JPS58202311A - Cooling system of steam turbine - Google Patents
Cooling system of steam turbineInfo
- Publication number
- JPS58202311A JPS58202311A JP8483582A JP8483582A JPS58202311A JP S58202311 A JPS58202311 A JP S58202311A JP 8483582 A JP8483582 A JP 8483582A JP 8483582 A JP8483582 A JP 8483582A JP S58202311 A JPS58202311 A JP S58202311A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- turbine
- temperature
- cooling
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は蒸気タービンプラントに係り、特に蒸気タービ
ン高温構造物の冷却に好適な冷却蒸気を発生する蒸気タ
ービン冷却系統に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam turbine plant, and more particularly to a steam turbine cooling system that generates cooling steam suitable for cooling steam turbine high-temperature structures.
石油系燃料の供給不安定化、価格の上昇に対し、新設の
火力発電所は石炭火力が主流となシっつある。しかし、
石炭火力は石油火力よシも石炭前処理系や排ガス処理系
などの補機動力が大きく、送電端効率が低下する欠点が
ある。し九がって蒸気ターヒンプラントの蒸気条件を向
上させる事によつて効率向上を行なう開発が行なわれて
いる。In response to the unstable supply and rising prices of petroleum-based fuels, coal-fired power is becoming the mainstream for newly built thermal power plants. but,
Compared to oil-fired power, coal-fired power requires a large amount of power from auxiliary equipment such as coal pretreatment systems and exhaust gas treatment systems, and has the disadvantage of lower net power transmission efficiency. Consequently, efforts are being made to improve the efficiency of the steam Tachin plant by improving the steam conditions.
例えば米国ではEPRIによってgngeneerin
gAssessment of anAjvanced
pulverized −Coal power p
int (project 1403)が行なわれてい
る。For example, in the United States, gngeneerin is
gAssessment of anAjvanced
pulverized -Coal power p
int (project 1403) is being performed.
蒸気タービンの蒸気条件の向上、すなわち高温、高圧化
はプラント構成上では通常のプラントに加えて超高温高
圧タービンを設置する事によシ行なわれる。超高温高圧
蒸気タービンプラントの代表的プラント構成例を第1図
によって説明する。Improving the steam conditions of the steam turbine, that is, increasing the temperature and pressure, is achieved by installing an ultra-high-temperature, high-pressure turbine in addition to the normal plant configuration. A typical plant configuration example of an ultra-high temperature, high pressure steam turbine plant will be explained with reference to FIG.
通常の超臨界圧蒸気プラントではボイラ1、高圧タービ
ン4、再熱器3、中圧タービン6、低圧タービン7、発
電機8、復水器9、低圧給水加熱器10,11,12,
13,14、脱気器15、給水ポンプ16、高圧給水加
熱器17.18.19よシ構成されるが超高温高圧ター
ビン2ft設置する事により、給水および一気の流れは
つぎのようになる。In a normal supercritical pressure steam plant, a boiler 1, a high pressure turbine 4, a reheater 3, an intermediate pressure turbine 6, a low pressure turbine 7, a generator 8, a condenser 9, a low pressure feed water heater 10, 11, 12,
13, 14, a deaerator 15, a water supply pump 16, and a high-pressure feed water heater 17, 18, and 19. By installing a 2ft ultra-high temperature and high pressure turbine, the water supply and the flow of water at once will be as follows.
ボイラ1t−出た超′高温高圧蒸気は主蒸気管21を通
り超高温高圧タービン2に入シ動力を発生し、一部は^
圧給水加熱器19の加熱に用いられるが大部分は第1段
再熱器3で加熱され高圧タービン4に入9動力を発生す
る。高圧タービン4を出た蒸気は第2段再熱器5で加熱
された後に中圧タービン6に入り動力を発生する。中圧
タービン6を出、た蒸気は低圧タービン7に入り動力を
発生し復水ti9で復水となる。超高温高圧タービン2
、高圧タービン、中圧タービン6、低圧タービン7で発
生し友動力は発電機8t−駆動し電力を発生させる。復
水器を出た給水は低圧給水加熱器10,11゜12.1
3,14によって中圧および低圧タービンの油気蒸気に
よシ加熱され脱気器15で脱気され、給水ポンプ16で
所定の圧力まで昇圧される。The ultra high temperature and high pressure steam that comes out of the boiler 1t passes through the main steam pipe 21 and enters the ultra high temperature and high pressure turbine 2 to generate power.
