JPS58201123A - Semiconductor integrated circuit - Google Patents
Semiconductor integrated circuitInfo
- Publication number
- JPS58201123A JPS58201123A JP57084310A JP8431082A JPS58201123A JP S58201123 A JPS58201123 A JP S58201123A JP 57084310 A JP57084310 A JP 57084310A JP 8431082 A JP8431082 A JP 8431082A JP S58201123 A JPS58201123 A JP S58201123A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- clock
- integrated circuit
- semiconductor integrated
- reference clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、たとえばマイクロコンピュータ回路を内蔵す
る半導体集積回路に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit incorporating, for example, a microcomputer circuit.
従来、マイクロコンピュータ回路用の半導体集積回路に
おいては、集積回路内部で使用するクロ、りの最大周波
数を基準クロ、りとして上記集積回路外部で用意し、こ
れを上記集積回路に入力し、必要に応じて集積回路内部
で入力クロ、りを分周して使用している。Conventionally, in semiconductor integrated circuits for microcomputer circuits, the maximum frequency of the clock signals used inside the integrated circuit is prepared as a reference clock signal outside the integrated circuit, and this is input into the integrated circuit and used as needed. Accordingly, the input clock frequency is divided and used within the integrated circuit.
しかし、集積回路の動作を高速化するために基準クロッ
クの周波数を高くする場合、従来のように集積回路の入
力クロックを必要な基準り四ツク周波数まで高くするこ
とは入力クロック発振回路の技術的特性などから限界が
あった。However, when increasing the frequency of the reference clock in order to speed up the operation of an integrated circuit, it is difficult to increase the input clock of the integrated circuit to four times higher than the required reference frequency as in the past due to the technical limitations of the input clock oscillator circuit. There were limitations due to its characteristics.
換言すれば、入力クロックの限界周波数によシ集積回路
動作の高速化が制約される。In other words, the limit frequency of the input clock limits the speed of integrated circuit operation.
本発明は上記の事情に鑑みてなされたもので、入力クロ
ックよシ周波数が高い基準クロックによシ集積回路動作
の高速化を図ることができ、等制約に入力クロックの限
界周波数を拡張し得る半導体集積回路を提供するもので
ある。The present invention has been made in view of the above circumstances, and it is possible to increase the speed of integrated circuit operation by using a reference clock with a higher frequency than that of the input clock, and to extend the limit frequency of the input clock with equal constraints. The present invention provides semiconductor integrated circuits.
すなわち、本発明の半導体集積回路は、入力クロックの
周波数を2逓倍して基準クロックを発生する基準クロッ
ク発生回路を内部に形成している。したがって、基準ク
ロ、り周波数は入力クロック周波数よシ高く、集積回路
動作の高速化が可能になる。That is, the semiconductor integrated circuit of the present invention has internally formed a reference clock generation circuit that generates a reference clock by doubling the frequency of an input clock. Therefore, the reference clock frequency is higher than the input clock frequency, making it possible to increase the speed of integrated circuit operation.
以下、図面を参照して本発明の一実施例を詳細に説明す
る。第1図は片チヤンネル型(たとえばNチャンネル型
)のMOS−LSI (絶縁ダート型トランジスタ大規
模集積回路)の内部に形成された基準クロック発生回路
を示しており、これは周波数2逓倍回路よシなる◎
すなわち、10は集積回路外部から入力ピンを通じて供
給される入力クロ、りが導かれる入力端子である。この
入力端子10は、第1の微分回路1ノに接続されると共
にインバータ回路12を介して第2の微分回路13に接
続される。Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Figure 1 shows a reference clock generation circuit formed inside a single-channel type (for example, N-channel type) MOS-LSI (insulated dart type transistor large-scale integrated circuit). In other words, 10 is an input terminal to which an input clock signal supplied from outside the integrated circuit through an input pin is guided. This input terminal 10 is connected to a first differentiating circuit 1 and also to a second differentiating circuit 13 via an inverter circuit 12 .
これらの微分回路11.13は、コンデンサCと、ダイ
オードDと、たとえばディプレッション型トランジスタ
を用いた抵抗Rとからなる。These differentiating circuits 11.13 consist of a capacitor C, a diode D, and a resistor R using, for example, a depletion type transistor.
14および15は上記微分回路11.13の出力を波形
整形するための波形整形回路であシ、それぞ九たとえば
2個のインバータ回路が直列接続されてなる。この波形
整形回路14.15の各出力は2人力ノア回路16に導
かれ、このノア回路16の出力はインバータ回路17に
よシ反転されて基準クロック出力となる。14 and 15 are waveform shaping circuits for shaping the outputs of the differentiating circuits 11 and 13, each of which is made up of nine, for example, two inverter circuits connected in series. Each output of the waveform shaping circuits 14 and 15 is led to a two-man NOR circuit 16, and the output of this NOR circuit 16 is inverted by an inverter circuit 17 to become a reference clock output.
