JPS58201476A - Ghost eliminating device - Google Patents

Ghost eliminating device

Info

Publication number
JPS58201476A
JPS58201476A JP57085785A JP8578582A JPS58201476A JP S58201476 A JPS58201476 A JP S58201476A JP 57085785 A JP57085785 A JP 57085785A JP 8578582 A JP8578582 A JP 8578582A JP S58201476 A JPS58201476 A JP S58201476A
Authority
JP
Japan
Prior art keywords
ghost
filter
waveform
signal
ram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57085785A
Other languages
Japanese (ja)
Inventor
Yoichi Morimoto
森本 庸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57085785A priority Critical patent/JPS58201476A/en
Publication of JPS58201476A publication Critical patent/JPS58201476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/211Ghost signal cancellation

Abstract

PURPOSE:To optimize the switching of a transversal filter, by A/D converting a small section including a front ridge of a vertical synchronizing signal and its ghost waveform, processing them digitally and detecting the time location of the ghost component accurately. CONSTITUTION:The waveform of a small section (27musec) including the front ridge of the vertical synchronizing signal and its ghost waveform is sampled at a clock pulse of (b), and A/D-converted. The difference between the n-th and the (n-1)th waveform is calculated at a differential circuit 8 and the result is stored in an RAM 9. The calculation of Xk.Xk+1 is done up to the address (m), where Xk is a data at the address K of the RAM 9, and the result is accumulated and stored in an RAM 2. The values m, I are selected suitably in response to a ghost delay time T. The difference of the peaks at the addresses P and Q as the result of operation corresponds to the ghost delay time. Thus, the tap of the transversal filter is switched.

Description

【発明の詳細な説明】 本卸町よテレビジ9ン受像機のゴースト除去装置、ナル
でもトランスパーナルフィルタを使用したゴースト除去
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ghost removal device for a television receiver, and a ghost removal device using a transpanal filter.

テレビジョン受像機の受信障害として問題となるゴース
ト現象は、テレビジョン放送の直接波と建物等による反
射波が直なって受信されるために起るものであり、こn
、を除去するには受信波を検波して得た映像信は中に含
まれるゴースト成分と同じ振幅の補正信号?そのゴース
ト151115分の時間位tVC発生させ、この信号を
上記映像信ちから識算丁ればよい。
The ghost phenomenon, which is a problem in the reception of television receivers, occurs because the direct waves of television broadcasting and the reflected waves from buildings, etc. are received directly.
, to remove the video signal obtained by detecting the received wave, is it a correction signal with the same amplitude as the ghost component contained in it? It is sufficient to generate the ghost signal tVC for a time of 151115 minutes and calculate this signal from the video signal.

祈る原理に基ずくゴースト除去装置は従来より種々提案
されているが、とりわけ遅生はトランスパーチルフィル
タを使用しtものがクローズアップされて釆た。トラン
スパーチルフィルタは、原理的には、7JD算機能を備
え±COD等の電荷転送形シフトレジスタとこのシフト
レジスタのタップ利得を切換えるa=個の乗鼻器の組合
せによって構成され、入力信′8をタップ利得荷置して
遅延加算するものであって、ゴースト除去装置、・こ使
用下れば面上信号の振幅と遅延時間の二つのパラメータ
を同時に制御できると云う利点を備えている。
Various ghost removal devices based on the principle of prayer have been proposed in the past, but one in particular that uses a transperch filter for slow generation has been brought into close-up. In principle, a transpertil filter is composed of a combination of a charge transfer type shift register such as ±COD having a 7JD arithmetic function and a = number of multipliers for switching the tap gain of this shift register. 8 is added to the tap gain and delay addition is performed, and when used as a ghost removal device, it has the advantage that two parameters, the amplitude and delay time of the on-plane signal, can be controlled simultaneously.

第1図は祈るトランスパーチルフィルタを使用し念ゴー
スト除去装置の概略構成を表わしている。
FIG. 1 shows the schematic configuration of a ghost ghost removal device using a transpercent filter.

