JPS58202850A - Photoelectric property measuring device for photoelectric converter - Google Patents

Photoelectric property measuring device for photoelectric converter

Info

Publication number
JPS58202850A
JPS58202850A JP8673682A JP8673682A JPS58202850A JP S58202850 A JPS58202850 A JP S58202850A JP 8673682 A JP8673682 A JP 8673682A JP 8673682 A JP8673682 A JP 8673682A JP S58202850 A JPS58202850 A JP S58202850A
Authority
JP
Japan
Prior art keywords
light source
spectral
test
conversion element
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8673682A
Other languages
Japanese (ja)
Other versions
JPH039413B2 (en
Inventor
Shigeru Horii
滋 堀井
Yoshiharu Osaki
吉晴 大崎
Hideo Nishiyama
西山 英夫
Teruaki Shigeta
照明 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8673682A priority Critical patent/JPS58202850A/en
Publication of JPS58202850A publication Critical patent/JPS58202850A/en
Publication of JPH039413B2 publication Critical patent/JPH039413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To permit to attain photoelectric output by obtaining luminous intensity on the surface of photoelectric converter and an exposure amount conversion factor. CONSTITUTION:Radiation from a reference light source 1 is separated into its spectral components by a monochromator 2 for each unit wave length and then converted to an electrical signal by a tested photoelectric converter 3. This photoelectric output for each unit wave length is transmitted to a tested photoelectric converter spectral sensitivity storing section 10. A measuring light amount arithmetic section 4 receives the data from a tested light source spectral radiation intensity storing section 7 and a reference light source spectral radiation intensity storing section 8 to multiply those data together for each unit time. Similarly, a radiation amount arithmetic section 5 multiplies the data from the storing sections 7, 8 and 10 together for each wave length. Next, outputs from the arithmetic sections 4, 5 are sent to an exposure amount conversion factor arithmetic section 6, where the ratio of outputs from both arithmetic section 5 and 4 are calculated to obtain an exposure amount conversion factor.

Description

【発明の詳細な説明】 本発明は分光感度がそれぞれ異にる光電変換素子に対し
て、分光分布の異なる光源の放射を測光量をもとに定量
化する測光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photometric device that quantifies radiation from light sources with different spectral distributions for photoelectric conversion elements having different spectral sensitivities based on photometric amounts.

主に可視光に分光分布をもつ光源の放射は通常測光量と
して取扱われ、分光感度が標準比視感度に合致した受光
器により測定される。これにより光源の分光分布のいか
んを問わず、光源間の放射比較が容易にできる。
The radiation of a light source with a spectral distribution mainly in visible light is usually treated as a photometric quantity, and is measured by a photoreceiver whose spectral sensitivity matches the standard luminous efficiency. This makes it easy to compare radiation between light sources, regardless of the spectral distribution of the light sources.

これに対して、標準比視感度に合致しない一般の光電変
換素子の光電出力は通常、単位放射照度に対する光電流
で表わされる。一般に放射照度を測定するにはサーモパ
イルやボロメータなど放射による温度上昇を測定するタ
イプの受光器が知られるが、測定対象物からの放射と背
景放射との分S−校正に時間を要するなどの点で実用上
問題が多い0 したがって前記光電変換素子の光電出力は実用上単位照
度に対応した光電流(ム/Ix)で表わされる。この場
合、照度計を光電変換素子の分光感度が食違うため、光
源の分光分布が異なる光源に対しては同じ照度値であっ
ても、光電変換素子の光電出力は異なった値をとる。壕
だ逆に照度が異なっていても光電変換素子の光電出力は
同じ値をとることがある。すなわち、光電変換素子の種
類と光源の種類に応じて、おのおのの光電出力は様々に
変動する。したがって、これらの値を求めるには、それ
ぞれの光電変換素子と光源を用意して実測しなけれ′ば
ならず、その都度繁雑な作業を伴なう欠点を有する。
On the other hand, the photoelectric output of a general photoelectric conversion element that does not meet the standard luminous efficiency is usually expressed as a photocurrent per unit irradiance. Generally, to measure irradiance, there are known types of receivers that measure temperature rise due to radiation, such as thermopiles and bolometers, but they have drawbacks such as the difference between the radiation from the object to be measured and the background radiation, which requires time for calibration. Therefore, the photoelectric output of the photoelectric conversion element is practically expressed as a photocurrent (mu/Ix) corresponding to unit illuminance. In this case, since the spectral sensitivities of the illuminance meter and the photoelectric conversion element differ, the photoelectric output of the photoelectric conversion element takes different values even if the illuminance value is the same for light sources with different spectral distributions. Conversely, the photoelectric output of a photoelectric conversion element may take the same value even if the illuminance is different. That is, each photoelectric output varies depending on the type of photoelectric conversion element and the type of light source. Therefore, in order to obtain these values, it is necessary to prepare and actually measure each photoelectric conversion element and light source, which has the disadvantage of requiring complicated work each time.