It is used to heat the pressure feed water heater 19, but most of it is heated in the first stage reheater 3, and then enters the high pressure turbine 4 to generate power. The steam leaving the high pressure turbine 4 is heated in the second stage reheater 5 and then enters the intermediate pressure turbine 6 to generate power. The steam leaving the intermediate pressure turbine 6 enters the low pressure turbine 7 to generate power and becomes condensed water at the condensate ti9. Ultra high temperature high pressure turbine 2
, the high-pressure turbine, the intermediate-pressure turbine 6, and the low-pressure turbine 7 generate power, which drives a generator 8t to generate electric power. The feed water coming out of the condenser is sent to the low pressure feed water heater 10, 11゜12.1
3 and 14, the water is heated by oil and steam from medium-pressure and low-pressure turbines, degassed by a deaerator 15, and boosted to a predetermined pressure by a water supply pump 16.
給水ポンプ16を出た高圧給水は高圧給水加熱器17.
18.19に訃いて超高貴高圧および高圧タービンの抽
気蒸気によってさらに加熱され、ボイラ給水20となシ
ボイラ1に入る。ボイラ1において、給水は、工1ノマ
イザ21.蒸発管22、過熱器23を通シ超高温高圧蒸
気となる。The high-pressure feed water coming out of the feed water pump 16 is sent to a high-pressure feed water heater 17.
At 18.19, the water is further heated by the ultra-high pressure and bleed steam of the high pressure turbine and enters the boiler 1 as boiler feed water 20. In the boiler 1, water is supplied to the boiler 1 nomizer 21. It passes through the evaporation tube 22 and superheater 23 and becomes ultra-high temperature and high pressure steam.
このような超高温高圧蒸気タービンプラントでは超高温
高圧タービン2においてタービンケーシングやロータシ
ャフト、翼等が高温高圧蒸気の雰囲気中にある丸めに耐
熱耐圧強度を必要とし1、耐熱強度材料としてCr、N
iを含み、Ma、Tiなどの強化元Xを複合添加したF
e基、Ni基の耐熱超合金が開発されつつあるし、オー
ステカイト系ステンレス鋼も耐熱材料として実用化され
ている。In such an ultra-high-temperature, high-pressure steam turbine plant, the turbine casing, rotor shaft, blades, etc. of the ultra-high-temperature, high-pressure turbine 2 require heat-resistant and pressure-resistant strength in the rounded shape in an atmosphere of high-temperature, high-pressure steam.
F containing i and compounded with reinforcing element X such as Ma and Ti
E-based and Ni-based heat-resistant superalloys are being developed, and austecite stainless steel is also being put into practical use as a heat-resistant material.
しかし、これらの耐熱材料は高価で一般に高温強度に比
例して加工性、溶接性が悪くなり、プラントコスト上昇
の原因となる欠点がある。However, these heat-resistant materials are expensive and generally have poor workability and weldability in proportion to high-temperature strength, resulting in an increase in plant costs.
