloy | |
JPS6127445B2 (en) | ||
Sherman | Case hardening by megacycle induction heating | |
JPH0656793B2 (en) | Heat treatment device with automatic temperature control heater | |
US2433627A (en) | Treatment of metals | |
KR0162029B1 (en) | Surface hardening method of hot rolling roll | |
JPH03140414A (en) | Method for annealing iron core | |
JPS60145323A (en) | Heat treatment of flywheel |