JPS58201558A - Superconductive rotor - Google Patents
Superconductive rotorInfo
- Publication number
- JPS58201558A JPS58201558A JP57084187A JP8418782A JPS58201558A JP S58201558 A JPS58201558 A JP S58201558A JP 57084187 A JP57084187 A JP 57084187A JP 8418782 A JP8418782 A JP 8418782A JP S58201558 A JPS58201558 A JP S58201558A
- Authority
- JP
- Japan
- Prior art keywords
- shield
- shield cylinder
- radiation heat
- superconducting
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K55/00—Dynamo-electric machines having windings operating at cryogenic temperatures
- H02K55/02—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
- H02K55/04—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は超電導回転子に係シ、特に回転軸、トルクチュ
ーブ、超電導界磁巻線、冷媒溜、冷媒注入管等を有して
いる超電導回転子に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting rotor, and more particularly to a superconducting rotor having a rotating shaft, a torque tube, a superconducting field winding, a refrigerant reservoir, a refrigerant injection pipe, and the like.
超電導回転子の従来例が第1図に示されている。A conventional example of a superconducting rotor is shown in FIG.
同図に示されているように超電導界磁巻線lはトルクチ
ューブ2の上に固定され、トルクチューブ2の端部は回
転軸すなわちシャフト3およびシャフト4に支持される
。シャフト3およびシャフト4には軸受ジャーナル部5
および6が設けられて軸受支持部となる。超電導回転子
illと常温の外筒7との間は真空断熱層であり、その
中間にはラジエーションシールド8が配置される。そし
て超電導界磁巻線1は冷媒溜すなわち液体ヘリウム溜と
9内の液体ヘリウムが巻線部10に直流して冷却される
。液体ヘリウム溜9内では外部からの侵入熱によシ液体
ヘリウムの蒸発があり、蒸発したガスヘリウムはトルク
チューブ2の端部とパワーリード(図示せず)を冷却後
、図中に矢印で示されているようなガス流I Lとなっ
てヘリウム給排機12により機外へ排出される。液体ヘ
リウム溜9への液体ヘリウムの供給は冷媒注入管すなわ
ち液体ヘリウム注入管13を通じて行なわれ、液体ヘリ
ウム注入管13へはヘリウム給排機12によって機外よ
り液体ヘリウムが供給される。スリップリング14はパ
ワーリードに励磁電流を外部電源(図示せず)から供給
するものである。As shown in the figure, a superconducting field winding l is fixed on a torque tube 2, and the ends of the torque tube 2 are supported by rotating shafts, that is, shafts 3 and 4. A bearing journal portion 5 is provided on the shaft 3 and the shaft 4.
and 6 are provided to form a bearing support section. A vacuum insulation layer is provided between the superconducting rotor ill and the outer cylinder 7 at normal temperature, and a radiation shield 8 is placed in between. The superconducting field winding 1 is cooled by direct current of liquid helium in a refrigerant reservoir, that is, a liquid helium reservoir 9, to a winding portion 10. In the liquid helium reservoir 9, liquid helium evaporates due to heat entering from the outside, and the evaporated gas helium cools the end of the torque tube 2 and the power lead (not shown), and then flows out as indicated by the arrow in the figure. The helium supply/discharge device 12 discharges the gas to the outside of the machine as a gas flow IL as shown in FIG. Liquid helium is supplied to the liquid helium reservoir 9 through a refrigerant injection pipe, that is, a liquid helium injection pipe 13, and liquid helium is supplied to the liquid helium injection pipe 13 from outside the machine by a helium supply/discharge device 12. The slip ring 14 supplies excitation current to the power leads from an external power source (not shown).