即ち、テレビジ9ン受像機の映像検波回路から導出ざま
た洩合映像言号は一万ではトランスバーナルフィルり(
1)に退入され、他方では減算器(21に直接導入さr
、る。この減算器(2)の出力はゴースト検出回路t3
1に1人されて残留ゴーストH分の時間位置及び振幅情
報が検出される。そして、この雫出出力に7ひじでタッ
プ利得切換回路(4)が前記トランスバーナルフィルタ
(1)のタップ利得即ち前述し±乗算器の各乗数を決定
下る。それ故、前記トランスパーナルフィルタ山がら出
る信号は最終的にゴース(1j9f、分く相当下る遅延
時間と振幅を待つものとなり、その結果、減算器(2)
からゴースト成分の除去さQた僕合映像信号が導出ざ1
.る訳である。
In other words, the mismatched video words derived from the video detection circuit of a television receiver become transvernal filters (
1) and on the other hand directly introduced into the subtractor (21)
,ru. The output of this subtracter (2) is the ghost detection circuit t3.
The time position and amplitude information of the residual ghost H are detected for each person. Then, a tap gain switching circuit (4) determines the tap gain of the transvernal filter (1), that is, each multiplier of the above-mentioned ± multiplier, based on this dropout output. Therefore, the signal coming out of the transpanal filter peak finally waits for the delay time and amplitude to decrease by 1j9f, and as a result, the signal from the subtractor (2)
After removing the ghost component from Q, the combined video signal is derived.
.. This is the reason.

折るゴースト除去装置VC流いては、減算器[2Jから
導出ざnる遵合映像信す中のゴースト成分、持にその時
間位置を正確に検出して、その対応下る各段のタップ利
得(トランスバーザルフィルタの)を切換えて行かねば
ならない。この念め、従来は、ゴースト検出回路(31
で前記複合映像信号中の垂直同期信号の前縁部を時間基
準【とってゴースト成分の時間位置とS幅情報を検出し
ていた。しかし、上記前縁部が伝送歪を受けてい之り、
ノイズ等が混入している場合には、上記時間位置を正確
に検出できないため、各段のタップ利得が間違って設定
されることになる。
The folding ghost removal device VC is used to accurately detect the time position of the ghost component in the transmitted image, which is derived from the subtracter [2J, and calculates the corresponding tap gain (transformer) of each downstream stage. (of the barzal filter) must be switched. To keep this in mind, conventional ghost detection circuits (31
The leading edge of the vertical synchronization signal in the composite video signal was used as a time reference to detect the time position and S width information of the ghost component. However, the leading edge is subject to transmission distortion,
If noise or the like is mixed in, the time position cannot be detected accurately, and the tap gain of each stage will be set incorrectly.

そこで、本発明は折る点VC着眼してなされたものであ
り、以下、その詳細を説明する。
Therefore, the present invention has been made by focusing on the folding point VC, and the details thereof will be explained below.

第2図は末完#Jを採用しえゴースト除去装置の一4m
例を示しており、filはトランスパーナルフィルタ、
(2)は減算器、(3)はゴースト検出回路、(4)は
タッグ利得切換回路であり、上記検出回路t3Jを除い
て其他の構成は第1図と同様である。
Figure 2 shows a 14m ghost removal device using Shukan #J.
An example is shown, where fil is a transpanal filter,
(2) is a subtracter, (3) is a ghost detection circuit, and (4) is a tag gain switching circuit, and except for the detection circuit t3J, the other configurations are the same as in FIG.

前記ゴースト検出回路(32に於いて、(5)は垂直同
期信号部抽出回路であり、この回路は前記減算器(2)
から導出された複合映像信号中の垂直同期信号の前縁部
を含む小区間(27μ5ec)(第6図(〜参照)を抽
出し、その出力信号2次のA/D変換回路(7)に与え
る。
In the ghost detection circuit (32), (5) is a vertical synchronization signal part extraction circuit, and this circuit is connected to the subtracter (2).
A small section (27μ5ec) (see Fig. 6 (~)) including the leading edge of the vertical synchronization signal in the composite video signal derived from is extracted, and the output signal is sent to the secondary A/D conversion circuit (7). give.

前記A/Di換回ti3i71ハIQ、7 MHz(D
’) cy 7クパルス(第6図(b)〕でナンプリン
グし、その各チンプリング時点に対応する振幅値を6ビ
ツトのデジタル信号VC変喚して次の差分回路(81V
C送る。
The A/Di switching time ti3i71 has an IQ of 7 MHz (D
') Cy is numbered with 7 pulses (Fig. 6(b)), and the amplitude values corresponding to each chimpling time are converted into a 6-bit digital signal VC and then sent to the next difference circuit (81V
Send C.