し九がって、高価な耐熱材料の使用全最小限とするため
低温蒸気による冷却が考えられた。第2図は超高温高圧
タービン2の典型的な例を示す図で超高温高圧タービン
は主蒸気管21、排気管22、ロータシャフト25、高
圧ケーシング26、低圧ケーシング27、ノズルボック
ス28、冷却蒸気排出管23、タービンノズル翼列29
、パケット翼列30、主蒸気管冷却通路31.バランス
ホール24で構成される。ボイラlで発生した高温高圧
蒸気は主蒸気管21よシノズルボックス28に導入され
、タービンノズル翼列29、パケット翼列aot通過し
、タービンロータシャフト25を繊動じ、温度、圧力を
減少させ排気管22よジタービン外部に排出される。高
価な耐熱材料を高圧ケーシング26に使用するとその使
用菫が膨大となるので一般には高圧ケーシング26と低
圧ケーシング270間に空間を設は比較的低温となる排
気蒸気tUtし冷却を行なう事が考えられる。このよう
にすると高価な耐熱材料の使用を制限できるが、排気蒸
気は十分に低温ではなく、冷却が十分に行なわれない可
能性がある。特に主蒸気管21では超高温高圧の蒸気が
流れておシ、主蒸気管冷却通路には十分な冷却能力のあ
る蒸気を流す必要かめる。Therefore, in order to minimize the use of expensive heat-resistant materials, cooling with low-temperature steam was considered. FIG. 2 is a diagram showing a typical example of the ultra-high-temperature and high-pressure turbine 2. The ultra-high-temperature and high-pressure turbine includes a main steam pipe 21, an exhaust pipe 22, a rotor shaft 25, a high-pressure casing 26, a low-pressure casing 27, a nozzle box 28, and a cooling steam Discharge pipe 23, turbine nozzle blade row 29
, packet blade row 30, main steam pipe cooling passage 31. It is composed of a balance hole 24. High-temperature, high-pressure steam generated in boiler l is introduced into main steam pipe 21 and nozzle box 28, passes through turbine nozzle blade row 29 and packet blade row AOT, moves turbine rotor shaft 25, reduces temperature and pressure, and is exhausted. The pipe 22 is discharged to the outside of the turbine. If an expensive heat-resistant material is used for the high-pressure casing 26, the amount of violet used will be enormous, so it is generally considered that a space is provided between the high-pressure casing 26 and the low-pressure casing 270 to cool the exhaust steam tUt, which is relatively low temperature. . Although this limits the use of expensive refractory materials, the exhaust steam may not be sufficiently cold and may not be sufficiently cooled. In particular, extremely high temperature and high pressure steam flows in the main steam pipe 21, and it is necessary to flow steam with sufficient cooling capacity in the main steam pipe cooling passage.
ま九、償却後の蒸気は圧力が減少するために、タービン
排気にもどせず、高圧タービンには使用不可能で、尚圧
タービン以降の給水加熱器ま九は中圧タービンに使用さ
れ、プラント効率は低下する欠点もある。9. Because the pressure of the steam after depreciation decreases, it cannot be returned to the turbine exhaust and cannot be used for high-pressure turbines. There is also the disadvantage that it decreases.
本発明の目的は超高温高圧蒸気タービンプラントに訃い
て、高価な耐熱材料の効果的使用を図るとともに、より
廉価な従来材料の使用拡大を図り、かつプラント効率の
低下を最小限に保つ蒸気タービン冷却系統を提供するこ
とにおる。The purpose of the present invention is to provide a steam turbine for ultra-high-temperature, high-pressure steam turbine plants that effectively uses expensive heat-resistant materials, expands the use of less expensive conventional materials, and minimizes deterioration in plant efficiency. Our mission is to provide cooling systems.
超高温高圧タービンの冷却蒸気の条件としては超高温^
圧タービン排圧よシ圧力が高く、熱応力の関係から許容
される温度差を保つ事が必要である。本発明ではこの条
件を満足させるため、主蒸気と同等あるいはそれ以上の
圧力でかつ低温暖であるボイラ過熱器途中の蒸気、また
は別置の過熱器で発生させた蒸気の使用に着目し、冷却
系統を構成し喪。これら冷却蒸気は余分な過熱を受けて
おらず、熱損失はなく、冷却時に過熱を受け、冷却後の
圧力も十分高いため、超高温高圧タービン排気に混入可
能であシ、無冷却時と比較し効率の低下を最小とする事
が可能となる。The conditions for the cooling steam of an ultra-high-temperature, high-pressure turbine are ultra-high temperatures.
The exhaust pressure of the pressure turbine is high, and it is necessary to maintain an allowable temperature difference due to thermal stress. In order to satisfy this condition, the present invention focuses on the use of steam in the middle of the boiler superheater, which has a pressure equal to or higher than that of the main steam, and has a lower temperature, or steam generated in a separately installed superheater. Construct a lineage and mourn. These cooling steams are not superheated, there is no heat loss, they are superheated during cooling, and the pressure after cooling is high enough that they can be mixed into the ultra-high temperature and high pressure turbine exhaust compared to when there is no cooling. This makes it possible to minimize the drop in efficiency.
以下、本発明の一実施例である蒸気タービン冷却系統を
第3図によシ説明する。Hereinafter, a steam turbine cooling system which is an embodiment of the present invention will be explained with reference to FIG.
