JPS58201561A - Protecting device for brushless turbine generator - Google Patents

Protecting device for brushless turbine generator

Info

Publication number
JPS58201561A
JPS58201561A JP57082666A JP8266682A JPS58201561A JP S58201561 A JPS58201561 A JP S58201561A JP 57082666 A JP57082666 A JP 57082666A JP 8266682 A JP8266682 A JP 8266682A JP S58201561 A JPS58201561 A JP S58201561A
Authority
JP
Japan
Prior art keywords
circuit
rotor
turbine generator
brushless
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57082666A
Other languages
Japanese (ja)
Inventor
Isamu Morino
森野 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57082666A priority Critical patent/JPS58201561A/en
Publication of JPS58201561A publication Critical patent/JPS58201561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors

Abstract

PURPOSE:To rationally and safely protect a rotor against a reverse phase load by detecting various physical values on the rotor without contact and particularly monitoring the temperature of a cross slot end to protect a brushless turbine generator. CONSTITUTION:The magnetic resistant voltage, exciting current and cross slot end rotor surface temperature of a main exciting circuit are respectively detected by resistors 22, 23 and a temperature detecting sensor 27, and the detected outputs are inputted through amplifiers 30, 31 to a modulator 33. The output of the modulator 33 is inputted through a modulator 35 provided at the exterior of a rotor 1 into an arithmetic processor 36. The processor 36 obtains exciting voltage, exciting current, exciting coil resistance, exciting coil average temperature and the surface temperature of the cross slot end, and delivers the outputs to an indicator 37 and an alarm and trip circuit 38.

Description

【発明の詳細な説明】 〔発Q11o技術分野〕 本発明は、交流励磁機の電機子出力を回転整流装置によ
り!Ifiして主機界磁に加えて励磁するプツシレス励
磁回転電機の回転子の保麟方式に係わシ、特にタービン
発電機のような軸の長い塊状磁極を有する回転子構造の
同期機を逆相運転時に生ずる過熱から保1する保護装置
に関するものである。
[Detailed Description of the Invention] [Technical field of Q11] The present invention uses a rotary rectifier to convert the armature output of an AC exciter! Regarding the rotor maintenance method of pushless excitation rotating electric machines, which is excited in addition to the main machine field with Ifi, it is particularly important to use reverse-phase synchronous machines with rotor structures such as turbine generators that have long shafts and block magnetic poles. This invention relates to a protection device that protects against overheating that occurs during operation.

〔発明の技術的背景〕 従来の回転電機の回転子について、第1図および嬉2図
に示すブラシレスタービン発11機の1転子を丙として
説明する。第1図は、ブラシレスタービン発電機の回転
子の概念構成を示す図、第2図は一転子のクロススロッ
トにおける鉄心を含む面を示す横断面図である。図にお
いて、−転子1は鉄心1aと軸部Ibで構成され、こO
FC心JJLK軸方向に切られたコイルスロットrに収
められ九界磁コイル6は、li!!2によって外径方向
に層数しないように保持されている。
[Technical Background of the Invention] The rotor of a conventional rotating electric machine will be explained using the first trochanter of 11 brushless turbine generators shown in FIGS. 1 and 2 as C. FIG. 1 is a diagram showing a conceptual configuration of a rotor of a brushless turbine generator, and FIG. 2 is a cross-sectional view showing a plane including an iron core in a cross slot of a single trochanter. In the figure, the - trochanter 1 is composed of an iron core 1a and a shaft portion Ib.
The nine field coils 6 housed in the coil slots r cut in the axial direction of the FC core JJLK are li! ! 2 so that the number of layers does not increase in the outer diameter direction.

また、この界磁コイル6の端部は回転子胴部に嵌着され
九保持環Sによって保持されている。
Further, the end portion of the field coil 6 is fitted into the rotor body and held by nine retaining rings S.