本発明は前記従来の欠点をなくした新しい光電特性測定
装置に関するもので以下にその詳細を説明する01mニ 一般に光電変換素子は電荷蓄積形と非蓄積形に分類でき
る。前者は固体撮像素子、各種感光材料、後者はシリコ
ン光電池などで代表される。上記光電変換素子のうち電
荷蓄積形を例にとって以下に説明するが、非蓄積形につ
いても同様の扱いができる。
The present invention relates to a new photoelectric characteristic measuring device which eliminates the above-mentioned drawbacks of the conventional method, and the details thereof will be explained below.In general, photoelectric conversion elements can be classified into charge storage type and non-storage type. The former is represented by solid-state image sensors and various photosensitive materials, and the latter is represented by silicon photovoltaic cells. Of the photoelectric conversion elements described above, a charge storage type will be described below as an example, but non-storage types can also be treated in the same way.

電荷蓄積形の光電変換素子の感度を表わすには一般に飽
和露光量(lX−8)が用いられる。い捷基準光源の下
でI IXの時と試験光源の下で1/KeIXの時にと
もに試験光電変換素子の飽和露光量すなわち光電出力が
等しいとする。この時、照度計の出力11.]E2は、
基準光源下で ′E1 =  S Pテ(λ)V(λ)dλ     
      ・・・・・・・・・・・・(1)試験光源
下で に2=(Po(λ)V(λ)dλ   ・・・・・・・
・・・・・(2)となる。また試験光電変換素子の出力
X5.E4は基準光源下で 試験光源下で ここに、Po(λ)は基準光源の相対分光分布。
Saturation exposure (1X-8) is generally used to express the sensitivity of a charge storage type photoelectric conversion element. It is assumed that the saturation exposure amount, that is, the photoelectric output, of the test photoelectric conversion element is equal both when IIX under the standard light source and when 1/KeIX under the test light source. At this time, the output of the illumination meter is 11. ]E2 is
Under the reference light source 'E1 = S Pte (λ) V (λ) dλ
・・・・・・・・・・・・(1) Under the test light source 2=(Po(λ)V(λ)dλ ・・・・・・・・・
...(2). Also, the output of the test photoelectric conversion element X5. E4 is here under the reference light source and under the test light source, Po(λ) is the relative spectral distribution of the reference light source.

Py(λ)は試験光源の相対分光分布である。また、■
(λ)は標準比視感度、S(λ)は試験光電変換素子の
相対分光感度、lcl、E2は照度計出力、 E5,1
4は試験光電変換素子の出力を表わす。(1) I (
2) 9 (315(4)式から(6)式が得られる。
Py(λ) is the relative spectral distribution of the test light source. Also,■
(λ) is the standard luminous efficiency, S (λ) is the relative spectral sensitivity of the test photoelectric conversion element, lcl, E2 is the illumination meter output, E5,1
4 represents the output of the test photoelectric conversion element. (1) I (
2) 9 (315 Equation (6) is obtained from Equation (4).

(6)式において基準光源の分光分布Po(λ)を標準
光源ムに定めると、KeはPt(λ)とS(λ)の函数
になる。
In equation (6), when the spectral distribution Po(λ) of the reference light source is set to the standard light source, Ke becomes a function of Pt(λ) and S(λ).