このように構成された超電導回転子15では、前述のよ
うに液体ヘリウム溜9の周囲にはラジェーションシール
ド8が配置されて常温部から極低温部へのふく耐浸入熱
量(伝熱量)を低減しているが、液体ヘリウム注入管1
3に対してはこのようなシールドがなく、液体ヘリウム
注入管13へのふく耐浸入熱量を第2図に示されている
ような大きさの大型超電導回転子、例えば100100
O発電機の超電導回転子について計算すると次に述べる
ような値となって、液体ヘリワム注入管13へのふく耐
浸入熱量は大きい。In the superconducting rotor 15 configured in this way, the radiation shield 8 is arranged around the liquid helium reservoir 9 as described above, and the radiation shield 8 is arranged around the liquid helium reservoir 9 to suppress the amount of heat intrusion (heat transfer amount) from the room temperature part to the cryogenic part. Although reduced, liquid helium injection tube 1
3 does not have such a shield, and the amount of heat that can withstand infiltration into the liquid helium injection tube 13 is limited to a large superconducting rotor of the size shown in FIG.
When calculated for the superconducting rotor of the O generator, the following values are obtained, and the amount of heat that can withstand infiltration into the liquid heliwam injection pipe 13 is large.
同心円筒間のふく耐浸入熱量Qは、
・・・・・・ (1)
で表わされる。こ\でσはステファンポルツマン定数、
Lは伝熱面の長さ、ε1.ε、は小径側および大径側の
ふく対車、D、、D、は小径側および大径側の直径、T
I 、T2は小径側および大径側の温度である。このふ
く対車ε1.ε2を共に0.2とし、温度T、 、 T
、を小径側である液体ヘリウム注入管13の温度T1は
全長にわたシ4.2にとし、大径側であるトルクチュー
ブ2の温度T2は低温側4.2Kからシャフト4への接
続部の300Kまで2次曲線的に分布しているので4.
2Kから300Kまで2次曲線的に温度分布するとし、
同じく大径側であるシャフト4の温度T2は超電導回転
子15の先端までの全長にわたり300にとする。また
直径り、、D2を図中に示されているように小径側であ
る液体ヘリウム注入管13の直径DIは15■、大径側
であるトルクチューブ2.シャフト40大きい部分およ
び小さい部分の直径D2は夫々600,200,20m
nとし、伝熱面の長さLをこれまた図中に示されている
ようにトルクチューブ2.シャフト4の大きい部分およ
び小さい部分を夫々700,1500.1500日とす
る。そして上記(1)式からこれらD2が600m(L
=700簡)、200鰭(L=1500閣)、20m(
L=1500m)の部分についてふく耐浸入熱量Qを夫
々求め、求めた結果を加え合わせた全体のふく耐浸入熱
量ΣQは約10Wとなる。The amount of heat Q that can withstand infiltration between concentric cylinders is expressed as follows (1). Here, σ is the Stefan Polzmann constant,
L is the length of the heat transfer surface, ε1. ε is the diameter of the small diameter side and the large diameter side, D,, D is the diameter of the small diameter side and the large diameter side, T
I and T2 are the temperatures on the small diameter side and the large diameter side. This blanket vs. car ε1. Both ε2 are set to 0.2, and the temperatures T, , T
, the temperature T1 of the liquid helium injection tube 13 on the small diameter side is set to 4.2K over the entire length, and the temperature T2 of the torque tube 2 on the large diameter side is set at 4.2K at the connection part from the low temperature side to the shaft 4. It is distributed like a quadratic curve up to 300K, so 4.
Assume that the temperature distribution is quadratic from 2K to 300K,
Similarly, the temperature T2 of the shaft 4, which is on the large diameter side, is set to 300 over the entire length up to the tip of the superconducting rotor 15. As shown in the figure, the diameter DI of the liquid helium injection tube 13 on the small diameter side is 15cm, and the diameter DI of the torque tube 2. The diameters D2 of the large and small parts of the shaft 40 are 600, 200, and 20 m, respectively.
n, and the length L of the heat transfer surface of the torque tube 2. The large and small portions of shaft 4 are 700, 1500, and 1500 days, respectively. From the above equation (1), these D2 are 600 m (L
= 700 pieces), 200 fins (L = 1500 pieces), 20 m (
The total amount of heat penetration resistance ΣQ is approximately 10W by adding the obtained results together.