さらに、このような回転子では塊状鉄心の軸長の長いも
のとなり、コイルスロット7を設けただけではコイルス
ロット7の設けられた部分と、コイルスロットの無い磁
極部分4とでは、回転子軸sO両端で支持した時の軸剛
性が異な多回転中の振動の原因となるため、剛性を平均
化させるために磁極部分4に円周方向に切られたクロス
スロット5を設けて、コイルスロット部分と磁極部分の
剛性を等しくしているのが普通でめる。なおこのクロス
スロット5は、第2図に示すように加工の容易性を考え
て円弧状に形成され、軸の長手方向く複数個設けられて
いる。
Furthermore, in such a rotor, the axial length of the block iron core is long, and if only the coil slots 7 are provided, the rotor axis sO When supported at both ends, the axial rigidity differs, which causes vibration during multiple rotations, so in order to equalize the rigidity, a cross slot 5 cut in the circumferential direction is provided in the magnetic pole part 4, and the coil slot part and Normally, the rigidity of the magnetic pole parts is the same. Note that, as shown in FIG. 2, the cross slots 5 are formed in a circular arc shape in consideration of ease of processing, and a plurality of cross slots 5 are provided in the longitudinal direction of the shaft.

一方、上述の様な塊状鉄心よ)なる回転子を有するター
ビン発電機においては、不平衡負荷運転時、非同期運転
時あるiは端子突発短絡時に紘、回転子表面に交番する
循環型fi(渦電It)が流れて回転子表面を加熱する
。そζで、この渦電流による過熱を防止して逆相負荷耐
量の増大をはかる必要があるため、従来から靜細な損失
分布を求める研究が多方面に亘って行なわれてきている
On the other hand, in a turbine generator having a rotor made of a block iron core (such as the one described above), during unbalanced load operation or asynchronous operation, when a sudden terminal short-circuit occurs, a circulating type fi (vortex) occurs alternately on the rotor surface. Electric current (It) flows and heats the rotor surface. Therefore, it is necessary to prevent overheating due to this eddy current and increase the negative phase load capability, and therefore, research has been conducted in many fields to find a quiet loss distribution.

第3図は、回転子表面のクロススロットとプイルスロツ
)O関係および渦電流の流れを示す展開図である。なお
、図中Cは磁@部分の中心線を示すものである。図にお
いて、発電機O逆相負荷運転時に社、回転子表面に略矢
印の流線9にて示す渦電流が惹起される。この渦電流は
、その物理的性質から部分的にクロススロット5O内面
に沿って流れるものもあるが、その多く嬬クロススロッ
ト5と隣接したコイルスロットFa()関1IF11に
集中して流れる。特に、クロススロッ)JO終端近傍の
集中は著しく、第4図の損失Wi度分布図に示す実線囚
の如く、磁極中心部の数倍以上の損失密度となって当該
部分をwhs的に加熱し、この部分は回転子表面で最も
大暑な温度上昇を示す。
FIG. 3 is a developed diagram showing the relationship between cross slots and pulley slots on the rotor surface and the flow of eddy currents. Note that C in the figure indicates the center line of the magnetic @ portion. In the figure, when the generator O is operated under a reverse phase load, eddy currents are induced on the rotor surface as indicated by streamlines 9 indicated by arrows. Although some of these eddy currents partially flow along the inner surface of the cross slot 5O due to their physical properties, most of these eddy currents flow concentrated in the coil slot Fa() IF11 adjacent to the cross slot 5. In particular, the concentration near the JO terminal (cross slot) is remarkable, and as shown by the solid line in the loss Wi degree distribution diagram in Figure 4, the loss density is several times higher than that at the center of the magnetic pole, heating the area in a whs manner. This area shows the greatest temperature rise on the rotor surface.

さて、従来このようなブラシレスタービン発電機を上述
し走進相電流による過熱から保護する丸めに、逆相電流
を17、時間をtとしl1t−に として定数Kによ)その限界特性を決めている。
Now, in order to protect such a brushless turbine generator from overheating due to the above-mentioned running phase current, its limiting characteristics are determined by setting the negative sequence current to 17, the time to t, and l1t- to a constant K. There is.