第3図が第1図の超高温高圧蒸気タービンプラントの代
表的プラント構成例と異なる点は、ボイラ過熱tm23
の途中の点よシ抽気ライン32を投砂、その抽気ライン
を超高温高圧タービン2に結び、超高温高圧タービン排
気と111段再熱器3の間と超高温高圧タービンとを結
ぶ管路33を設けたことである。給水20はボイラエコ
ノマイザ21゜蒸発管22に通って蒸気となシ、過熱1
i)28よシaft序々に^められる。し友がって、超
lN16m高圧タービン排気温度以下の温にの点で過熱
器23よ〉抽気食性なうことによって、低温で圧力の高
い蒸気を得る事が可能で、この蒸気を抽気ライン32′
を通し超高温高圧タービンに4自必要部分全冷却する。The difference between Fig. 3 and the typical plant configuration example of the ultra-high temperature and high pressure steam turbine plant shown in Fig. 1 is that the boiler superheating tm23
A pipe line 33 connects the bleed air line 32 to a point in the middle of , connects the bleed line to the ultra high temperature and high pressure turbine 2, and connects the ultra high temperature and high pressure turbine exhaust, the 111th stage reheater 3, and the ultra high temperature and high pressure turbine. This is because we have established the following. The feed water 20 passes through the boiler economizer 21° and the evaporation tube 22, where it becomes steam and is superheated 1.
i) The 28th shaft is gradually closed. In addition, since the superheater 23 has a bleed-off property at a temperature below the ultra-1N16m high-pressure turbine exhaust temperature, it is possible to obtain high-pressure steam at low temperature, and this steam is passed through the bleed line 32. ′
All four necessary parts are cooled to the ultra-high temperature and high pressure turbine through the
冷却によ〉冷却蒸気は昇温され)排気蒸気圧以上の十分
な圧力f:維持可能であるので管路33により、?、、
O冷却後の蒸気は管路33t−通)超高温高圧タービン
排気に混入される。By cooling, the temperature of the cooling steam is raised and a sufficient pressure f higher than the exhaust steam pressure can be maintained, so the pipe 33 ,,
The steam after O cooling is mixed into the ultra-high temperature and high pressure turbine exhaust through the pipe 33t.
不発明によれば、超高温高圧タービンの冷却に好適な蒸
気を1特別な装置f:f&置せず、主蒸気と比較し低温
度の管路を設置する事によp得られる切嵌がある。According to the invention, a cut fit can be obtained by installing steam suitable for cooling an ultra-high-temperature, high-pressure turbine by installing a pipe line with a lower temperature than the main steam without installing special equipment. be.
本発明の他の実施例tR4図において示す。第4図が第
3図に異なる点は、超高温高圧タービン2の排気と第1
段再熱器3の間と超高温高圧タービン冷却蒸気排出孔を
結ぶ蒸気管33の途中に制御弁36t−設け、超高温高
圧タービン被冷却構造物温度測定装置34によシ超高温
高圧タービン被冷却構造物の温度を逐次測定し、その信
号を制御装置35に与え、制御装置は制御弁36([−
駆動することである。Another embodiment of the invention is shown in Figure tR4. The difference between Fig. 4 and Fig. 3 is that the exhaust gas of the ultra-high temperature and high pressure turbine 2 and the
A control valve 36t is installed in the middle of the steam pipe 33 connecting between the stage reheater 3 and the ultra-high-temperature/high-pressure turbine cooling steam exhaust hole, and the ultra-high-temperature/high-pressure turbine cooled structure temperature measuring device 34 is used to measure the temperature of the ultra-high-temperature/high-pressure turbine cooled structure. The temperature of the cooling structure is sequentially measured and the signal is given to the control device 35, which controls the control valve 36 ([-
It is to drive.
本発明によれば冷却蒸気量を逐次制御6J能であ被冷却
構造物の熱応力を最少化するできる効果がΔ
ある。According to the present invention, the amount of cooling steam can be sequentially controlled by 6J, and the thermal stress of the structure to be cooled can be minimized by Δ.