このように液体ヘリウム注入管13へのふく耐浸入熱量
は大きく、従って液体ヘリウム注入管13の熱損失が大
きい欠点があった。As described above, the amount of heat that can withstand infiltration into the liquid helium injection tube 13 is large, and therefore the liquid helium injection tube 13 has a drawback that the heat loss is large.
本発明は以上の点に鑑みなされたものであシ、その目的
とするところは、熱損失の小さい液体ヘリウム注入管を
有する超電導回転子を提供するにある。The present invention has been made in view of the above points, and its object is to provide a superconducting rotor having a liquid helium injection tube with low heat loss.
すなわち本発明は、冷媒注入管の囲シにふく射熱シール
ドを設けたことを特徴とするものである。That is, the present invention is characterized in that a radiation heat shield is provided around the refrigerant injection pipe.
以下、図示した実施例に基づいて本発明f:説明する。The present invention f will be explained below based on the illustrated embodiments.
第3図には本発明の一実施例が示されている。なお従来
と同じ部品には同じ符号を付したので説明は省略する。FIG. 3 shows an embodiment of the invention. Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted.
本実施例では液体ヘリクム注入管13の囲シにふく射熱
シールド16at−設けた。そしてふく射熱シールド1
6aを、熱良導体のシールド円筒17と、このシールド
円筒17の外周に少なくともその一部が接触するように
設け、かつ液体ヘリウム溜9の中で蒸発したガスへリク
ムを分流させる分流パイプ18とから形成した。In this embodiment, a radiation heat shield 16at- is provided around the liquid helicum injection pipe 13. And radiation heat shield 1
6a from a shield cylinder 17 that is a good thermal conductor, and a diversion pipe 18 that is provided so that at least a part of the outer periphery of the shield cylinder 17 contacts, and that diverts the gas helicum evaporated in the liquid helium reservoir 9. Formed.
このようにすることによシ分流バイブ18を通流する分
流ガスヘリウムによってシールド円筒17は冷却されて
温度が下り、液体ヘリウム注入管13へのふく耐浸入熱
量を低減することができ、液体ヘリウム注入管13の熱
損失を小さくすることができる。By doing this, the shield cylinder 17 is cooled by the diverted gas helium flowing through the diverter vibe 18 and its temperature is lowered, and the amount of heat that can withstand infiltration into the liquid helium injection pipe 13 can be reduced. Heat loss of the injection pipe 13 can be reduced.
因みにふく射熱シールド16aの温度が低温側で4.2
に、高温側で300Kになったとし、低温側から高温側
への温度分布は2次曲線的に変化するとすると、(1)
式から液体ヘリウム注入管13へのふく耐浸入熱量ΣQ
は1.2Wとなり、従来に比べ液体ヘリウム注入管13
の熱損失を大幅に減少することができる。Incidentally, the temperature of the radiation heat shield 16a is 4.2 on the low temperature side.
Assuming that the temperature reaches 300K on the high temperature side, and the temperature distribution from the low temperature side to the high temperature side changes like a quadratic curve, (1)
From the formula, the amount of heat resistant to infiltration into the liquid helium injection pipe 13 ΣQ
is 1.2W, and compared to the conventional liquid helium injection tube 13
heat loss can be significantly reduced.
このふく耐浸入熱量は(1)式でT、=4.2にとする
と、はぼT2 (すなわちふく射熱シールド16aの
温度)の4乗に比例して増えるので、ふく射熱シールド
16a全体の温度を下げるとふく耐浸入熱量を大幅に減
少させることができる。例えばふく射熱シールド16a
の高温端側の温度を100にとして、軸方向には低温端
側の4.2Kから2次曲線的に温度分布するとすれば、
ふく射熱シールド16a全体の温度が下ってふく耐浸入
熱量ΣQは0.014Wと非常に小さくなる。If we set T=4.2 in equation (1), this radiation heat penetration resistance increases in proportion to the fourth power of T2 (that is, the temperature of the radiation heat shield 16a), so the temperature of the entire radiation heat shield 16a is lowered. The heat penetration resistance can be significantly reduced. For example, the radiation heat shield 16a
If the temperature on the high temperature end side is 100, and the temperature distribution in the axial direction is quadratic from 4.2K on the low temperature end side, then
The temperature of the radiation heat shield 16a as a whole decreases, and the radiation resistant infiltration heat amount ΣQ becomes very small at 0.014W.