第5図は、そのための逆相過電流継電器の構成岡をブロ
ック図にて示したものである。第51囚において12は
逆相フィルタで、この逆相フィルタ12は図示しないタ
ービン発を機の主回路に設けられた変流器の2次電流I
R,IB、ITが与えられると、それをその逆相電流に
比例した電圧VK51′換するものである。13は逆相
フイルタ12の出力電圧Vが最小動作値として設定され
九レベル検出値に達すると動作する最小動作値回路、1
4は警報回路で逆相フィルタ12の出力電圧Vが警報発
生値として設定され九レベル検出値に達すると動作する
回路、15は逆相フィルタ12の出力電圧Vが入力され
、最小動作値回路13の動作出力によ多動作式エトt 
x Kを読み始めるI:・twitl路で、上記動作式
が調走させるとトリップ信号’rpを出力する。
FIG. 5 is a block diagram showing the configuration of a negative phase overcurrent relay for this purpose. In the 51st prisoner, 12 is an anti-phase filter, and this anti-phase filter 12 generates a secondary current I of a current transformer installed in the main circuit of the machine from a turbine (not shown).
When R, IB, and IT are given, they are converted into a voltage VK51' proportional to the negative phase current. 13 is a minimum operating value circuit which is set as the minimum operating value and operates when the output voltage V of the negative phase filter 12 reaches the 9th level detection value;
Reference numeral 4 denotes an alarm circuit, which operates when the output voltage V of the anti-phase filter 12 is set as an alarm generation value and reaches the 9th level detection value; 15, the output voltage V of the anti-phase filter 12 is input, and a minimum operating value circuit 13; The operation output of the multi-operation type
When the above-mentioned operation formula starts to run on the I: twitl path where x K starts to be read, a trip signal 'rp is output.

〔背景技術の問題点〕[Problems with background technology]

ところで、上述のようにプツシレスタービン発電機の主
回路から逆相電流を検出し、その値を基準として回転子
を保−する方式は以下に述べる点から充分なものとは言
えない。飼えば、短時間の逆相耐量ニー・t= Kt)
値は、蓄熱によって回転子が耐え得る逆相電流値O指確
を与えるに過ぎず、時間tが長i場合と短かい場合とで
は回転子表面の熱伝導、熱伝達の相違によシ、温度上昇
の点では全く^なった結果を実際は示すことになる。1
1九、逆相耐量という観点からは従来O保纒万式は平均
温紋上昇に対するものでTo)、最も闘−となるjRJ
s的な最萬温度に対する保−にはならない。特に、ガス
冷却の発電@0ような場合には、その運転時のガス圧力
によって平均温度上昇値ですら異なることになり、遂楊
電流を基準とした回転子の保感方式が不光分であること
はこの点でも明らかである。
By the way, the method of detecting the negative sequence current from the main circuit of the pushless turbine generator and maintaining the rotor based on that value as described above cannot be said to be sufficient from the following points. If kept, short-term reverse phase tolerance (knee t = Kt)
The value only gives an indication of the negative sequence current value O that the rotor can withstand due to heat accumulation, and due to the difference in heat conduction and heat transfer on the rotor surface when the time t is long and when the time t is short, In fact, the results show a completely different result in terms of temperature rise. 1
19. From the perspective of reverse phase resistance, the conventional O-protection method is against the average temperature increase (To), and the most difficult jRJ
It does not protect against the maximum temperature of s. In particular, in the case of gas-cooled power generation @ 0, even the average temperature rise value will differ depending on the gas pressure during operation, and the rotor insulation method based on the suiyang current is ineffective. This is clear from this point as well.

〔発明の目的〕[Purpose of the invention]

本発gA#i上記のような事情に鑑みて成されたもOで
、その目的は合理的でしかも安全裡に回転子を逆相負荷
から保護することができるブラシレスタービン発電機の
保線装置を提供することにある。
This project was developed in view of the above circumstances, and its purpose is to develop a line maintenance device for brushless turbine generators that can rationally and safely protect the rotor from negative phase loads. It is about providing.

