JPS5820148B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5820148B2
JPS5820148B2 JP51119080A JP11908076A JPS5820148B2 JP S5820148 B2 JPS5820148 B2 JP S5820148B2 JP 51119080 A JP51119080 A JP 51119080A JP 11908076 A JP11908076 A JP 11908076A JP S5820148 B2 JPS5820148 B2 JP S5820148B2
Authority
JP
Japan
Prior art keywords
diffusion layer
charge
electrode
transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51119080A
Other languages
Japanese (ja)
Other versions
JPS5344182A (en
Inventor
朗 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP51119080A priority Critical patent/JPS5820148B2/en
Publication of JPS5344182A publication Critical patent/JPS5344182A/en
Publication of JPS5820148B2 publication Critical patent/JPS5820148B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は、半導体記憶装置のセンスアンプに基準電圧を
供給する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that supplies a reference voltage to a sense amplifier of a semiconductor memory device.

CCDRAM(電荷転送装置の形式のランダムアクセス
メモリ)またはITr/Ce# (空乏層からなる電
荷蓄積部とゲート用トランジスタで構成されるメモリ素
子)メモリの開発には高感度センスアンプの開発が不可
欠であるが、現在これらのセンスアンプとしては差動型
のセンスアンプとフリップフロップ型のセンスアンプと
がある。
The development of high-sensitivity sense amplifiers is essential for the development of CCDRAM (random access memory in the form of a charge transfer device) or ITr/Ce# (memory element consisting of a charge storage section consisting of a depletion layer and a gate transistor) memory. Currently, these sense amplifiers include differential type sense amplifiers and flip-flop type sense amplifiers.

後者の方式では電荷の有無を区別するため、基準電荷を
発生させてこれをフリップフロップに入力する必要があ
り、本発明はこの基準電荷発生装置を提案するものであ
る。
In the latter method, in order to distinguish the presence or absence of charge, it is necessary to generate a reference charge and input it to a flip-flop, and the present invention proposes this reference charge generation device.

本発明の半導体装置は一伝導型の半導体基板上に、絶縁
膜を介して電荷蓄積用電極をまたその両側にゲート電極
を絶縁膜を介して形成し、さらにその両側の該半導体基
板にソース、ドレイン領域となる反対導電型の高不純物
濃度の拡散層を配設したことを特徴とするが、次に図面
を参照しながらこれを詳細に説明する。
In the semiconductor device of the present invention, a charge storage electrode is formed on a one-conductivity type semiconductor substrate via an insulating film, and gate electrodes are formed on both sides of the charge storage electrode via an insulating film, and a source is formed on the semiconductor substrate on both sides. The present invention is characterized in that a diffusion layer with a high impurity concentration of the opposite conductivity type is provided to serve as a drain region, which will be described in detail below with reference to the drawings.

第1図はCCDRAMの1素子を示し、1は半導体基板
、2,3はフィールド酸化膜、4は電荷蓄積用の電極、
5はゲート電極、6は絶縁膜、7は拡散層でビット線を
構成し、8,9はチャネルストップ拡散層を示す。
FIG. 1 shows one element of a CCDRAM, in which 1 is a semiconductor substrate, 2 and 3 are field oxide films, 4 is an electrode for charge storage,
5 is a gate electrode, 6 is an insulating film, 7 is a diffusion layer that constitutes a bit line, and 8 and 9 are channel stop diffusion layers.

このメモリ素子で書込みは電極4に空乏層を作る電圧を
与え、拡散層7には書込むべきデータの1,0に応じて
V、0の電圧を与え、かつ電極5に電圧を与えてゲート
を開くと、電極4の下部の半導体基板に形成される空乏
層に、拡散層7から電荷が流入しく1のとき)または流
入しない(0のとき)。
For writing in this memory element, a voltage is applied to the electrode 4 to form a depletion layer, a voltage of V or 0 is applied to the diffusion layer 7 according to 1 or 0 of the data to be written, and a voltage is applied to the electrode 5 to gate the gate. When opened, charges flow from the diffusion layer 7 into the depletion layer formed in the semiconductor substrate below the electrode 4 (1) or do not flow (0).