このKeを露光量換算係数と呼ぶことにする。ただし、
(3)式における4つの積分値はすべて零でないこと、
すなわち、試験光源の分光分布および試験受光器の分光
感度の一部が可祈波長域にあることが条件で、たとえば
反射形原稿を取扱うファクシミリ、電子複写機、光学文
字読取り装置などの情報読取り装置の光源および光電変
換素子の場合などに適用できる。
This Ke will be referred to as an exposure amount conversion coefficient. however,
All four integral values in equation (3) are not zero;
In other words, the condition is that the spectral distribution of the test light source and the spectral sensitivity of the test light receiver are partly in the acceptable wavelength range. It can be applied to light sources and photoelectric conversion elements.

以上のような検討にもとづき、試験光源に対して光電変
換素子の面上の照度値にKeをかけた値が、その光電変
換素子に標準光源ムの光を照射した時の照度値に対応さ
せることができる、このような理論にもとづけば、ある
光電変換素子の分光感度を求めておくと異なる分光分布
をもつ光源に対してわざわざとの光電変換素子の光電出
力を測定しなくても、その光電変換素子面上の照度と露
光量換算係数を求めることによシ、その光電出力を求め
ることができる。
Based on the above considerations, the value obtained by multiplying the illuminance value on the surface of the photoelectric conversion element by Ke for the test light source corresponds to the illuminance value when the photoelectric conversion element is irradiated with light from the standard illuminant. Based on this theory, if you calculate the spectral sensitivity of a certain photoelectric conversion element, you can calculate it without having to take the trouble of measuring the photoelectric output of the photoelectric conversion element for light sources with different spectral distributions. , the photoelectric output can be determined by determining the illuminance on the surface of the photoelectric conversion element and the exposure amount conversion coefficient.

このような考えにもとづいて光電変換素子の露光量換算
係数を求める装置について実施例を上げて説明する。
Based on this idea, an apparatus for determining the exposure amount conversion coefficient of a photoelectric conversion element will be described with reference to an embodiment.

第1図は、本発明の基本構成図を示す。本発明は、基準
光源1、分光器2、試験光電変換素子3゜試験光電変換
素子分光感度記憶部1o、試験光源分光放射強度記憶部
7、基準光源分光放射強度記憶部8、測光量演算部4、
放射量演算部6、露光量換算係数演算部6および表示部
9から構成する。
FIG. 1 shows a basic configuration diagram of the present invention. The present invention comprises a reference light source 1, a spectroscope 2, a test photoelectric conversion element 3°, a test photoelectric conversion element spectral sensitivity storage section 1o, a test light source spectral radiant intensity storage section 7, a reference light source spectral radiance intensity storage section 8, and a photometric amount calculation section. 4,
It consists of a radiation amount calculation section 6, an exposure amount conversion coefficient calculation section 6, and a display section 9.

第2図は、試験光電変換素子分光感度記憶部1゜の内部
を示したもので、ム/D変換器10a、分光感度演算回
路10b、メモIJ 10 Cから構成する。
FIG. 2 shows the inside of the test photoelectric conversion element spectral sensitivity storage unit 1°, which is composed of a MU/D converter 10a, a spectral sensitivity calculation circuit 10b, and a memo IJ 10C.

第3図は測光量演算部4の内部を示したもので、標準比
視感度メモIJ 4 a、乗算器4b、4d、加算器4
c 、4e、除算器4fとから構成する。
FIG. 3 shows the inside of the photometric amount calculation unit 4, which includes a standard luminous efficiency memo IJ 4a, multipliers 4b and 4d, and an adder 4.
c, 4e, and a divider 4f.

第4図は放射量演算部5の内部を示しだもので、乗算器
5a、5c、加算器sb、sd、除算器6eから構成す
る。
FIG. 4 shows the inside of the radiation amount calculation section 5, which is composed of multipliers 5a and 5c, adders sb and sd, and a divider 6e.