〔発Wj4o概要〕 上記目的を達成するために本発明では、ブラシレスター
ビン発電機における回転子上の物理諸量を非接触で精度
風〈検出し、特に回転子表面のRJ部湿温度上昇最も大
きくなるクロススロット端のlif&監視して保繰する
ことを特徴とする。
[Outline of output Wj4o] In order to achieve the above object, the present invention accurately detects various physical quantities on the rotor of a brushless turbine generator in a non-contact manner. The feature is that the lif & of the cross slot end is monitored and maintained.

〔発明の実施列〕[Implementation sequence of the invention]

以下、本発明の一実施ガにっiて図面を参照して説明す
る。W、6図は、本発明によるブラシレスタービン発電
機の保護装置の構成列を示すものである。図において、
ブラシレスタービン発電機回転子1は図示しな一5!流
励磁機界磁巻線を直流励磁することによシ三相交流を一
起する交流励磁機電機子巻線200出力を、回転整流装
置21を介して直流に交換し、主機外磁場Cに直流励磁
電流を供給するプツシレス励磁構成をとっている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. W, 6 shows a configuration sequence of a protection device for a brushless turbine generator according to the present invention. In the figure,
The brushless turbine generator rotor 1 is not shown. The output of the AC exciter armature winding 200, which generates a three-phase alternating current by DC exciting the field winding of the current exciter, is exchanged to direct current via the rotary rectifier 21, and the output of the AC exciter armature winding 200 is changed to direct current through the rotary rectifier 21, and the direct current is applied to the magnetic field C outside the main machine. It has a pushless excitation configuration that supplies excitation current.

管九、この主機励磁回路とは別に回転子IKは、固定間
に設けられ九回転変圧器−次巻線40龜を交流励磁する
ことによシ、非接触で電力を自起する二次巻線40bを
設けている。そして、この交流出力は別に設けられた直
流安定化電源S9に与えられ、その直流安定化出力を夫
々別に設けられた増幅回路go、sx、コントローラ3
2、f−回路JJKJ給してiる。
Separately from the main engine excitation circuit, the rotor IK has a secondary winding that generates electric power in a non-contact manner by AC excitation of the 40-turn transformer-next winding, which is installed between the fixed tubes. A line 40b is provided. Then, this AC output is given to a separately provided DC stabilized power supply S9, and the DC stabilized output is sent to separately provided amplifier circuits go, sx, and controller 3.
2, f-circuit JJKJ is supplied.