次に、第2図を参照して第1図の動作を説明する。初期
状態において、入力クロックが0”論理レベル(OIy
)であり友とき、微分回路1113の出力端a、bの電
圧は共に′0#レベルである。次に、入力クロックが“
0−がら°゛1#1#レベルD電源電位)へ移行したと
き、第1の微分回路11ではコンデンサCによって出力
端aが″1#レベルに引き上げられ、このコンデンサC
および抵抗Rの時定数によりコンデンサCへの電圧チャ
ージが行なわれ、出力端aけ0”レベルに移行する。こ
れに対して第2の微分回路13では、前記初期状態にお
いてインバータ回路12の″′l#出力によりコンデン
サCKt圧チャージが行なわれているため、前記入力ク
ロ、りの変化(′0″→″’1’)Kよるインバータ回
路12の出力変化(′1”→″″01)によって出力端
すの電圧が−vDD電位へ移行しようとするが、ダイオ
ードDによって短時間で0”レベルに引き戻される。次
に、入力クロ、りが“1#→″01へ変化したときは、
上述し九動作に準じて第1の微分回路11の出力端aは
−VDD電位へ移行しようとするが短時間で″Oルベル
に引き戻され、第2の微分回路13の出力端すはvDD
電位へ移行したのちコンデンサCおよび抵抗Rの時定数
で″0ルベルに移行し5−
ていく。Next, the operation shown in FIG. 1 will be explained with reference to FIG. In the initial state, the input clock is at the 0” logic level (OIy
), the voltages at the output terminals a and b of the differentiating circuit 1113 are both at the '0# level. Then the input clock is “
When the voltage shifts from 0- to 1#1# (level D power supply potential), the output terminal a of the first differentiating circuit 11 is pulled up to the 1# level by the capacitor C, and this capacitor C
The capacitor C is charged with voltage by the time constant of the resistor R, and the output terminal a shifts to the 0'' level.On the other hand, in the second differentiating circuit 13, the voltage of the inverter circuit 12 in the initial state is Since the capacitor CKt pressure is charged by the l# output, the change in the output of the inverter circuit 12 due to the change in the input voltage ('0''→''1') K ('1''→''01) causes The voltage at the output terminal S attempts to shift to the -vDD potential, but is pulled back to the 0'' level by the diode D in a short time. Next, when the input clock changes from “1#” to “01”,
In accordance with the above-mentioned operation, the output terminal a of the first differentiating circuit 11 attempts to shift to the -VDD potential, but is pulled back to the "0" level in a short time, and the output terminal of the second differentiating circuit 13 becomes vDD.
After shifting to the potential, the time constant of the capacitor C and the resistor R causes the voltage to shift to ``0 level'' and progress to 5-.
上述したような微分回路11.13の微分出力a、bけ
波形整形回路14 e 15ニXpApyス波形e、d
に整形されたのち、ノア回路16を経ることによって入
力クロックの2倍の周波数のクロックとなり、さらにイ
ンバータ回路17を経て基準クロック出力となフ、集積
回路内部の他の回路(図示せず)へ供給される。Differential outputs a, b of the differentiating circuits 11 and 13 as described above, waveform shaping circuits 14 e 15, and XpApy waveforms e, d
After being shaped into a clock, it passes through a NOR circuit 16 to become a clock with twice the frequency of the input clock, and then passes through an inverter circuit 17 to become a reference clock output and then to other circuits (not shown) inside the integrated circuit. Supplied.
なお、前記微分回路11.13のコンデンサCおよび抵
抗Rを適切な値に設定することによって理想的な線形ア
ナログ波形の微分出力a。By setting the capacitor C and resistor R of the differentiating circuits 11 and 13 to appropriate values, the differential output a of the ideal linear analog waveform can be obtained.
bを生成し、後段の論理回路の閾値電圧の設定によシテ
゛ニーティ25q6のノ4ルスに整形すれば、ノア回路
16の出力クロックのデユーティを50%にすることが
可能である。The duty of the output clock of the NOR circuit 16 can be set to 50% by generating the clock signal b and shaping it into a signal with a coherency of 25q6 by setting the threshold voltage of the logic circuit at the subsequent stage.
なお、本発明は上記実施例に限られるものではなく、た
とえば波形整形回路14.15をそれぞれ1個のインバ
ータ回路とし、ノア回路16およびインバータ回路11
に代えて2人力ナンド回路を用いるようにしても上記例
と同様6一
な基準クロック出力を発生可能である。Note that the present invention is not limited to the above-mentioned embodiment, and for example, the waveform shaping circuits 14 and 15 are each made into one inverter circuit, and the NOR circuit 16 and the inverter circuit 11 are made into one inverter circuit.
