JPS58202523A - Method of producing solid electrolytic condenser - Google Patents

Method of producing solid electrolytic condenser

Info

Publication number
JPS58202523A
JPS58202523A JP8704182A JP8704182A JPS58202523A JP S58202523 A JPS58202523 A JP S58202523A JP 8704182 A JP8704182 A JP 8704182A JP 8704182 A JP8704182 A JP 8704182A JP S58202523 A JPS58202523 A JP S58202523A
Authority
JP
Japan
Prior art keywords
capacitor
resin
solid electrolytic
molding
producing solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8704182A
Other languages
Japanese (ja)
Inventor
玉木 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP8704182A priority Critical patent/JPS58202523A/en
Publication of JPS58202523A publication Critical patent/JPS58202523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は樹脂外装を施してなる固体電解コンデンサの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor provided with a resin exterior.

一般に樹脂外装を施してなる固体電解コンデンサは吸湿
による特性劣化の危険性があるため耐湿性向上を目的と
して樹脂外装を施す前に低fI5度でしかも熱変形温度
が100°Cに満たない液状樹脂中に減圧下ま7’(は
常圧下で浸漬しコンデンサ電子のポーラスな間隙部に樹
脂を充填するようにした手段が用いられている。しかし
てこのような手段で得られたものにコンデンサ禦子のポ
ーラスな間隙部によく充填されるため水分の浸入を防止
する点において有効である。しかしながら低粘度でめる
ためコンデンサ本子外衣面には極めて畑くしか塗布され
ないと同時に熱変形温度100°C以上と低いためにY
ランスファーモールドによる樹脂外装作業時に金型温度
および樹脂の硬化発熱などの熱的ストレスが加えられた
とき電子が高温となり漏れ電流劣化を招くことがめった
。またコンデンサ禦子のポーラスな間隙部への充填を真
視する結果粘度があま夛低い場合コンデンを電子の内部
によく浸透しすぎて陰極物層間および陰極物粒子間の接
触抵抗が大となF)tanδの劣化要因となっていた。
In general, solid electrolytic capacitors coated with resin are at risk of deteriorating characteristics due to moisture absorption, so in order to improve moisture resistance, before applying the resin coat, liquid resin with a low fI of 5 degrees and a heat distortion temperature of less than 100 degrees Celsius is used. A method is used in which the resin is immersed in the capacitor under reduced pressure or normal pressure to fill the porous gaps in the capacitor. It is effective in preventing moisture infiltration because it fills well into the porous gaps of the capacitor.However, because it is applied with a low viscosity, it is extremely difficult to coat the outer surface of the capacitor, and at the same time, it has a heat distortion temperature of 100°. Y because it is lower than C
When thermal stress such as mold temperature and resin curing heat is applied during resin exterior work using transfer molding, electrons become high temperature, which rarely causes leakage current deterioration. In addition, when the viscosity of the capacitor is too low, the condensate penetrates into the electrons too well and the contact resistance between the cathode layers and between the cathode particles becomes large. ) was a factor in the deterioration of tan δ.

しかしてこれら特性劣化IJ高海域での使用においてよ
如促進される傾向にあった。
However, these characteristics tend to deteriorate even more when used in high IJ sea areas.

本発明は上記の点に鑑みてなされたもので樹脂外装時の
コンデンサ薫子に対する熱的スジレスを緩和し、しかも
コンデンサ素子のポーラス々間隙部への樹脂充填を極力
防止することのできる固体X解コンデンサの製造方法を
提供することを目的とするものである。
The present invention has been made in view of the above-mentioned points, and is a solid X-solution capacitor that can reduce the thermal streaking of the capacitor capacitor when it is covered with resin, and can also prevent as much as possible the filling of resin into the gaps between the porous parts of the capacitor element. The purpose of this invention is to provide a method for manufacturing.