會え、増幅回路Joには上記主機励磁回路内に設けられ
た分圧抵抗22と分流抵抗23の出力を入力し、その励
磁電圧と電流に比例した信号に電層して出力し得るよう
にしている。他方の増幅−路11には、第7図に示すよ
うにクロススロット5とコイルスロット1aの間の回転
子−面温度を検出する(リード線を隣接コイルスロット
内に設ける)温度検出センサー27aの出力を入力し、
被欄定点の温度に比例した信号に電層して出力し得るよ
うにしている。ここで、温度検出センサー77aはクロ
ススロット5とlII[Iするコイルスロット7龜内を
利用して設けている。ま友、これらの増幅回路30.3
1は主にアナ譚グーデジタル変換、多点信号弁別、信号
成形の機能を有し、コントローラ32によってコントロ
ールされ、それぞれ入力された信号を成形しアナログ−
デジタル変換して多点信号を弁別し、変s1回路33に
出方するように構成している。さらに上記変調囲路33
はコントローラ32にてフントロールされ、弁別された
信号毎に変−を行ない、それを送信アンテナ34&およ
びこれと結合する如く固定子側に設けられ九受信アンテ
ナS4勘を介してtsii回路35に入力する。かかる
如く;ントローラ12にてコントロールをすれば、多点
同時に測定をしても順序よく固定子側に電波を用いて伝
達でき、固定子側に設けられた変詞回路S5にてその電
気量に比例した電気信号に変換して演算処理回路16に
入力され、ここでその電気量、すなわち重列では励磁電
圧・電、tILおよび励磁巻線抵抗、励磁巻線平均温度
1、そしてタロススロット端の表面温度に演算処理され
、表示装置S1および警報・トリップ回路38に入力さ
れる。
In addition, the outputs of the voltage dividing resistor 22 and the shunting resistor 23 provided in the main engine excitation circuit are inputted to the amplifier circuit Jo, so that it can output a signal proportional to the excitation voltage and current. ing. The other amplification path 11 is equipped with a temperature detection sensor 27a (a lead wire is provided in the adjacent coil slot) for detecting the rotor surface temperature between the cross slot 5 and the coil slot 1a, as shown in FIG. Enter the output and
It is possible to output a signal proportional to the temperature of the fixed point to be outputted. Here, the temperature detection sensor 77a is provided using the inside of the coil slot 7 which is connected to the cross slot 5. Mayu, these amplifier circuits 30.3
1 mainly has the functions of analog-to-digital conversion, multi-point signal discrimination, and signal shaping, and is controlled by the controller 32, which shapes the input signals and converts them into analog-
The multi-point signal is discriminated by digital conversion and outputted to the variable s1 circuit 33. Further, the modulation circuit 33
is controlled by the controller 32, changes each discriminated signal, and inputs it to the tsii circuit 35 via the transmitting antenna 34 and the receiving antenna S4 provided on the stator side to be coupled thereto. do. As described above; if controlled by the controller 12, even if multiple points are measured at the same time, they can be transmitted to the stator side using radio waves in an orderly manner, and the variable rate circuit S5 provided on the stator side can transmit signals proportional to the amount of electricity. It is converted into an electrical signal and input to the arithmetic processing circuit 16, where the electric quantity, that is, the excitation voltage/electricity in the case of multiple rows, tIL and excitation winding resistance, the excitation winding average temperature 1, and the surface of the end of the Talos slot is calculated. The temperature is processed and input to the display device S1 and the alarm/trip circuit 38.

ここで表示装置37は、各電気量を表示し九〕記録する
機能を有し、一般的にデジタル機器を用いる。まえ、警
報・トリップ回路38は逆相負荷の増大による回転子表
面の加熱や励磁巻線の温度上昇によシ、発電機運転上の
各種警報を発したシ場合によっては発電機トリップ信号
を出すためのものでおる。
Here, the display device 37 has a function of displaying and recording each quantity of electricity, and generally uses a digital device. The alarm/trip circuit 38 issues various alarms regarding generator operation due to heating of the rotor surface and temperature rise of the excitation winding due to an increase in negative phase load, and in some cases issues a generator trip signal. It's for something.

かかる構成とすれば、回転子上に非゛イに小さい部品・
回路を設けるだけで、プランレスタービン発wL機の回
転子上電気接電を元全な非委触で検出で色、特に゛運転
状態に関係なく回転子表面の局部温鼓上昇の最も大きく
なるクロススロツ)5t4の温度を詰祝できるだめ、4
転状態Vこよシ囲転子のm鎚上昇が異なる従来の逆相電
流を基準とした保護方式の欠点をなくシ、合理的かつ安
全裡に高信頼性の逆相負荷保護を行なうことが可能とな
る。もって、運転・保守の軽便化、高信頼性化を目的と
するブラフレス励磁方式機における、今恢の大容量化お
よび=1(1)高信頼性化に寄与することが大である。
With such a configuration, there are very small parts and parts on the rotor.
By simply installing a circuit, the electrical connection on the rotor of a planless turbine generator can be detected completely without contact, and the color can be detected, especially if the local temperature rise on the rotor surface is the largest regardless of the operating state. Cross slot) 5t4 temperature can be congratulated, 4
It eliminates the shortcomings of the conventional protection method based on the negative sequence current, which has a different m-rise of the trochanter, and can provide highly reliable negative sequence load protection in a rational and safe manner. becomes. This greatly contributes to the current large capacity and =1(1) high reliability of brushless excitation type machines, which aim to simplify operation and maintenance and improve reliability.