第5図に示す実施例では、超高温高圧タービン2冷却用
蒸気を過熱器23の途中より得るのではなく、ボイラ給
水系から冷却用蒸気給水37′fr分け、ボイラ内に冷
却用蒸気発生系3Bを設け、冷却蒸気供給管39によっ
て超高温高圧、タービン1′こ供給するものである。こ
の実施例では冷却用蒸気発生系38′を主蒸気発生ボイ
ラ内に設けているが、これは限定された意味を有するも
のでなく、他に有効な熱源があれば、その熱源を広く利
用可能である。In the embodiment shown in FIG. 5, the steam for cooling the ultra-high temperature and high pressure turbine 2 is not obtained from the middle of the superheater 23, but is separated from the boiler water supply system by 37'fr of cooling steam supply water, and is installed in the boiler by a cooling steam generation system. 3B, and ultra-high temperature and high pressure steam is supplied to the turbine 1' through a cooling steam supply pipe 39. In this embodiment, the cooling steam generation system 38' is provided in the main steam generation boiler, but this does not have a limited meaning, and if there is another effective heat source, that heat source can be widely used. It is.
本発明によれば、ボイラ内等で過剰な熱源が存在する場
合にその熱源を利用し冷却蒸気を発生でき有効な熱利用
ができる効果がある。According to the present invention, when there is an excessive heat source in a boiler or the like, cooling steam can be generated by using the heat source, and heat can be effectively utilized.
第6図に示す実施例が籐5図の実施例と異なる点は冷却
用蒸気給水系37に制御弁42を設け、超高温^圧ター
ビン被冷却構造物温度測定装置40よシの温度信号を制
御装置41に与え、制御装置41は制御弁42を駆動す
るようにし九ことである。The difference between the embodiment shown in FIG. 6 and the embodiment shown in FIG. 5 is that a control valve 42 is provided in the cooling steam water supply system 37, and the temperature signal from the ultra-high temperature ^-pressure turbine cooled structure temperature measurement device 40 is The control device 41 is configured to drive the control valve 42.
本発明によれば冷却蒸気量を逐次制御可能であるので冷
却蒸気量の蛾少化、超高温高圧タービン被冷却構造物熱
応力の発生を最少化できる効果がある。According to the present invention, since the amount of cooling steam can be sequentially controlled, it is possible to reduce the amount of cooling steam and to minimize the occurrence of thermal stress in the structures to be cooled in the ultra-high temperature and high pressure turbine.
第7図は本発明の一実施例を超高温高圧タービンにおい
て示したもので、第2図に示す通常の超4b諷高圧ター
ビンの構造と異なる点は、外部ケーシング26と内部ケ
ーシング27f:排気口近くで密着させ44、タービン
排気は外部ケーシング26と内部ケーシングによシ形成
される空間と隔離し、冷却蒸気をこの空間に冷却蒸気供
給管43よシ導入するもので、前述した全ての実施例に
おいて適用可能である。冷却蒸気は低温で、タービン排
気よシ高圧のため、タービン排気が冷却蒸気側へ流入す
る事はなく、冷却後の蒸気はタービン排気に混入可能で
ある。FIG. 7 shows an embodiment of the present invention in an ultra-high-temperature, high-pressure turbine.The structure differs from the ordinary ultra-4B vertical high-pressure turbine shown in FIG. 2 in that the outer casing 26 and the inner casing 27f: The turbine exhaust is isolated from the space formed by the outer casing 26 and the inner casing, and the cooling steam is introduced into this space through the cooling steam supply pipe 43. It is applicable in Since the cooling steam is at a low temperature and has a higher pressure than the turbine exhaust, the turbine exhaust does not flow into the cooling steam side, and the steam after cooling can mix with the turbine exhaust.
本発明によれば、蒸気タービン内部構造物の有効な冷却
が可能で、比較的低級な耐熱鋼の便用によっても強度的
に十分な信頼性を得る事ができる効果があシ、さらに冷
却用蒸気として予め適切な温度の蒸気を発生させて使用
することが可能なため、主蒸気の低温度化等で得られる
冷却用蒸気と比較しプラント効率の低下を少なくで!5
7効果がある。According to the present invention, it is possible to effectively cool the internal structure of a steam turbine, and even by using relatively low-grade heat-resistant steel, sufficient reliability can be obtained in terms of strength. Since it is possible to generate and use steam at an appropriate temperature in advance, there is less deterioration in plant efficiency compared to cooling steam obtained by lowering the temperature of the main steam. 5
7 effects.