第4図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.
本実施例ではふく射熱シールド16bを、熱良導体のシ
ールド円筒17と分流パイプ18とから形成し、これら
シールド円筒17および分流パイプ18の軸力向の高温
端側を回転子構造体20と絶縁物19を介して支持する
ようにした。すなわち熱良導体のシールド円筒17およ
び分流パイプ18の高温端側を夫々絶縁物19を介して
回転子構造体20と結合した。このようにすると絶縁物
19の熱抵抗が非常に大きいので、ふく射熱シールド1
6bと回転子構造体20との間に大きい温度差ができ、
ふく射熱シールド16bの温度を下げ、ふく射熱シール
ド16bに必要とされる低温域の温度分布を得ることが
でき、前述の場合より液体へvryム注入管13へのふ
く耐浸入熱量を減少させることができる。In this embodiment, the radiation heat shield 16b is formed from a shield cylinder 17 of a good thermal conductor and a branch pipe 18. Supported through. That is, the high temperature end sides of the shield cylinder 17 and the branch pipe 18, which are good thermal conductors, were connected to the rotor structure 20 via the insulator 19, respectively. In this case, the thermal resistance of the insulator 19 is very high, so the radiation heat shield 1
A large temperature difference is created between 6b and the rotor structure 20,
By lowering the temperature of the radiation heat shield 16b, it is possible to obtain a temperature distribution in the low temperature range required for the radiation heat shield 16b, and it is possible to reduce the amount of heat that can withstand infiltration of the liquid into the vryme injection pipe 13 compared to the above case. .
第5図には本発明の更に他の実施例が示されている。本
実施例ではふく射熱シールド16Cを、その間に液体ヘ
リウム溜の中で蒸発したガスヘリウムを分流させる同心
で、かつ非熱良導体のシールド円筒16Cで形成した。FIG. 5 shows yet another embodiment of the invention. In this embodiment, the radiant heat shield 16C is formed of a concentric shield cylinder 16C that is a non-thermal conductor, and between which the gas helium evaporated in the liquid helium reservoir is diverted.
このように非熱良導体のシールド円筒16Cに分流ガス
ヘリウムを通流させるようにしたので、シールド円筒1
6Cの熱伝導が悪くなシ、ふく射熱シールド16(4−
伝導するふく耐浸入熱量を小さくすることができる。In this way, since the shunt gas helium was made to flow through the shield cylinder 16C, which is a non-thermal good conductor, the shield cylinder 1
6C has poor heat conduction, radiation heat shield 16 (4-
It is possible to reduce the amount of heat permeation resistance that is conducted.
第6図には本発明の更に他の実施例が示されている。本
実施例ではふく射熱シールド16dを、その高温端側を
回転子構造体20と夫々絶縁物19を介して結合した熱
良導のシールド円筒17と分流パイプ18とから形成し
、熱良導体のシールド円筒17の軸方向の複数個所に絶
縁物19を介在させた。このようにすると高温端側に絶
縁物19を介在させた場合よシも更に大きくふく射熱シ
ールド16d全体の温度を下げることができる。FIG. 6 shows yet another embodiment of the invention. In this embodiment, the radiation heat shield 16d is formed from a shield cylinder 17 and a branch pipe 18, which have good thermal conductivity and whose high-temperature end side is connected to the rotor structure 20 through an insulator 19, respectively. Insulators 19 were interposed at multiple locations in the axial direction of 17. In this way, the temperature of the entire radiation heat shield 16d can be lowered even more than when the insulator 19 is interposed on the high temperature end side.
なお同図において21は磁性流体シールである。In addition, in the figure, 21 is a magnetic fluid seal.