また、1咲出測定のための各1回路への1ii源供給と
して回転変圧器40を用いているので、停止中、始動述
中寺のいかなる粂件でも非接触でt源を供給でき、回路
調整時等別電源を設ける必要が熟く、検出・測定システ
ム全体の保守・調整が容易となる。なお、かかる必要の
無い場合は、回転変圧器を用いて電源を供給しなくても
、交流励出機電機子に補助巻線を設は九シ、交流出力を
分岐する等の手段を取シ帰ることは明らかである。
In addition, since the rotary transformer 40 is used to supply the 12 source to each circuit for 1 bloom measurement, the t source can be supplied non-contact during any period of time during stoppage or startup. It is necessary to provide a separate power supply for adjustment, etc., and maintenance and adjustment of the entire detection and measurement system is facilitated. If this is not necessary, it is possible to install an auxiliary winding on the AC exciter armature or take measures such as branching the AC output, even if power is not supplied using a rotating transformer. It is clear that I will return.

なお、上記装置においては電圧、電流、温度と3種類の
信号を検出測定しているが電気信号として見れば、全て
同じであ〕、回転子上のスペースや回路構成が許す限シ
、多点測定が可能であシ、また応力、加速度等の測定も
同様に行なうことができるのは勿論のことである。
Note that the above device detects and measures three types of signals: voltage, current, and temperature, but when viewed as electrical signals, they are all the same. Of course, it is also possible to measure stress, acceleration, etc. in the same way.

その他、本発明はその要旨を変更しない範囲で、種々変
形して寅施することができるものである。
In addition, the present invention can be modified in various ways without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、合理的でしかも安
全裡に回転子を逆相負荷から保護することができる極め
て信頼性の高いブラシレスタービン発電機の保護装置が
提供できる。
As described above, according to the present invention, it is possible to provide an extremely reliable protection device for a brushless turbine generator that can rationally and safely protect the rotor from negative phase loads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタービン発電機の回転子の概念構成を示す斜視
図、第2図atm転子のクロススロットにおける鉄心を
含む面を示す横断面図、第8図は回転子表面のクロスス
ロットとコイルスロットの関係および渦電流の流線を示
す展開図、第4図鉱クロススロット近傍の円周方向に沿
っての損失IIR&分布を示す図、第5図は従来の逆相
−電流継電器の構成を示すブロック図、第6図線本発明
の一実m列を示すブロック図、第7図は本発明によるク
ロススロット端に温度検出セyす−を設けた岡を示す図
である。 l−回転子、Jlk−鉄心、Jb・・・軸部、2−・・
横、’ −保持II % 4−磁極、5−・クロススロ
ソ)、+It−・コイル、F、7a・・・コイルスロッ
ト、9−渦電流fIt、線、11−・コイルスロットと
クロススロットとの狭隙部、12・−逆相フィルタ、1
3−最小動作値回路、14−・・警報回路、15工:t
zKm路、10・−生機固定子巻線、20・・・交流励
磁機電機子巻線、21−・回転整流装置、22−分圧抵
抗、2B−・・分流抵抗、24・−・計測用スリップリ
ング、25・・・演算回路、26・・・表トローラ、3
3・・・変1回路等、34a、34b・・・アンテナ、
35・・・ffI4回路、36・・・演算処理回路、3
7・・・表示装置、38・・・警報トリップ回路、39
 ・・・直流安定化電源、40&、40b−回転トラン
ス。 出願人代理人 弁理士 鈴 圧式 彦 第311 第4図
Fig. 1 is a perspective view showing the conceptual structure of the rotor of a turbine generator, Fig. 2 is a cross-sectional view showing a plane including the iron core in the cross slots of the ATM trochanter, and Fig. 8 is a cross-slot and coil on the rotor surface. Figure 4 is a diagram showing the loss IIR & distribution along the circumferential direction in the vicinity of the cross-slot, and Figure 5 is a diagram showing the configuration of a conventional reverse phase-current relay. FIG. 6 is a block diagram showing a single row of m-rows according to the present invention, and FIG. 7 is a diagram showing a cross slot provided with a temperature detection sensor at the end of the cross slot according to the present invention. l-rotor, Jlk-core, Jb...shaft, 2-...
Horizontal, '-holding II % 4-magnetic pole, 5-・cross slot), +It-・coil, F, 7a... coil slot, 9-eddy current fIt, wire, 11-・narrowing between coil slot and cross slot Gap, 12 - reverse phase filter, 1
3-minimum operating value circuit, 14-...alarm circuit, 15 construction: t
zKm path, 10--grey stator winding, 20--AC exciter armature winding, 21--rotating rectifier, 22-voltage division resistor, 2B--shunt resistor, 24--for measurement Slip ring, 25... Arithmetic circuit, 26... Front troller, 3
3... Variable 1 circuit, etc., 34a, 34b... Antenna,
35...ffI4 circuit, 36... Arithmetic processing circuit, 3
7...Display device, 38...Alarm trip circuit, 39
...DC stabilized power supply, 40&, 40b-rotating transformer. Applicant's agent Patent attorney Rin Ushiki Hiko No. 311 Figure 4