この差分回路(8)は上紀クロックパルス(b)VCよ
っテ動作し、七のn−1番目とn番目のクロックに犬々
対芯する#JfA/D’i換回路(7)の出回路2進数
〕の麦に相当するデータを次々と算出し、その各データ
を次の第1RAM(91に送る。七の:際、前記差分回
路(8)はシフトレジスタ、インバータ及びフルアダー
等から構Ffcされ、2の開数を利用した加算動作に二
って上記演算を行なう。
This differential circuit (8) operates according to the primary clock pulse (b) VC, and the output of the #JfA/D'i switching circuit (7) is connected to the n-1st and nth clocks of 7. The circuit calculates data corresponding to the barley (binary numbers) one after another and sends each data to the next first RAM (91).In the seventh step, the difference circuit (8) is composed of a shift register, an inverter, a full adder, etc. Ffc is applied, and the above calculation is performed in addition to the addition operation using the open number of 2.

@記第1RAMf9)は、前述のクロックパルス(b)
を番地指定入力とするアドレス指定入力によって、前記
差分回路(8)からの各データ(第5図(C)はこの各
データを元のアナログ波形で表わしている)をそのO番
地から順次格納して行く。
@1st RAMf9) is the above-mentioned clock pulse (b)
By the address designation input with . Go.

このようにして成るフィールドの垂直同期信号部VC基
ずくデータが先の第1RAM(9)に格納されると、マ
イクロプロセツナ−1111は前記アドレス指定入力+
1(lを卸J’aして上記RAM+91からデータを順
次収り込み、その各データを乗算回路02と累積加算回
路03で次のように自己相関演算を行なう。
When the data based on the vertical synchronizing signal section VC of the field formed in this manner is stored in the first RAM (9), the microprocessor 1111 inputs the address designation input +
1(l) and sequentially store data from the RAM+91, and perform an autocorrelation calculation on each data in the multiplication circuit 02 and the cumulative addition circuit 03 as follows.

丁なわち、第lRAM191の成るに@地のデータがX
kで表わされるものとすると、@記マイクロプロセツナ
ーσυは乗算回路(12でXk −Xk÷工(念だし、
■は後述の如く選ばバるO又は自然数)なる乗算をm8
地までのデータについて行ない、七の各乗算結果を累積
加算回路G3で累積加算して行く。それ故、その累積1
1[YIはY■〜丑XIWO ・Xk−)−I(ただし、nを最大番地としてk<n、
m+t<n)となり、この演算をryQ、1.2、−毎
に行なう。
That is, the data in the first RAM 191 is X.
If it is expressed as k, then the microprocessor συ written in
■ is the multiplication m8 (O or natural number) selected as described below.
The results of the seven multiplications are cumulatively added in the cumulative addition circuit G3. Therefore, the cumulative 1
1 [YI is Y■ ~ OxXIWO ・Xk-) - I (where n is the maximum address, k<n,
m+t<n), and this operation is performed every ryQ, 1.2, -.

したがって、例えばn12mとして0≦に5m10<I
≦mとすると、ryQの時の累積籠YoはYo−Xo 
・Xa+X1−X+ +−−−−+Xm−X1で、rw
lの時はYlyXo −X+ +X1−X2 +−−−
+Xm −X 1+mトyzす、以FI5]様1cL。
Therefore, for example, if n12m, 0≦5m10<I
If ≦m, the cumulative basket Yo at the time of ryQ is Yo−Xo
・Xa+X1−X+ +−−−−+Xm−X1, rw
When l, YlyXo -X+ +X1-X2 +---
+Xm -X 1+mtoyz, hereafter FI5] 1cL.

てr −mノlhYm−X o −Xm +X 1− 
X 1−1−m+・・・−+Xm−X2mとなる。そし
て、この各累積1i!Yb即ち相関演算結果がアドレス
制仰1川路(141VCよりて第2RA Mt151ノ
各番Jti[:ソノ0 番地力ら11@次格納されて行
く訳である。
te r -mノlhYm-X o -Xm +X 1-
X1-1-m+...-+Xm-X2m. And each cumulative 1i! Yb, that is, the correlation calculation result is stored from address control 141VC to each number Jti[:son0 address 11@] of the second RA Mt151.

なか、叔上ではIII、  Iを前述の如く選定したが
、これらは第6図に示すゴースト遅延時間(℃を成る程
度予測して適当に選定下ればよい。
Among these, III and I were selected as described above, but these can be selected appropriately by predicting the ghost delay time (° C.) shown in FIG.