これにより書込みが行なわれ、また読取る場合は拡散層
7をフローティング状態にしてセンスアンプに接続し、
ゲート電極5を開け、そして電極4の電圧を空乏層を減
少もしくは作らない電圧に変化させると、電極40下部
空乏層の電荷は(1が書込まれていたとき)拡散層7へ
入り、その電位を下げる。
Writing is thereby performed, and when reading, the diffusion layer 7 is placed in a floating state and connected to the sense amplifier.
When the gate electrode 5 is opened and the voltage of the electrode 4 is changed to a voltage that reduces or does not create a depletion layer, the charge in the lower depletion layer of the electrode 40 (when 1 was written) enters the diffusion layer 7 and its Lower the potential.

これをセンスアンプで検知し、1の読取り出力を生じる
This is sensed by the sense amplifier and produces a read output of 1.

これに対して電極4の下部に電荷がなければ拡散層の電
位は不変であり、これはOの読取出力を与える。
On the other hand, if there is no charge below the electrode 4, the potential of the diffusion layer remains unchanged, which gives a read output of O.

しかしながらかかるメモリ素子においては、拡散層7の
体積が相当に太きく、シかも電極4の下部基板の空乏層
に蓄積される電荷量は相当に小さい。
However, in such a memory element, the volume of the diffusion layer 7 is quite large, and the amount of charge accumulated in the depletion layer of the lower substrate of the electrode 4 is quite small.

そこで空乏層の電荷が拡散層に入ってもその電位変化は
極めて僅かであり、センスアンプはこの微小な電位変化
を鋭敏に検知しなければならない。
Therefore, even if the charge in the depletion layer enters the diffusion layer, the change in potential is extremely small, and the sense amplifier must sensitively detect this minute change in potential.

フリップフロップ型のかかるセンスアンプSAの例を第
2図に示す諷この図でQt 、Q2がフリップフロップ
の2つのスイッチングトランジスタ、Q3. Q4は負
荷抵抗となるトランジスタ、Q。
An example of such a flip-flop type sense amplifier SA is shown in FIG. 2, in which two switching transistors Qt and Q2 are flip-flops, Q3 . Q4 is a transistor that serves as a load resistance.

は7A、7Bの電位をトランジスタQ1.Q2 のvt
h以上に保持するために設けたトランジスタQ6 はリ
セット用のトランジスタである。
is the potential of transistors Q1.7A and 7B. Q2 vt
The transistor Q6 provided to maintain the voltage at or above h is a reset transistor.

7Aおよび7Bが前述の拡散層であり、トランジスタQ
1のドレインとQ2 のゲート、およびトランジスタQ
2のドレインとQl のゲートに接続される。
7A and 7B are the aforementioned diffusion layers, and transistor Q
1 and the gate of Q2, and the transistor Q
It is connected to the drain of Q2 and the gate of Ql.

Mはメモリ素子であって、CCDRAM型の素子である
場合は前述の蓄積電極4およびゲート電極5などから構
成される。
M is a memory element, and in the case of a CCDRAM type element, it is composed of the aforementioned storage electrode 4, gate electrode 5, and the like.

なおこれらのメモリ素子MおよびセンスアンプSAは共
通の半導体基板上に形成され、そして複数のワードの各
1ビット分を示しているのみで、実際にはかかるものが
多数配列される。
Note that these memory elements M and sense amplifiers SA are formed on a common semiconductor substrate, and only one bit of each of a plurality of words is shown; in reality, a large number of such elements are arranged.

読取りに当っては、最初トランジスタQ6 をオンにし
て両拡散層7A、7Bの電位を同じにしておき、次いで
このトランジスタQ6 をオフにすると共にあるワード
のビットに対応するゲート5を開け、電極4の電位を0
にして電荷を当該拡散層例えば7Aに流出させる(1が
書込まれているとき)。
When reading, first the transistor Q6 is turned on to make the potentials of both diffusion layers 7A and 7B the same, and then the transistor Q6 is turned off and the gate 5 corresponding to the bit of a word is opened, and the electrode 4 is turned on. The potential of
to cause the charge to flow out to the diffusion layer, for example 7A (when 1 is written).