Claims (1)

【特許請求の範囲】 fi+固定子と軸長が長く塊状磁極を有する回転子を−
えたブラシレス励磁方式のタービン発電機において、主
@磁回路の励磁電圧、電流およびクロススロット端回転
子表面温度を検出しそれに地利した電気信号を出力する
各検出素子と、この各検出素子からの電気信号を入力と
し、アナログ−デジタルf換・信号弁別・fr!1号成
形を行なう増幅回路と、この場1−圓鮎の出力を電波に
て@倍するためのfallを行なうに網回路および送信
アンテナと、前記増1−回路およびfl、161回路を
コントロールするコントローラと、回転変圧器から得ら
れる交流電力を電流してその直流出力を前記増幅回路、
変調回路およびコントローラに夫々与える直流女定化1
源とを前記u転子側に夫々具備し、受信□アンテナにて
受信される前記送信アンチtからの電波に比列し走電気
量を入力とし、それに地利した電気信号にf供する変調
回路と、こ0′R174@路からの出力を演算処理する
演算処理回路と、この演算処理回路からの出力をJ&に
表示・警報・発電機トリップ信号を出力する回踏とを前
記固定子側に夫々具備し九ことを特徴とするブラシレス
タービン発電機の保膳装置。 (至)温縦を検出する素子の少なくとも1点を回転子ク
ロススロットと隣接し九コイルスロットO袂1llIに
設けるようにした特許請求の範囲第I項記載のブラシレ
スタービン発電機の保膿装置。 (至)直流安定化電源の交流入力手段として少なくとも
ls分の回転変圧器を設けるようにした特許請求の@囲
第(1)項記載のブラシレスタービン発電機O保lI装
置。 (4クロススロツトと隣接コイルスロットとの狭11に
設けられる少なくとも1点の温度検出ぶ子のリード線を
隣接コイルスロット内に設け接続するようにし九特許請
求の範囲第(1)項記載のブラシレスタービン発電機O
保ll装置。 (5)直流安定化電源の交流入力手段としてブラシレス
励磁装置用5P、R励磁機電機子に補助巻線を設けるよ
うにした特許請求の範囲第(1) JJ記戦のブラシレ
スタービン発電機の保護装置。 (6)1151安定化電源の交流入力手段として検出測
定用に交流励磁機を設けるようにした特許請求の範囲第
(11項記載のプツシレスタービン発電機の保−装置。
[Claims] A fi + stator and a rotor with a long axial length and block magnetic poles -
In the developed brushless excitation type turbine generator, each detection element detects the excitation voltage and current of the main @magnetic circuit and the surface temperature of the cross slot end rotor and outputs an appropriate electrical signal, and the electricity from each detection element is detected. Input signal, analog-digital f conversion, signal discrimination, fr! Controls the amplifier circuit that performs the No. 1 shaping, the network circuit and transmitting antenna that performs the fall to double the output of the En-Ayu by radio waves, and the amplification circuit, fl, and 161 circuit. a controller, and the amplifier circuit that converts AC power obtained from the rotary transformer into a DC output;
DC voltage constant 1 given to the modulation circuit and controller respectively
a modulation circuit which is provided with a source on the u-trochanter side, inputs an amount of traveling electricity proportional to the radio wave from the transmitting anti-t received by the receiving antenna, and supplies f with an electric signal that is advantageous to it; , an arithmetic processing circuit for arithmetic processing the output from the 0'R174@ road, and a circuit for displaying the output from this arithmetic processing circuit on the J& and outputting an alarm and a generator trip signal, respectively, on the stator side. A maintenance device for a brushless turbine generator characterized by the following nine features. (To) A purulent preservation device for a brushless turbine generator according to claim 1, wherein at least one point of the element for detecting temperature/verticality is provided adjacent to the rotor cross slot and at the bottom of the nine coil slot. (To) The brushless turbine generator O-I device according to claim (1), wherein a rotary transformer for at least ls is provided as an AC input means of the DC stabilized power source. (4) A brushless turbine according to claim (1), wherein the lead wire of at least one temperature detection knob provided in the narrow space 11 between the cross slot and the adjacent coil slot is provided and connected to the adjacent coil slot. Generator O
Holding device. (5) Claim No. 1: Protection of the brushless turbine generator of JJ Kisen, in which an auxiliary winding is provided in the 5P, R exciter armature for the brushless exciter as an AC input means of the DC stabilized power supply Device. (6) A maintenance device for a pushless turbine generator according to claim 11, wherein an AC exciter is provided for detection and measurement as an AC input means of the 1151 stabilized power source.
JP57082666A 1982-05-17 1982-05-17 Protecting device for brushless turbine generator Pending JPS58201561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082666A JPS58201561A (en) 1982-05-17 1982-05-17 Protecting device for brushless turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082666A JPS58201561A (en) 1982-05-17 1982-05-17 Protecting device for brushless turbine generator