基準光源1の放射は分光器2によって単位波長ごとに分
光され、試験光電変換素子3で電気信号に変換される。
The radiation from the reference light source 1 is separated into wavelengths by a spectroscope 2, and converted into electrical signals by a test photoelectric conversion element 3.

この単位波長ごとの光電出力は、試験光電変換素子分光
感度記憶部10に伝達される。試験光電変換素子分光感
度記憶部1oではム/D変換器10 aにより単位波長
ごとにディジタル化され、分光感度演算回路1obで、
基準光源の分光放射強度、分光器の波長別透過特性を補
正して、試験光電変換素子3の分光感度をメモリ10 
cに記憶する。
This photoelectric output for each unit wavelength is transmitted to the test photoelectric conversion element spectral sensitivity storage section 10. In the test photoelectric conversion element spectral sensitivity storage section 1o, each unit wavelength is digitized by the MU/D converter 10a, and in the spectral sensitivity calculation circuit 1ob,
The spectral sensitivity of the test photoelectric conversion element 3 is stored in the memory 10 by correcting the spectral radiation intensity of the reference light source and the wavelength-specific transmission characteristics of the spectrometer.
Store in c.

次に、測光量演算部4で畔、標準比視感度メモリ4・に
標準比視感度に相諷する各単位波長ごとのデータをディ
ジタル値で記憶させておき、試験光源分光放射強度記憶
部7からのデータ(ディジタル値)を受は入れて各単位
波長ごとにかけ合わせる。すなわち1乗算器4bでは試
験光源分光放射強度記憶部7からの試験光源分光放射強
度データと、標準比視感度メモリ4aからのデータとを
波長ごとにかけ合わせる。さらに加算器4cで各波長の
積を加算する。その結果、加算器4cからは、 光源分光放射強度記憶部8からのデータと標準比視感度
メモリ4aからのデータとを波長ごとにかけ合わせ、さ
らに加算器4eで各波長の積を加算する。その結果、加
算器4eからは、 なる出力が得られる。
Next, in the photometric quantity calculating section 4, data for each unit wavelength that is compatible with the standard luminous efficiency is stored in the standard luminous efficiency memory 4 as a digital value, and the test light source spectral radiant intensity storage section 7 The data (digital values) are received and multiplied for each unit wavelength. That is, the 1 multiplier 4b multiplies the test light source spectral radiant intensity data from the test light source spectral radiant intensity storage section 7 and the data from the standard luminous efficiency memory 4a for each wavelength. Further, an adder 4c adds the products of each wavelength. As a result, the adder 4c multiplies the data from the light source spectral radiation intensity storage section 8 and the data from the standard luminous efficiency memory 4a for each wavelength, and the adder 4e adds the products of each wavelength. As a result, the following output is obtained from the adder 4e.

さらに、加算器4c 、4eの出力は、除算器4fで除
算され除算器4fからは、 試験光源下での照度比を示すもので定数である。
Further, the outputs of the adders 4c and 4e are divided by a divider 4f, and the output from the divider 4f is a constant, which indicates the illuminance ratio under the test light source.

同様に、放射量演算部6では、乗算器6aで試験光源分
光放射強度記憶部7からの試験光源の分光放射強度デー
タと、試験光電変換素子分光感度記憶部10からのデー
タ(ディジタル値)とを波長ごとにかけ合わせ、さらに
、加算器6bで各波長の積を加算する。その結果、加算
器6bからは、光源の分光放射強度記憶部8からのデー
タと、試験光電変換素子分光感度記憶部10からのデー
タとを波長ごとにかけ合わせ、さらに加算器6dで各波
長の積を加算する。その結果、加算器6dからは。
Similarly, in the radiation amount calculation unit 6, a multiplier 6a combines the spectral radiant intensity data of the test light source from the test light source spectral radiant intensity storage unit 7 and the data (digital value) from the test photoelectric conversion element spectral sensitivity storage unit 10. are multiplied for each wavelength, and the adder 6b adds the products of each wavelength. As a result, the adder 6b multiplies the data from the spectral radiation intensity storage section 8 of the light source and the data from the test photoelectric conversion element spectral sensitivity storage section 10 for each wavelength, and then the adder 6d multiplies the data for each wavelength. Add. As a result, from the adder 6d.