第7図には本発明の更に他の実施例が示されている。ふ
く射熱シールド16e’i熱良導体のシールド円筒17
と分流パイプ18とから形成し、かつ分流パイプ18の
軸方向端部近傍に回転子構造体20の内側のガスヘリウ
ム流路11aと導通する開口部Aを設けた。このように
すると分流パイプ18内を流れてきた低温の分流ガスヘ
リウムは開口部Aを通じてトルクチューブ冷却後の図中
矢印表示のガス流11に混入する。混入した分流ガスヘ
リウムは、トルクチューブを冷却し、ガス流11となっ
てガス流路11aを流れてきたガスヘリウムが多量で殆
んど常温となっているので常温となる。従って分流ガス
ヘリウムは常温のガスヘリウムとなってヘリクム給排機
12によって回収されるので、回転部と固定部との間の
シール機構である磁性流体シール21は低温の分流ガス
ヘリウムに曝されることがなく、磁性流体シール21へ
の低温の分流ガスヘリウムによる悪影響を防止すること
ができる。FIG. 7 shows yet another embodiment of the invention. Radiation heat shield 16e'i Shield cylinder 17 of good thermal conductor
and a branch pipe 18, and an opening A that communicates with the gas helium channel 11a inside the rotor structure 20 was provided near the axial end of the branch pipe 18. In this way, the low-temperature diverted gas helium flowing through the diverter pipe 18 mixes through the opening A into the gas flow 11 indicated by the arrow in the figure after the torque tube has been cooled. The mixed branch gas helium cools the torque tube, and the gas helium that has become the gas flow 11 and has flowed through the gas flow path 11a is in a large amount and almost at room temperature, so that the temperature becomes room temperature. Therefore, the diverted gas helium becomes gas helium at room temperature and is recovered by the helicum supply/discharge device 12, so the magnetic fluid seal 21, which is a sealing mechanism between the rotating part and the stationary part, is exposed to the low temperature diverted gas helium. Therefore, it is possible to prevent the negative influence of the low-temperature shunt gas helium on the magnetic fluid seal 21.
上述のように本発明は冷媒注入管の囲りにふく射熱シー
ルドを設けたので、冷媒注入管へのふく射熱がシールド
されるようになって、ふく耐浸入熱量が減少するように
なシ、熱損失の小さい液体ヘリウム注入管を有する超電
導回転子を得ることができる。As described above, the present invention provides a radiation heat shield around the refrigerant injection pipe, so radiation heat to the refrigerant injection pipe is shielded, reducing the amount of heat penetration resistance and reducing heat loss. A superconducting rotor with a small liquid helium injection tube can be obtained.
第1図は従来の超電導回転子の縦断側面図、第2図は従
来の超電導回転子の冷媒注入管へのふく耐浸入熱量を計
算するための冷媒注入管曲りの縦断側面図、第3図から
第7図は本発明の超電導回転子の夫々異なる実施例を示
す冷媒注入管曲りの縦断側面図である。
1・・・超電導界磁巻線、2・・・トルクチューブ、3
・・・回転軸、9・・・冷媒溜、11a・・・ガスヘリ
ウム流路、13 ・・・冷媒注入管、16a、16b、
16C。
16d、16e・・・ふく射熱シールド、17・・・熱
良導体のシールド円筒、18・・・分流パイプ、19・
・・(ほか1名)
$z図
芋 4図
2憬!
千5配Fig. 1 is a longitudinal side view of a conventional superconducting rotor, Fig. 2 is a longitudinal side view of the bending of the refrigerant injection pipe for calculating the amount of heat that can withstand infiltration into the refrigerant injection pipe of a conventional superconducting rotor, and Fig. 3 7 are longitudinal sectional side views of bent refrigerant injection pipes showing different embodiments of the superconducting rotor of the present invention. 1... Superconducting field winding, 2... Torque tube, 3
...Rotating shaft, 9...Refrigerant reservoir, 11a...Gas helium channel, 13...Refrigerant injection pipe, 16a, 16b,
16C. 16d, 16e... Radiation heat shield, 17... Shield cylinder of good thermal conductor, 18... Diversion pipe, 19.