Publications (1)

Publication Number Publication Date
JPS58201561A true JPS58201561A (en) 1983-11-24

Family

ID=13780749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082666A Pending JPS58201561A (en) 1982-05-17 1982-05-17 Protecting device for brushless turbine generator

Country Status (1)

Country Link
JP (1) JPS58201561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209364A2 (en) * 1985-07-16 1987-01-21 Westinghouse Electric Corporation Generator stator winding diagnostic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209364A2 (en) * 1985-07-16 1987-01-21 Westinghouse Electric Corporation Generator stator winding diagnostic system

Similar Documents

Publication Publication Date Title
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
Kerszenbaum et al. The existence of large inter-bar currents in three phase squirrel cage motors with rotor-bar and/or end-ring faults
CN102386828B (en) Operate wind turbine and determine the method for permanent magnet temperature and the controller of turbine
US3934163A (en) Polyphase synchronous electrical machine with superconductor winding
US4217511A (en) Stator core cooling for dynamoelectric machines
Li et al. Influence of direct‐connected inverter with one power switch open circuit fault on electromagnetic field and temperature field of permanent magnet synchronous motor
EP0156606B1 (en) Generator device
JPS58201561A (en) Protecting device for brushless turbine generator
WO2001050588A1 (en) Hybrid-secondary uncluttered induction machine
GB2170057A (en) Alternating-current electrical generators
US3114094A (en) Adjustable speed brushless a. c. motor
CN104335465A (en) Electrical power motor-generator excited by magnetic transference
EP1180671A1 (en) Brushless alternating-current generating apparatus and method for measuring field winding temperature therefor
US2697810A (en) Single phase induction motor
US20020117912A1 (en) Rotary electric machine
Neidhoefer et al. Negative-sequence losses in solid rotors of turbo-generators and equivalent wave resistance
JPH0716000A (en) Unbalanced load compensation power generating system
JP3144029B2 (en) Generators and generators
US3355608A (en) Magnetohydrodynamic generator
Agarwal Equivalent circuits and performance calculations of canned motors
JPH06153423A (en) Transmission line monitoring sensor
JP3407529B2 (en) Two-pole turbine generator and its rotor
US2575932A (en) Dynamoelectric machine rotor and winding
JP3701118B2 (en) Bearingless rotating machine
SU402124A1 (en) INDUCTION CURRENT SENSOR