さらに、加算器sb、sdの出力は、除算器6eで除算
され、除算器6eからは、 試験光源下での試験光電変換素子の出力比を示す人ので
ある。
Further, the outputs of the adders sb and sd are divided by a divider 6e, and the output from the divider 6e is a value indicating the output ratio of the test photoelectric conversion element under the test light source.

次に測光量演算部4および放射量演算部6がらの出力は
、露光量換算係数演算部6に送られ、露光量換算係数演
算部6では、放射量演算部6と測光量演算部4との出力
比を求めることにより(6)式の計算を打力い露光量換
算係数Meを求める。
Next, the outputs of the photometric amount calculation section 4 and the radiation amount calculation section 6 are sent to the exposure amount conversion coefficient calculation section 6, and in the exposure amount conversion coefficient calculation section 6, the radiation amount calculation section 6 and the photometry amount calculation section 4 are combined. By determining the output ratio of , the calculation of equation (6) is performed to determine the exposure amount conversion coefficient Me.

さらに、この結果は表示部9で表示される。Furthermore, this result is displayed on the display section 9.

このようにして、試験光源の相対分光放射強度さえ判れ
ば1種々の光電変換素子に対して上記測定器の出力を読
めば測光量に対するその光電変換素子の感度係数が容易
に判明するー 上記装置によって得られる効果として次の2点を上げる
仁とができる。
In this way, as long as the relative spectral radiant intensity of the test light source is known, the sensitivity coefficient of the photoelectric conversion element with respect to the photometric amount can be easily determined by reading the output of the above-mentioned measuring device for each type of photoelectric conversion element. As an effect obtained by this, you can increase the following two points.

(1)従来、ある試験光電変換素子に対する飽和露光量
は光源の種類によって異なっていた。したがって飽和露
光量と光源の名称の両方を併記しないと光電出力が明ら
かにならなかった。本装置によればKeはすでに測定で
きるから、照度測定値に上記のKeをかけるだけでその
光電変換素子に基準光源(標準光源ム)の光を照射し次
時の照度値に対応させることかで&  m ff、 +
、iと光電出力との関係が系統的にもとまる、この結果
、機器に組み込まれた光源など分光放射強度の測定が困
難な光源に対しては、上記装置による露光量換算係数を
一度求めておきさえすれば照度値を別途測定するだけで
簡単にその光電出力を測定し定量化できる。
(1) Conventionally, the saturation exposure amount for a certain test photoelectric conversion element differed depending on the type of light source. Therefore, the photoelectric output could not be clarified unless both the saturation exposure amount and the name of the light source were listed. With this device, Ke can already be measured, so by simply multiplying the illuminance measurement value by the above Ke, the photoelectric conversion element can be irradiated with light from the reference light source (standard light source) to correspond to the next illuminance value. And & m ff, +
, the relationship between i and photoelectric output is determined systematically.As a result, for light sources whose spectral radiation intensity is difficult to measure, such as light sources built into equipment, it is necessary to calculate the exposure amount conversion coefficient using the above device once. As long as the photoelectric output is easily measured and quantified by separately measuring the illuminance value.

(2)マた、ある光電変換素子に対して、分光分布の異
なる光源間の光電出力の比較を行なう場合その光源が入
手できなくても分光放射強度さえわかれば、その比較は
容易にできる。また、光源に種々の色ガラスフィルタを
挿入した時の光電出力の比較も同様に容易にできる利点
を有し、情報機器用光源の評価や情報読みとり機器の光
学系の評価に絶大な効果を発揮する。
(2) Furthermore, when comparing the photoelectric output of light sources with different spectral distributions for a certain photoelectric conversion element, even if the light source is not available, the comparison can be easily made as long as the spectral radiation intensity is known. It also has the advantage of making it easy to compare the photoelectric output when various colored glass filters are inserted into the light source, making it extremely effective for evaluating light sources for information devices and optical systems for information reading devices. do.