これにより拡散層7Aの電位が下がり(電荷が電子のと
き)、センスアンプのトランジスタQ1 がオン、Q2
がオフになり1の読取出力が得られる。
This lowers the potential of the diffusion layer 7A (when the charge is electrons), turning on the transistor Q1 of the sense amplifier and turning on the transistor Q2.
is turned off and a readout of 1 is obtained.

しかしながら0が書込まれているときはゲート5を開け
ても拡散層7Aへの電荷の流入はなく、従って、これで
はフリップフロップであるセンスアンプSAではQl、
Q2のどちらのトランジスタがオンになるかは不定とな
り、製作時の特性の相違によりどちらかがオンになりO
の読取り出力は極めて不安定なものになる。
However, when 0 is written, no charge flows into the diffusion layer 7A even if the gate 5 is opened, and therefore, in the sense amplifier SA, which is a flip-flop, Ql.
Which transistor of Q2 is turned on is uncertain, and due to differences in characteristics during manufacturing, one of them will be turned on and O
The read output will be extremely unstable.

これを避けるにはディファレンシャルセルラ用いるとよ
い。
To avoid this, it is better to use differential cellular.

第2図の10はこのディファレンシャルセルを示し、こ
れは両側の拡散層7A、 7Bに接続され、読取りに
際してはデータ1に対する蓄積電荷量以下の電荷(以下
0.5の電荷量というを反対側の拡散層へ供給する。
Reference numeral 10 in FIG. 2 indicates this differential cell, which is connected to the diffusion layers 7A and 7B on both sides, and when reading, the charge smaller than the accumulated charge for data 1 (hereinafter referred to as 0.5 charge) is connected to the diffusion layers 7A and 7B on the opposite side. Supply to the diffusion layer.

このようにすれば例えば読取りに際して拡散層7Aに接
続されたメモリ素子がデータ1に対応する蓄積電荷量を
該拡散層へ供給するとき、反対側の拡散層7Bに接続さ
れたディファレンシャルセル107>KO,5の電荷量
を該拡散層へ供給し、この結果0.5の電荷量に対応す
る電位差だけ拡散層IA側が低電位、拡散層7B側が高
電位となり、トランジスタQ0がオン、Q2 がオフに
なる。
In this way, for example, when the memory element connected to the diffusion layer 7A supplies the accumulated charge amount corresponding to data 1 to the diffusion layer during reading, the differential cell 107 connected to the diffusion layer 7B on the opposite side , 5 are supplied to the diffusion layer, and as a result, the diffusion layer IA side becomes a low potential and the diffusion layer 7B side becomes a high potential by a potential difference corresponding to the charge amount of 0.5, turning on the transistor Q0 and turning off the transistor Q2. Become.

また該メモリ素子がデータOを書込まれていて読取りに
当って拡散層7Aへは電荷を供給しない場合は、拡散層
7Aの電位は不変であり、これに対して拡散層7Bはデ
ィファレンシャルセルから0.5の電荷量を供給されて
低電位となり、両拡散層には0.5の電荷量に対応する
電位差が生じてトランジスタQ2がオン、トランジスタ
Q1 がオフとなる。
Further, when the memory element is written with data O and no charge is supplied to the diffusion layer 7A during reading, the potential of the diffusion layer 7A remains unchanged, whereas the diffusion layer 7B is charged from the differential cell. A charge amount of 0.5 is supplied, resulting in a low potential, and a potential difference corresponding to the charge amount of 0.5 is generated in both diffusion layers, turning on the transistor Q2 and turning off the transistor Q1.

拡散層7B側のメモリ素子が読出されるときは、拡散層
TA側のディファレンシャルセルが0.5の電荷量を供
給し、同様な読取動作が行なわれる。
When the memory element on the diffusion layer 7B side is read, the differential cell on the diffusion layer TA side supplies a charge amount of 0.5, and a similar read operation is performed.

こうして、ディファレンシャルセルの使用によりフリッ
プフロップSAを確実に作動することができ、データ1
,0の読取りを正確に行なうことができる。
In this way, by using the differential cell, the flip-flop SA can be operated reliably, and the data 1
, 0 can be read accurately.