...(1 other person) $z zu imo 4 zu 2 憬! 1,000,500 shares
Claims (1)
と、このトルクチューブの外周上に配設された超電導界
磁巻線と、前記トルクチューブ内に設けられ、かつ前記
超電導回転子ll1iを冷却する冷媒が蓄えられている
冷媒溜と、この冷媒溜に前記冷媒を供給する冷媒注入管
とを有する超電導回転子において、前記冷媒注入管の囲
シにふく射熱シールドを設けたことを特徴とする超電導
回転子。 2、前記ふく射熱シールドが、熱良導体のシールド円筒
と、このシールド円筒の外周に少なくともその一部が接
触するように設けられ、かつ前記冷媒溜の中で蒸発した
ガスへり9ムを分流させる分流パイプとから形成された
ものである特許請求の範囲第1項記載の超電導回転子。 3、前記ふく射熱シールドが、その間に前記冷媒溜の中
で蒸発・したガスヘリウムを分流させる同心で、かつ非
熱良導体のシールド円筒で形成されたものである特許請
求の範囲第1項記載の超電導回転子。 4、前記ふく射熱シールドが、前記熱良導体のシールド
円筒と前記分流パイプとから形成され、かつこれらシー
ルド円筒および分流パイプの高温端側か回転子構造体と
夫々絶縁物を介して結合されたものである特許請求の範
囲第1項および第2項記載の超電導回転子。 5、前記ふく射熱シールドが、その高温端側か回転子構
造体と夫々絶縁物を介して結合された前記熱良導体のシ
ールド円筒と前記分流パイプとから形成され、かつ前記
熱良導体のシールド円筒が、その軸方向の複数個所に絶
縁物が介在されたものである特許請求の範囲第1項およ
び第4項記載の超電導回転子。 6、前記ふく射熱シールドが、前記同心で、かつ非熱良
導体のシールド円筒で形成されると共に、このシールド
円筒の高温端側か回転子構造体と絶縁物を介して結合さ
れたものである特許請求の範囲jI1項および93項記
載の超電導回転子。 7、前記ふく射熱シールドが、前記熱良導体のシールド
円筒および前記分流パイプあるいは前記同心で非熱良導
体のシールド円筒から形成され、かつこれから分流パイ
プ、非熱良−導体のシールド円筒の軸方向端部近傍に、
回転子構造体の内側のガスヘリウム流路と導通する開口
部が設けられたものである特許請求の範囲第1項、第2
項および第3項記載の超電導回転子。[Claims] 1. A rotating shaft, a torque tube connected to the rotating shaft, a superconducting field winding disposed on the outer periphery of the torque tube, and a superconducting field winding disposed within the torque tube, and In a superconducting rotor having a refrigerant reservoir storing a refrigerant for cooling the superconducting rotor ll1i and a refrigerant injection pipe supplying the refrigerant to the refrigerant reservoir, a radiation heat shield is provided around the refrigerant injection pipe. A superconducting rotor characterized by: 2. The radiation heat shield is provided with a shield cylinder that is a good heat conductor, and at least a part of the shield cylinder is in contact with the outer periphery of the shield cylinder, and a diversion pipe that divides the edge of the gas evaporated in the refrigerant reservoir. A superconducting rotor according to claim 1, which is formed from. 3. The superconductor according to claim 1, wherein the radiation heat shield is formed of a concentric shield cylinder that is a non-thermal conductor and which separates the gas helium evaporated in the refrigerant reservoir. rotor. 4. The radiation heat shield is formed from the shield cylinder of the good thermal conductor and the branch pipe, and the high temperature end sides of the shield cylinder and the branch pipe are connected to the rotor structure through an insulator, respectively. A superconducting rotor according to certain claims 1 and 2. 5. The radiation heat shield is formed of the shield cylinder of the good thermal conductor and the branch pipe, each of which is connected to the rotor structure at its high-temperature end side via an insulator, and the shield cylinder of the good thermal conductor is A superconducting rotor according to claims 1 and 4, wherein insulators are interposed at a plurality of locations in the axial direction. 6. The radiation heat shield is formed of the concentric and non-thermal conductive shield cylinder, and the high temperature end side of the shield cylinder is connected to the rotor structure via an insulator. The superconducting rotor according to the range jI1 term and 93 term. 7. The radiation heat shield is formed from the shield cylinder made of a good thermal conductor and the branch pipe or the concentric shield cylinder made of a non-thermal good conductor, and from which the shield cylinder is formed from the branch pipe or the shield cylinder made of a non-thermal good conductor near an axial end thereof. To,
Claims 1 and 2 are provided with an opening that communicates with the gas helium flow path inside the rotor structure.