本発明において、試験光源分光放射強度記憶部の分光放
射強度データを外部から入力できるよう′□1.1・ にすることも可能である□。また、本発明の実施例とし
てデータをディジタル値として取り扱ったがアナログ値
でも同様の効果が得られる。また、分光感度が既知の光
電変換素子を用い分光器20入射光を検出し、波長毎に
メモリすれば基準光源分光放射強度記憶部の代用ができ
る。
In the present invention, it is also possible to input the spectral radiant intensity data of the test light source spectral radiant intensity storage unit from the outside. Furthermore, although data is handled as digital values in the embodiments of the present invention, similar effects can be obtained with analog values. Furthermore, if the light incident on the spectrometer 20 is detected using a photoelectric conversion element with known spectral sensitivity and stored in memory for each wavelength, it can be used in place of the reference light source spectral radiation intensity storage section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成図、第2図は試験光電変換素
子分光感度記憶部内の構成図、第3図は測光量演算部内
の構成図、第4図は放射量演算部内の構成図を示す。 1・・−・・・基準光源、2・・・・・・分光器、3・
・用試験光電変換素子、4・・・・・・測光量演算部、
5・・・・・・放射量演算部、4a・・・・・・標準比
視感度メモリ、4b、4d。 5 a 、 5 c−−−乗算器、4c 、4e 、s
b 、5d・・・・・・加算器、4f 、5e・・・・
・・除算器、6・・川霧光量換算係数演算部、7・・・
・・・試験光源分光放射強度記憶部、8・・−・・・基
準光源分光放射強度記憶部、9・・・・・・表示部、1
o・・・・・・試験光電変換素子分光感度記憶部、10
 a・・・・・・A/D変換器、1ob・・・・・・分
光感度演算回路、1oc・・・・・・メモリ。
Figure 1 is a basic configuration diagram of the present invention, Figure 2 is a configuration diagram of the spectral sensitivity storage section of the test photoelectric conversion element, Figure 3 is a configuration diagram of the photometric amount calculation section, and Figure 4 is a configuration diagram of the radiation amount calculation section. shows. 1...Reference light source, 2...Spectrometer, 3...
・Test photoelectric conversion element, 4...Photometry calculation unit,
5...Radiation amount calculation unit, 4a...Standard luminous efficiency memory, 4b, 4d. 5a, 5c---multiplier, 4c, 4e, s
b, 5d... Adder, 4f, 5e...
... Divider, 6... River mist light amount conversion coefficient calculating section, 7...
... Test light source spectral radiant intensity storage section, 8 ... Reference light source spectral radiant intensity storage section, 9 ... Display section, 1
o...Test photoelectric conversion element spectral sensitivity storage section, 10
a...A/D converter, 1ob...spectral sensitivity calculation circuit, 1oc...memory.

Claims (1)