本発明はこの0.5の電荷量即ち基準電荷を発生するデ
ィファレンシャルセルの構造を提案スル。
The present invention proposes a structure of a differential cell that generates a charge amount of 0.5, that is, a reference charge.

第3図は本発明の実施例を示す。FIG. 3 shows an embodiment of the invention.

この図において11はP型シリコン半導体基板、12a
、12bは該基板内部に形成されたN型拡散層、13は
基板表面に被着された5i02膜等の絶縁膜、14a。
In this figure, 11 is a P-type silicon semiconductor substrate, 12a
, 12b is an N-type diffusion layer formed inside the substrate, 13 is an insulating film such as a 5i02 film deposited on the surface of the substrate, and 14a.

14cおよび14bは絶縁膜3中に埋め込まれたポリシ
リコンから成るゲート電極および電荷蓄積電極である。
14c and 14b are gate electrodes and charge storage electrodes made of polysilicon embedded in the insulating film 3.

拡散層12aは第2図の7リツプフロツプの点■、■の
いずれかに接続され、拡散層12bはアースされる。
The diffusion layer 12a is connected to either point (2) or (2) of the 7 lip-flop shown in FIG. 2, and the diffusion layer 12b is grounded.

第4図は第3図の各端子a、 b、 cの電圧を示す
FIG. 4 shows the voltages at each terminal a, b, c in FIG.

この第3図を参照しながら次に第2図の装置の動作を説
明する。
Next, referring to FIG. 3, the operation of the apparatus shown in FIG. 2 will be explained.

この装置では動作の前後t1゜t、で正電圧を端子a、
bに与えて電極14a。
In this device, a positive voltage is applied to terminal a at t1°t before and after operation.
b and electrode 14a.

14bの下部基板11内に空乏層を発生させ、これらの
空乏層に電荷(電子)を溜める。
Depletion layers are generated within the lower substrate 11 of 14b, and charges (electrons) are stored in these depletion layers.

次に第4図の時点t2 で示される如く、端子aに印加
する電圧を0とし、端子Cに印加する電圧を正電圧にす
ると、電極14cの下部基板11内には空乏層が発生し
て電荷蓄積電極14b下部と拡散層12aを連通ずる。
Next, as shown at time t2 in FIG. 4, when the voltage applied to terminal a is set to 0 and the voltage applied to terminal C is set to positive voltage, a depletion layer is generated in the lower substrate 11 of the electrode 14c. The lower part of the charge storage electrode 14b and the diffusion layer 12a are communicated with each other.

次いで時点t3で電極14bの電圧をOとし、該電極下
部の電荷を拡散層12aへ移動させる。
Next, at time t3, the voltage of the electrode 14b is set to O, and the charge under the electrode is moved to the diffusion layer 12a.

この電荷の量は前記の如り0.5の電荷量であり、これ
は電極14bの面積及び又は、該電極に印加する電圧に
より調節することができる。
The amount of this charge is 0.5 as described above, and this can be adjusted by the area of the electrode 14b and/or the voltage applied to the electrode.

この基準電荷発生装置は第1図と比較すれば明らかなよ
うにCCDRAM素子と同一工程で作ることができ、メ
モリの製作に極めて有利である。
As is clear from a comparison with FIG. 1, this reference charge generating device can be manufactured in the same process as a CCDRAM element, and is extremely advantageous in manufacturing a memory.

なお端子すの印加電圧は第3図に示す矩形状電圧に限る
ことはなく、直流電圧としてもよい。
Note that the voltage applied to the terminals is not limited to the rectangular voltage shown in FIG. 3, and may be a DC voltage.