このようにして狛2RAMffM先の相関演算結果を格
納して行けば、第4図に模式的に示すように、上¥RA
Mf15の0@地には第5図(c)のピーク部(P)同
士の乗算に基ずく大さな値のデータが格納され、ここか
ら成る@地だけ離nei番地(トまビーク部(P)(0
間の乗算による次に大きな値のデータが格納されること
になる。愛って、人/D変換回路(7)において垂直同
期信号萌縁部のA/D父換を開始下る位置が少々ずれた
としても上記工番地は常VCO番地を基準位置として第
5図のゴースト遅延時間(f′)に相当下る番地2表わ
している。
If the correlation calculation results of Koma2RAMffM are stored in this way, as shown schematically in FIG.
In the 0@ area of Mf15, large value data based on the multiplication of the peak parts (P) in FIG. 5(c) is stored, and the nei address (beak part P)(0
The data of the next largest value resulting from the multiplication between them will be stored. Even if the starting position of the A/D converter of the vertical synchronizing signal edge in the A/D converter circuit (7) is slightly shifted, the above construction address will always be as shown in Figure 5 with the VCO address as the reference position. Address 2 corresponding to the ghost delay time (f') is represented.

したがって、トランスパーナルフィルタB1)ノ5段l
!al−男2RAMIISの各番地に対応させ、七の0
番地以往の各番地のデータ喧に応じて上記トランスパー
ナルフィルタの各段のタップ利得?切換えるよう(、マ
イクロプロセツナ−unVCよってタップ利得切換回路
(4)を制置するようにしている。このようにすると、
第2RAM(151のデータがゴースト成分の時間位置
と振福に正確に対応しているので、この動作をフィール
ド毎に繰り返し、トランスパーナルフィルタfl+の各
段のタップ利得が当該ゴースト成分に対して最適値にな
るまで行なう。その結果、減算器(2)からゴースト成
分か除去さね、±腹合映像信号が導出されることになる
Therefore, the 5 stages l of the transpanal filter B1)
! al-man 2 correspond to each address of RAMIIS, 0 of 7
What is the tap gain of each stage of the above transpanal filter depending on the data of each address after the address? The tap gain switching circuit (4) is controlled by the microprocessor unVC. In this way,
Since the data in the second RAM (151) accurately corresponds to the time position and amplitude of the ghost component, this operation is repeated for each field, and the tap gain of each stage of the transpanal filter fl+ is adjusted to the ghost component. This is repeated until the optimum value is reached.As a result, the subtracter (2) removes the ghost component and derives a +/− line video signal.

以上の叩く本発明のゴースト除去装置は、曳合映像侶号
中の垂直向期信5j@縁部を抽出してAD又換し、その
人/D変換によプて得たデジタル信号を差分し、その差
分して得士データについて自己相関演算を行ない、この
演算@果によりてトランスパーナルフィルタの各段のタ
ップ利得を切換えるよってしているので、上記各段のタ
ップ利得を各ゴースト成分に応じて最適となるよって設
定できる。
The above-mentioned ghost removal device of the present invention extracts the vertical timing signal 5j @ edge of the combined video signal, converts it into AD and converts it, and calculates the difference between the digital signal obtained by the person/D conversion. Then, an autocorrelation calculation is performed on the difference data, and the tap gain of each stage of the transpanal filter is switched based on the result of this calculation, so the tap gain of each stage is changed to each ghost component. It can be set as appropriate depending on the situation.

まt1垂垂直向信号部から前述の圓くして得±データ?
メモリ<一旦格悄し、このデータを1間次読出して前述
の相関演算を行なうよう(しているので、・氏速処浬が
可能となり、安価(実現でさると云う利点もある。
Is the data obtained from the above-mentioned circle from the t1 vertical signal section?
Since the memory is stored once, this data is read once and the above-mentioned correlation calculation is performed, it is possible to perform the above-mentioned correlation calculation quickly, and there is also the advantage that it can be realized at low cost.

更に、垂直同期信号部抽出回路15)を除いてゴースト
検出回路(3)内の各回路は全てデジタル処理2行なり
ているので、この回路(3)を1#″ツブのICで構成
する場合VC特に好適である。
Furthermore, each circuit in the ghost detection circuit (3) except for the vertical synchronization signal part extraction circuit 15) is all done with two lines of digital processing, so when this circuit (3) is constructed from a 1#''-sized IC, It is particularly suitable for VC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はトランスパーナルフィルタを使用したゴースト
除去装買の概略構成を示下図、第2図はT:弁用ゴース
ト検出回路の一実施例を示す図、第3図はその動作説明
波形因、何4図は第2RAMのデータ格納状態を説明す
る図である。
Fig. 1 is a diagram showing a schematic configuration of a ghost removal device using a transpernal filter, Fig. 2 is a diagram showing an example of a ghost detection circuit for T: valve, and Fig. 3 is an explanation of its operation waveform factor. , Figure 4 is a diagram illustrating the data storage state of the second RAM.