以下本発明←つき説明する。すなわち例えばタンタル、
アルミニウム、ニオブなどの弁作用蓋部粉末を成形胱結
し陽極体を形成する。つぎに該陽極体の表向に縛電体反
映、牛橋俸層、隘極層、陰&#l1llt層を順次積層
形成しコンデンサ素子を形成する。しかして該コンデン
サ素子を常温で積度500〜5000op、熱変形温度
100°C以上の物性をもつ液状樹脂中に減圧または常
圧下で友直し、しかる後に引き上は所定の条件で硬化し
アンダーコート層を形成する。しかしてトランス7アモ
ールドまたにインジェクションモールドなどの成形法で
外装a脂を施してなるものである。なおこの場合の成形
材料はエポキシ、シリコンなどの熱硬化性樹脂あるいは
ポリプロピレン、ポリフェニレンサルファイドなどの熱
可塑性樹脂のいずれでも′:・: よい。第1図および第2図は上記手段によって得た固体
1!解コンデンサを示す断面図で(1)にコンデンサ素
子、(2)は陽極リード線、(3)は陰極リード線。
The present invention will be explained below. For example, tantalum,
Valve lid powder of aluminum, niobium, etc. is compacted to form an anode body. Next, on the surface of the anode body, a capacitor element is formed by sequentially laminating a binding electric body reflection layer, a Ushihashi layer, a depletion layer, and a negative layer. Then, the capacitor element is fixed in a liquid resin having physical properties such as a density of 500 to 5000 op and a heat distortion temperature of 100°C or more at room temperature under reduced pressure or normal pressure, and then pulled out and cured under predetermined conditions to undercoat. form a layer. Therefore, the exterior material is coated with a resin using a molding method such as injection molding or the like. The molding material in this case may be either a thermosetting resin such as epoxy or silicone or a thermoplastic resin such as polypropylene or polyphenylene sulfide. Figures 1 and 2 show solid 1! obtained by the above method. In the cross-sectional view showing the solution capacitor, (1) is the capacitor element, (2) is the anode lead wire, and (3) is the cathode lead wire.

(4)μアンダーゴー1層、(5)に外装W脂でおる。(4) 1 layer of μ under go, (5) coat with exterior W fat.

以上のようにwt成してなる1体′a購コンデンサの製
造方法によればコンデンサ素子のポーラスな曲隙部にあ
まシ浸透されることなくコンデンサ菓子表面に0.1〜
0.2 m11程度のコンデンサ菓子法論皮膜を形成し
、しかも形成した保−反映は熱的ストレスに強いため外
装樹脂モールド形成工程における漏れ電流およびtan
δ特性劣化が少ない利点を有する。
As described above, according to the manufacturing method of a one-piece 'A' capacitor made of wt, 0.1~
A capacitor film of about 0.2 m11 is formed, and the formed film is resistant to thermal stress, so leakage current and tan in the process of forming an exterior resin mold are reduced.
It has the advantage of less deterioration in δ characteristics.

つぎに実験結果をもとに本発明の一位性について述べる
。公知の手段によって成形したタンタル:固体電解コン
デンサ素子を表に示すそれぞれのアンダーコート用エポ
キシ樹脂液中に10分間浸漬し引き上げた後、120’
0 5時間の硬化を行いアンダーコート層を形成する。
Next, the uniqueness of the present invention will be described based on experimental results. A tantalum solid electrolytic capacitor element molded by a known method was immersed in each of the undercoating epoxy resin solutions shown in the table for 10 minutes and then pulled out.
Curing is performed for 0.5 hours to form an undercoat layer.

その後エポキシ樹脂成形材料によシトランスファーモー
ルドを行い外装を施した定格20V−4,7PFのタン
タル固体電解コンデンサにおける漏れ電流およびt a
nJの特性比較を表にボした。なおエポキシ樹脂成形材
料は一般に用いられているものでスパイラル流れ100
1 ガラス転位点160°Oe変形1Ji200°0の
特性をもつものでトランスファー並型温良に150°C
トランスファ圧力は6oKt/♂である。
Leakage current and t a in a tantalum solid electrolytic capacitor with a rating of 20V-4.7PF, which was then transfer molded using epoxy resin molding material and packaged.
A comparison of the characteristics of nJ is shown in the table. The epoxy resin molding material is commonly used and has a spiral flow rating of 100.
1 Glass transition point 160°Oe deformation 1Ji 200°0, transfer temperature at 150°C
Transfer pressure is 6oKt/♂.

また試料にそれぞれ100個である。There are also 100 pieces for each sample.

表 上表から明らかなように外装樹脂モールド成形工程にお
いて漏れ電流特性劣化を極力抑制するにはアンダーコー
トW脂の粘度は500〜5000opのものがよく、さ
らにtanδ特性劣化を極力抑制するにはアンダーコー
トw脂の熱変形温度は100“C以上必要であることが
わかる。したがって外装樹脂モールド成形前常温で粘度
500〜5000op。
As is clear from the above table, in order to suppress the deterioration of leakage current characteristics in the exterior resin molding process as much as possible, the viscosity of the undercoat W resin is preferably 500 to 5000 op. It can be seen that the heat deformation temperature of the coating w resin is required to be 100"C or more. Therefore, the viscosity is 500 to 5000 op at room temperature before molding the exterior resin.