以上詳細に説明したように本発明によれば、CCDRA
MまたはI Tr /Ce1llのようなMO8型半導
体メモリのフリップフロップ型センスアンプに対する基
準電圧を所望通り確実に供給し、しかもメモリ素子と同
一工程で製作することができる半導体装置つまりディフ
ァレンシャルセルを提供することができる。
As explained in detail above, according to the present invention, the CCDRA
To provide a semiconductor device, that is, a differential cell, which can reliably supply a reference voltage as desired to a flip-flop type sense amplifier of an MO8 type semiconductor memory such as M or I Tr /Cel, and can be manufactured in the same process as a memory element. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCCDRAM素子の構造を示す断面図、第2図
は第1図のメモリ素子を用いた記憶装置の一部分を示す
説明図、第3図は本発明の実施例を示す断面図、第4図
はその駆動電圧の波形を示す図である。 図面で11は半導体基板、14bは電荷蓄積電極、i4
a、14bはゲート電極、12a、12bは拡散層であ
る。
FIG. 1 is a cross-sectional view showing the structure of a CCDRAM element, FIG. 2 is an explanatory view showing a part of a storage device using the memory element of FIG. 1, and FIG. FIG. 4 is a diagram showing the waveform of the driving voltage. In the drawing, 11 is a semiconductor substrate, 14b is a charge storage electrode, and i4
a and 14b are gate electrodes, and 12a and 12b are diffusion layers.

Claims (1)

【特許請求の範囲】[Claims] 1−伝導型の半導体基板上に絶縁膜を介して電荷蓄積用
電極をまたその両側にゲート電極を絶縁膜を介して形成
し、さらにその両側の該半導体基板にソース、ドレイン
領域となる反対導電型の高不純物濃度の拡散層を配設し
たことを特徴とする半導体記憶装置のセンスアップに基
準電圧を供給する半導体装置。
1-A charge storage electrode is formed on a conductive type semiconductor substrate via an insulating film, and gate electrodes are formed on both sides of the charge storage electrode via an insulating film, and opposite conductive electrodes are formed on the semiconductor substrate on both sides to serve as source and drain regions. What is claimed is: 1. A semiconductor device for supplying a reference voltage for sense-up of a semiconductor memory device, characterized in that a diffusion layer with a high impurity concentration is provided.
JP51119080A 1976-10-04 1976-10-04 semiconductor equipment Expired JPS5820148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51119080A JPS5820148B2 (en) 1976-10-04 1976-10-04 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51119080A JPS5820148B2 (en) 1976-10-04 1976-10-04 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5344182A JPS5344182A (en) 1978-04-20
JPS5820148B2 true JPS5820148B2 (en) 1983-04-21

Family

ID=14752372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51119080A Expired JPS5820148B2 (en) 1976-10-04 1976-10-04 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5820148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277757U (en) * 1985-10-31 1987-05-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188166A (en) * 1983-12-26 1984-10-25 Toshiba Corp Semiconductor memory

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISSCC DIGEST OF TECHNICAL PAPERS=1976 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277757U (en) * 1985-10-31 1987-05-18

Also Published As

Publication number Publication date
JPS5344182A (en) 1978-04-20

Similar Documents

Publication Publication Date Title
KR100588422B1 (en) A ferroelectric dynamic random access memory
US7151706B2 (en) CMIS semiconductor nonvolatile storage circuit
EP1782427B1 (en) Integrated dram-nvram multi-level memory
KR100218275B1 (en) Ferroelectric memory device with bulk-type one transistor structure
US4300212A (en) Nonvolatile static random access memory devices
US7023721B2 (en) Semiconductor integrated circuit device
JP4443886B2 (en) Semiconductor memory device
JP2929430B2 (en) DRAM without capacitor and method of manufacturing the same
US6515892B1 (en) Semiconductor integrated circuit device
JP2001053164A (en) Semiconductor storage device
KR20030095182A (en) Semiconductor memories
JP5677254B2 (en) Semiconductor device
TW412745B (en) Semiconductor memory device and manufacturing method of the same
US7265412B2 (en) Semiconductor memory device having memory cells requiring no refresh operation
JPH08250673A (en) Semiconductor device
US4395723A (en) Floating substrate dynamic RAM cell with lower punch-through means
US4791611A (en) VLSI dynamic memory
US3706891A (en) A. c. stable storage cell
US4446535A (en) Non-inverting non-volatile dynamic RAM cell
US6404667B1 (en) 2T-1C ferroelectric random access memory and operation method thereof
US4067001A (en) Line for transporting charges from storage elements in a storage field
US4120047A (en) Quasi-static MOS memory array with standby operation
US4015247A (en) Method for operating charge transfer memory cells
JPS586234B2 (en) semiconductor storage device
JPS5820148B2 (en) semiconductor equipment