The superconducting rotor according to items 1 and 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57084187A JPS58201558A (en) | 1982-05-18 | 1982-05-18 | Superconductive rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57084187A JPS58201558A (en) | 1982-05-18 | 1982-05-18 | Superconductive rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58201558A true JPS58201558A (en) | 1983-11-24 |
JPH0474947B2 JPH0474947B2 (en) | 1992-11-27 |
Family
ID=13823469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57084187A Granted JPS58201558A (en) | 1982-05-18 | 1982-05-18 | Superconductive rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58201558A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002222709A (en) * | 2001-01-26 | 2002-08-09 | Imura Zairyo Kaihatsu Kenkyusho:Kk | Magnet field generating coil device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5426411A (en) * | 1977-07-30 | 1979-02-28 | Fuji Electric Co Ltd | Ultralow temperature refrigeratnt in-out device for super-conductive rotary machine |
-
1982
- 1982-05-18 JP JP57084187A patent/JPS58201558A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5426411A (en) * | 1977-07-30 | 1979-02-28 | Fuji Electric Co Ltd | Ultralow temperature refrigeratnt in-out device for super-conductive rotary machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002222709A (en) * | 2001-01-26 | 2002-08-09 | Imura Zairyo Kaihatsu Kenkyusho:Kk | Magnet field generating coil device |
Also Published As
Publication number | Publication date |
---|---|
JPH0474947B2 (en) | 1992-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3278446B2 (en) | Cryostat steam cooling power leads | |
ITMI952723A1 (en) | TERMINAL FOR CONNECTING A SUPERCONDUCTIVE POLYPHASE CABLE TO A ROOM TEMPERATURE ELECTRICAL SYSTEM | |
KR20070073844A (en) | Superconducting cable | |
MXPA02004840A (en) | Synchronous machine having cryogenic gas transfer coupling to rotor with super-conducting coils. | |
US3522361A (en) | Electrical installation for parallel-connected superconductors | |
KR20070117480A (en) | System having a superconductive cable | |
KR20110124165A (en) | Transmission system with a superconduction cable | |
US8332005B2 (en) | Superconducting electrical cable | |
EP1734631A1 (en) | Splice structure of superconducting cable | |
US9685260B2 (en) | Method of cooling a superconductive cable | |
CN101228595B (en) | Superconducting cable | |
US4176238A (en) | Cooled multiphase ac cable | |
US4289985A (en) | Electrical machine with cryogenic cooling | |
US3657467A (en) | Coolable electric cable | |
JP3623823B2 (en) | Superconductor transmission line | |
US3835240A (en) | Fluid cooled electrical cable | |
US3917897A (en) | Low temperature cable system and method for cooling same | |
WO2005020245A3 (en) | Conduction cooling of a superconducting cable | |
Forsyth et al. | Flexible superconducting power cables | |
JP2014146585A (en) | Superconductive cable and superconductive cable rail track | |
JPS58201558A (en) | Superconductive rotor | |
JPH02299108A (en) | Superconducting cable | |
US3780205A (en) | Thermal insulation device for a very low-temperature line | |
US20020171300A1 (en) | High temperature superconducting rotor power leads | |
JPH0432108A (en) | Superconductive cable |