熱変形温度100°0以上 の物性をもつ液状樹脂にコ
ンデンサ素子を浸欲しアンダーコート層を形成すれば外
装樹脂モールド時熱およびモールド樹脂材料の硬化応力
による影会を極めて少なくすることかで合、特性劣化を
他力抑制した高品質の固体電解コンデンすを得ることが
可能となる。なお上記実験例とは別に粘度5500ap
、熱変形温度140°0 の液状樹脂を用いてアンダー
コートを行ったものはアンダーコート層が厚く付着しす
ぎて寸法が大きくな9すぎ外装樹脂モールド形成時の缶
型にセットできず不都合であった。
By forming an undercoat layer on the capacitor element using a liquid resin with physical properties such as a heat distortion temperature of 100°0 or more, it is possible to minimize the effects caused by heat and curing stress of the molding resin material during exterior resin molding. It becomes possible to obtain a high-quality solid electrolytic capacitor with suppressed characteristic deterioration. In addition to the above experimental example, the viscosity was 5500ap.
In the case of undercoating using a liquid resin with a heat deformation temperature of 140°0, the undercoat layer was too thick and the dimensions were too large. Ta.

以上述べたように本発明によれば外装樹脂を施す前に常
温で粘度500〜5000op、熱変形温度100°C
以上 の物性をもつ液状樹脂にコンデンサ素子を浸漬し
アンダーコート層を形成することによって漏れ11IL
流およびtanδの初期特性はもとよデンサを得ること
のできる固体電解コンデンサの:411i!造方法を提
供できる。
As described above, according to the present invention, before applying the exterior resin, the viscosity is 500 to 5000 op at room temperature, and the heat distortion temperature is 100 °C.
By immersing the capacitor element in a liquid resin with the above physical properties and forming an undercoat layer, leakage can be reduced by 11IL.
Initial characteristics of current and tan δ of solid electrolytic capacitors that can obtain capacitors: 411i! We can provide a manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明による固体電解コンデンサ
を示す断面図である。 (1)−−−一□コンデンサ素子 (4)−一一一一−アンダーコート層 (5)−−−−一外MIm脂 特  許  出  願 人 マルコン電子株式会社 (7) 第1図 第2図 95−
1 and 2 are cross-sectional views showing a solid electrolytic capacitor according to the present invention. (1)---1□Capacitor element (4)-1111-Undercoat layer (5)----Ichigai MIm Resin Patent Application Hito Marukon Electronics Co., Ltd. (7) Figure 1 Figure 2 Figure 95-

Claims (1)

【特許請求の範囲】[Claims] 弁作用金属粉末を成形説結しコンデンサ禽子を形成する
手段と、前記コンデンサ禦子を常温″″C,C,積貫〜
5000op、熱変形温度100°C以上の物性をもつ
液状t*脂にf5を漬−引き上は一加熱硬化しアンダー
コート層を形成する手段と、該手段の後外装!脂を施す
手段とを具備したことを特徴とする固体電解コンデンサ
の製造方法。
A means for forming a capacitor by molding a valve metal powder, and a means for forming a capacitor by molding the capacitor at room temperature.
5000op, a means for dipping F5 in liquid T* fat having physical properties of heat distortion temperature of 100°C or more and curing the top with heat to form an undercoat layer, and a rear exterior of the means! 1. A method for manufacturing a solid electrolytic capacitor, comprising a means for applying grease.
JP8704182A 1982-05-21 1982-05-21 Method of producing solid electrolytic condenser Pending JPS58202523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8704182A JPS58202523A (en) 1982-05-21 1982-05-21 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8704182A JPS58202523A (en) 1982-05-21 1982-05-21 Method of producing solid electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS58202523A true JPS58202523A (en) 1983-11-25

Family

ID=13903854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8704182A Pending JPS58202523A (en) 1982-05-21 1982-05-21 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS58202523A (en)

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US4017773A (en) Solid valve-metal capacitor with buried graphite in the particles in the electrolyte
JP2009130166A (en) Solid electrolytic capacitor
JPH04297012A (en) Organic semiconductor solid electrolytic capacitor and manufacture thereof
WO2020218319A1 (en) Solid electrolytic capacitor
JPS58202523A (en) Method of producing solid electrolytic condenser
JPS58190015A (en) Solid electrolytic condenser
JP7310877B2 (en) Manufacturing method of electrolytic capacitor
JPH01151228A (en) Manufacture of solid electrolytic capacitor
JPS6139727B2 (en)
JPS6120312A (en) Method of producing chip type solid electrolytic condenser
JPS59163815A (en) Method of producing metallized polypropylene film condenser
JPH03116710A (en) Manufacture of solid electrolytic capacitor
JPS63211615A (en) Solid electrolytic capacitor
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH023533B2 (en)
JP2869131B2 (en) Solid electrolytic capacitors
JP3253216B2 (en) Solid electrolytic capacitors
JPH0428214A (en) Manufacture of solid electrolytic capacitor
JPS61198709A (en) Electronic component
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0370894B2 (en)
JPS5858806B2 (en) How to package electronic parts
JPH0567541A (en) Manufacture of film capacitor
JPH0249697Y2 (en)