【特許請求の範囲】 基準光源と、この基準光源の放射量を分光する手段と、
分光した光を受光する試験光電変換素子と、試験光、電
変換素子からの出力を波長毎に分離して記憶する試験光
電変換素子分光感度記憶部と。 試験光源の分光放射強度を記憶する試験光源分光放射強
度記憶部と、基準光源の分光放射強度を記憶する基準光
源分光放射強度記憶部と、標準比視感度を記憶し、これ
と前記試験光源分光放射強度記憶部の内容および前記基
準光源分光放射強度記憶部の内容をもとに測光量を演算
する測光量演算部と、前記試験光電変換素子分光感度記
憶部、基準光源分光放射照度記憶部および試験光源分光
放射強度記憶部出力をもとに試験光電変換素子の放射量
を演算する放射量演算部と、前記測光量演算部および放
射量演算部から露光量換算係数を求める露光量換算係数
演算部から構成し、任意の分光分布をもつ光源に対して
試験光電変換素子の露光量換算係数を測定することを特
徴とする光電変換素子の光電特性測定装置。
[Claims] A reference light source, means for dispersing the amount of radiation of the reference light source,
A test photoelectric conversion element that receives separated light, and a test photoelectric conversion element spectral sensitivity storage section that separates and stores the test light and the output from the electric conversion element for each wavelength. A test light source spectral radiant intensity storage unit that stores the spectral radiant intensity of the test light source, a reference light source spectral radiant intensity storage unit that stores the spectral radiant intensity of the reference light source, and a standard relative luminous efficiency. a photometric amount calculating section that calculates a photometric amount based on the contents of the radiant intensity storage section and the contents of the reference light source spectral irradiance storage section; the test photoelectric conversion element spectral sensitivity storage section; a reference light source spectral irradiance storage section; a radiation amount calculation section that calculates the radiation amount of the test photoelectric conversion element based on the output of the test light source spectral radiation intensity storage section; and an exposure amount conversion coefficient calculation section that calculates an exposure amount conversion coefficient from the photometric amount calculation section and the radiation amount calculation section. 1. An apparatus for measuring photoelectric characteristics of a photoelectric conversion element, comprising: a light source having an arbitrary spectral distribution, and measuring an exposure amount conversion coefficient of a test photoelectric conversion element with respect to a light source having an arbitrary spectral distribution.
JP8673682A 1982-05-21 1982-05-21 Photoelectric property measuring device for photoelectric converter Granted JPS58202850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8673682A JPS58202850A (en) 1982-05-21 1982-05-21 Photoelectric property measuring device for photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8673682A JPS58202850A (en) 1982-05-21 1982-05-21 Photoelectric property measuring device for photoelectric converter

Publications (2)

Publication Number Publication Date
JPS58202850A true JPS58202850A (en) 1983-11-26
JPH039413B2 JPH039413B2 (en) 1991-02-08

Family

ID=13895099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8673682A Granted JPS58202850A (en) 1982-05-21 1982-05-21 Photoelectric property measuring device for photoelectric converter

Country Status (1)

Country Link
JP (1) JPS58202850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132705A (en) * 2005-11-08 2007-05-31 Nagano Science Kk Method and device for measuring irradiance by radiation intensity meter,
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132705A (en) * 2005-11-08 2007-05-31 Nagano Science Kk Method and device for measuring irradiance by radiation intensity meter,
JP4705457B2 (en) * 2005-11-08 2011-06-22 ナガノサイエンス株式会社 Irradiance measuring method and irradiance measuring apparatus using radiation intensity meter
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device

Also Published As

Publication number Publication date
JPH039413B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
Barnes et al. Seawifs technical report series. volume 23: Seawifs prelaunch radiometric calibration and spectral characterization
JPH10508940A (en) Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics
JP2006189445A (en) Color measurement of ambient light
JP2671414B2 (en) Spectral sensitivity correction mechanism of photoelectric colorimeter
US3537314A (en) Method and apparatus for measuring true or actual temperature of bodies by radiant energy
US4980847A (en) Temperature measuring device
Mahmoud et al. Measurement of normalized spectral responsivity of digital imaging devices by using a LED-based tunable uniform source
JPS58202850A (en) Photoelectric property measuring device for photoelectric converter
Eppeldauer Spectral response based calibration method of tristimulus colorimeters
CN111442840A (en) Spectrum response measuring method and system of integrating sphere photometer
Scheeline Smartphone technology–instrumentation and applications
JPH039412B2 (en)
JPS6140928B2 (en)
JP2010112808A (en) Optical power meter
Tsai et al. Comparison of filter radiometer spectral responsivity with the NIST spectral-irradiance and illuminance scales
Gardner Uncertainty propagation for NIST visible spectral standards
JP2762775B2 (en) Spectroscopic measurement method
Fulbright et al. JHK photometry of WD 0950+ 139
JP3293470B2 (en) Radiation thermometer
Souaidia et al. Comparison of laser-based and conventional calibrations of sun photometers
JP2683407B2 (en) Photoelectric colorimeter
Oleari Spectral‐reflectance‐factor deconvolution and colorimetric calculations by local‐power expansion
Bará Viñas et al. Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors
US3849645A (en) Atmospheric compensation radiometer system
Stromgren The composition of stars and their ages