Claims (1)

【特許請求の範囲】[Claims] 山 テレビジョン痩合映像信号をトランスパーチルフィ
ルタに通丁ことVC二ってゴースト補正信号を乍成し、
この補正信号を上記製合映像信号と合成下ること(よ)
てゴースト成分?除去する装置に於いて、前記護合映像
信号から垂直同期信号の前縁部及び咳前縁邪のゴースト
波形2含む小区間を抽出してA 、’ D変換し、その
A/D変換変換全力クコツク周期相当時間で差外し、そ
の原分出力をメモリ(順次格準じ、このメモリから所定
の1@序でそれぞれ読出されるデータを得て自己相関演
算を順次行ない、その各演算結果Vq:芯して前記トラ
ンスパーチルフィルタの各段のタップ利得を切換ソるよ
うにしたゴースト尿云装置。
The television slimming video signal is passed through a transpertil filter, and a ghost correction signal is created using VC2.
Combine this correction signal with the above-mentioned composite video signal.
Is it a ghost ingredient? The removing device extracts a small section including the leading edge of the vertical synchronizing signal and the ghost waveform 2 of the leading edge of cough from the protection video signal, converts it into A and 'D, and performs full A/D conversion. The data is read out in a predetermined order from this memory, and the autocorrelation calculation is performed sequentially, and each calculation result Vq: Core The ghost filter device is configured to switch the tap gain of each stage of the transpertil filter.
JP57085785A 1982-05-20 1982-05-20 Ghost eliminating device Pending JPS58201476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57085785A JPS58201476A (en) 1982-05-20 1982-05-20 Ghost eliminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57085785A JPS58201476A (en) 1982-05-20 1982-05-20 Ghost eliminating device

Publications (1)

Publication Number Publication Date
JPS58201476A true JPS58201476A (en) 1983-11-24

Family

ID=13868535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57085785A Pending JPS58201476A (en) 1982-05-20 1982-05-20 Ghost eliminating device

Country Status (1)

Country Link
JP (1) JPS58201476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150467A (en) * 1984-08-20 1986-03-12 Matsushita Electric Ind Co Ltd Ghost eliminating device
US4947252A (en) * 1988-03-22 1990-08-07 Nec Home Electronics Ltd. Ghost canceling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150467A (en) * 1984-08-20 1986-03-12 Matsushita Electric Ind Co Ltd Ghost eliminating device
JPH03951B2 (en) * 1984-08-20 1991-01-09 Matsushita Electric Ind Co Ltd
US4947252A (en) * 1988-03-22 1990-08-07 Nec Home Electronics Ltd. Ghost canceling apparatus

Similar Documents

Publication Publication Date Title
US5311087A (en) Noise removing circuit
US6721365B1 (en) Receiver for a home phone-lines LAN system
US4404600A (en) Ghost signal cancelling apparatus
US4787056A (en) Apparatus for estimating the square of digital samples
JPS58201476A (en) Ghost eliminating device
JP2843690B2 (en) Waveform equalization circuit
EP0103355A2 (en) Analog to digital converting system for a video signal
JPS6072491A (en) Ghost removing device
US4743969A (en) Correlator
JPS61152174A (en) Digital ghost eliminating device
JP2996801B2 (en) Stereo demodulation circuit
JP2538627B2 (en) Ghost removal device
JPS5887982A (en) Ghost eliminating device
US4672428A (en) Integrated digital gain control circuit for digital chrominance signals
JPS5887981A (en) Ghost detection circuit
JPH0129115B2 (en)
JPH0348579A (en) Ghost eliminator
JPH07184228A (en) Digital acc circuit
JP2880580B2 (en) Acyclic digital filter circuit
JPS6233415Y2 (en)
JPH0746448A (en) Ghost detector and ghost elimination device using ghost detector
JPS58104577A (en) Ghost eliminating device
JP2861273B2 (en) Waveform distortion detection circuit
JPS5887979A (en) Ghost eliminating device
JPH0797835B2 (en) Ghost removal device