j11図は超高温高圧蒸気タービンプラントの代表例を
示す系統図、第2図は超高温高圧タービンの断面図、第
3図は本発明の一実施例である蒸気タービン系統図、第
4図乃至第6図は本発明の他の実施例である蒸気タービ
ン、Vta図、纂7図は本発明が適用される蒸気タービ
ン部の断面図である。Figure j11 is a system diagram showing a typical example of an ultra-high-temperature, high-pressure steam turbine plant, Figure 2 is a sectional view of an ultra-high-temperature, high-pressure turbine, and Figure 3 is a steam turbine system diagram that is an embodiment of the present invention. FIG. 6 is a steam turbine according to another embodiment of the present invention, and FIG. 6 is a sectional view of a steam turbine section to which the present invention is applied.
Claims (1)
給水加熱器等からなる蒸気タービンプラントにおいて、
ボイラ内の過熱器途中より分岐した蒸気系を流通する蒸
気を蒸気タービンの内n′@造物の冷却に用いる事を特
徴とする蒸気タービン冷却系統。 2、%許請求範囲第1項において、過熱器途中より分岐
した蒸気系に制御弁tf&け、その制御弁を蒸気タービ
ン内部被冷却構造物の温度により制御することを特徴と
する蒸気タービン冷却系統3、特許請求範囲第1項に訃
いて、蒸気タービンの外部ケーシングと内部ケーシング
間にタービン排気と独立な空間を形成し、その空間に冷
却用蒸気を流し、冷却後の蒸気はタービン排気に混合さ
せることを特徴とする蒸気タービン冷却系統。 4、ボイラ、蒸気タービン、復水器、給水ポンプおよび
給水加熱器等からなる蒸気タービンプラントにおいて、
ボイラ給水系よ多分岐した冷却蒸気系を流れる給水tボ
イラに導いて過熱蒸気を作り、その過熱蒸気温度は主系
統の過熱蒸気よシ低温とし、その低温過熱蒸気を蒸気タ
ービンの内部構造物の冷却に用いる事i特徴とする蒸気
タービン冷却系統。 5、特許a)ICms第4項において、ボイラ給水系よ
シ分離した冷却蒸気系統に制御弁を設け、その制御弁t
−蒸気タービン内部被冷却構造物の温度によ〕制御する
ことを特徴とする蒸気タービン冷却系統。[Claims] 1. In a steam turbine plant consisting of a boiler, a steam turbine, a condenser, a feedwater pump, a feedwater heater, etc.,
A steam turbine cooling system characterized in that steam flowing through a steam system branched from the middle of a superheater in a boiler is used to cool components inside the steam turbine. 2. Permitted Claims Claim 1: A steam turbine cooling system characterized in that a control valve tf& is installed in a steam system branched from the middle of a superheater, and the control valve is controlled by the temperature of a cooled structure inside the steam turbine. 3. According to claim 1, a space independent from the turbine exhaust is formed between the outer casing and the inner casing of the steam turbine, cooling steam is passed through the space, and the cooled steam is mixed with the turbine exhaust. A steam turbine cooling system characterized by: 4. In a steam turbine plant consisting of a boiler, steam turbine, condenser, feed water pump, feed water heater, etc.
The cooling steam system, which is multi-branched from the boiler feed water system, is guided to the feed water t boiler to produce superheated steam, whose superheated steam temperature is lower than the superheated steam in the main system, and the low temperature superheated steam is transferred to the internal structure of the steam turbine. A steam turbine cooling system characterized by its use in cooling. 5. Patent a) In Section 4 of ICms, a control valve is provided in the cooling steam system separated from the boiler feed water system, and the control valve t
- A steam turbine cooling system characterized in that the system is controlled by the temperature of a cooled structure inside the steam turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8483582A JPS58202311A (en) | 1982-05-21 | 1982-05-21 | Cooling system of steam turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8483582A JPS58202311A (en) | 1982-05-21 | 1982-05-21 | Cooling system of steam turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58202311A true JPS58202311A (en) | 1983-11-25 |
Family
ID=13841838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8483582A Pending JPS58202311A (en) | 1982-05-21 | 1982-05-21 | Cooling system of steam turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58202311A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277703A (en) * | 1995-04-05 | 1996-10-22 | Toshiba Corp | Casing cooling device of steam turbine |
EP1154123A1 (en) * | 2000-05-10 | 2001-11-14 | Siemens Aktiengesellschaft | Method of cooling the shaft of a high pressure steam turbine |
EP1473442A3 (en) * | 2003-04-30 | 2004-11-17 | Kabushiki Kaisha Toshiba | Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant |
CN104100309A (en) * | 2014-07-11 | 2014-10-15 | 中国电力工程顾问集团华东电力设计院 | High-temperature steam extraction and cooling system for single-reheat steam turbine |
WO2018074593A1 (en) * | 2016-10-21 | 2018-04-26 | 三菱重工業株式会社 | Steam turbine |
-
1982
- 1982-05-21 JP JP8483582A patent/JPS58202311A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277703A (en) * | 1995-04-05 | 1996-10-22 | Toshiba Corp | Casing cooling device of steam turbine |
EP1154123A1 (en) * | 2000-05-10 | 2001-11-14 | Siemens Aktiengesellschaft | Method of cooling the shaft of a high pressure steam turbine |
WO2001086121A1 (en) * | 2000-05-10 | 2001-11-15 | Siemens Aktiengesellschaft | Method for cooling a shaft in a high-pressure expansion section of a steam turbine |
EP1473442A3 (en) * | 2003-04-30 | 2004-11-17 | Kabushiki Kaisha Toshiba | Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant |
CN104100309A (en) * | 2014-07-11 | 2014-10-15 | 中国电力工程顾问集团华东电力设计院 | High-temperature steam extraction and cooling system for single-reheat steam turbine |
CN104100309B (en) * | 2014-07-11 | 2016-03-23 | 中国电力工程顾问集团华东电力设计院有限公司 | Single reheat steam turbine high-temperature steam-extracting cooling system |
WO2018074593A1 (en) * | 2016-10-21 | 2018-04-26 | 三菱重工業株式会社 | Steam turbine |
CN109844267A (en) * | 2016-10-21 | 2019-06-04 | 三菱重工业株式会社 | Steamturbine |
CN109844267B (en) * | 2016-10-21 | 2021-10-19 | 三菱重工业株式会社 | Steam turbine |
US11719121B2 (en) | 2016-10-21 | 2023-08-08 | Mitsubishi Heavy Industries, Ltd. | Steam turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100268611B1 (en) | Combined cycle power plant and supplying method of coolant therof | |
US5784888A (en) | Method and apparatus of conversion of a reheat steam turbine power plant to a no-reheat combined cycle power plant | |
JP3032005B2 (en) | Gas / steam turbine combined facility | |
JPH0367004A (en) | Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator | |
EP2698507B1 (en) | System and method for temperature control of reheated steam | |
EP0268423A2 (en) | Gland sealing steam supply system for steam turbines | |
US5850739A (en) | Steam turbine power plant and method of operating same | |
CN101305163B (en) | Method for starting a steam turbine installation | |
BR0209712B1 (en) | device for cooling of a gas turbine cooling agent. | |
US5285627A (en) | Method for operating a gas and steam turbine plant and a plant for performing the method | |
US6851265B2 (en) | Steam cooling control for a combined cycle power plant | |
JPS58202311A (en) | Cooling system of steam turbine | |
JP2002021508A (en) | Condensate supply system | |
Campbell et al. | The Eddystone superpressure unit | |
JP2587419B2 (en) | Supercritical once-through boiler | |
US3826093A (en) | Reheat vapor generator | |
US2303159A (en) | Extraction and noncondensing turbine arrangement | |
JP2999122B2 (en) | Control equipment for complex plant | |
Radin et al. | Effectiveness of large power reduction for a combined-cycle power plant with several gas turbines and one steam turbine and some of the shutdown equipment used as hot reserve | |
JP3880746B2 (en) | Waste heat recovery device and operation method thereof | |
JPH04171202A (en) | Steam turbine power generating plant | |
Iwanaga et al. | The construction of 700 MW units with advanced steam conditions | |
JPS58126405A (en) | Superhigh temperature high pressure thermal power plant | |
Steam Plant Group et al. | Hot-starting trials on reheat generating units at Ferrybridge ‘B’and Northfleet power stations | |
Hall et al. | Rapid Starting Technique: Some Significant Tests at Poole Power Station |