Even if a two-man NAND circuit is used instead, it is possible to generate a standard clock output similar to the above example.
上述したように本発明の半導体集積回路によれば、入力
クロックの周波数を2逓倍して基準クロックを発生する
基準クロック発生回路を内蔵しているので、入力クロッ
クの限界周波数が従来通シだとしてもその周波数の2倍
の基準クロックを用いることができ、等測的に入力クロ
ックの限界周波数を拡張できる。したがって、本発明を
たとえばマイクロコンピュータ用集積回路に適用すnば
、回路動作の高速化を図ることができ、好適である。As described above, the semiconductor integrated circuit of the present invention has a built-in reference clock generation circuit that generates a reference clock by doubling the frequency of the input clock. It is also possible to use a reference clock with twice the frequency of the reference clock, and the limit frequency of the input clock can be expanded isometrically. Therefore, if the present invention is applied to, for example, an integrated circuit for a microcomputer, the speed of circuit operation can be increased, which is preferable.
第1図は本発明に係る半導体集積回路における基準クロ
ック発生回路の一実施例を示す回路図、第2図は第1図
の動作説明のために示すタイミング図である。
11.13・・・微分回路、14*15・・・波形整形
回路、16・・・ノア回路。
出願人代理人 弁理士 鈴 江 武 彦7−
第1図
11さトク0−/7FIG. 1 is a circuit diagram showing an embodiment of a reference clock generation circuit in a semiconductor integrated circuit according to the present invention, and FIG. 2 is a timing diagram shown for explaining the operation of FIG. 1. 11.13... Differential circuit, 14*15... Waveform shaping circuit, 16... NOR circuit. Applicant's agent Patent attorney Takehiko Suzue 7- Figure 1 11 Satoku 0-/7
Claims (3)
数を有する基準クロックを発生する基準クロック発生回
路を内蔵してなることを特徴とする半導体集積回路。(1) A semiconductor integrated circuit comprising a built-in reference clock generation circuit that generates a reference clock having twice the frequency of an external clock input.
入力信号およびこれが反転されたクロック信号をそれぞ
れ対応して微分する2個の微分回路と、これらの微分回
路それぞれの出力を波形整形する波形整形回路と、これ
らの波形整形回路の各出力の論理和をとる論理回路とを
具備してなることを特徴とする特許請求の範囲第1項記
載の半導体集積回路。(2) The reference clock generation circuit includes two differentiating circuits that respectively differentiate the clock input signal and a clock signal obtained by inverting the clock input signal, and a waveform shaping circuit that shapes the outputs of the respective differentiating circuits. 2. The semiconductor integrated circuit according to claim 1, comprising: a circuit; and a logic circuit for calculating the logical sum of the respective outputs of these waveform shaping circuits.
さn1マイクロコンピユ一タ回路を内蔵することを特徴
とする特許請求の範囲第1項記載の半導体集積回路。(3) The semiconductor integrated circuit according to claim 1, characterized in that it is formed as a single channel type MOS-LSI and incorporates an n1 microcomputer circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57084310A JPS58201123A (en) | 1982-05-19 | 1982-05-19 | Semiconductor integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57084310A JPS58201123A (en) | 1982-05-19 | 1982-05-19 | Semiconductor integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58201123A true JPS58201123A (en) | 1983-11-22 |
Family
ID=13826919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57084310A Pending JPS58201123A (en) | 1982-05-19 | 1982-05-19 | Semiconductor integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58201123A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4613775A (en) * | 1984-06-08 | 1986-09-23 | International Business Machines Corporation | Apparatus or method for stabilizing the frequency of a clock signal generated from an on-chip clock generator |
JPS6252621A (en) * | 1985-09-02 | 1987-03-07 | Hitachi Ltd | Timing clock generator |
-
1982
- 1982-05-19 JP JP57084310A patent/JPS58201123A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4613775A (en) * | 1984-06-08 | 1986-09-23 | International Business Machines Corporation | Apparatus or method for stabilizing the frequency of a clock signal generated from an on-chip clock generator |
JPS6252621A (en) * | 1985-09-02 | 1987-03-07 | Hitachi Ltd | Timing clock generator |
JPH0433055B2 (en) * | 1985-09-02 | 1992-06-02 | Hitachi Ltd |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2944243B2 (en) | Semiconductor integrated circuit | |
CN107241083B (en) | High-precision self-biasing clock circuit and corresponding self-biasing circuit | |
JPS60223319A (en) | Frequency doubler having 50percent duty cycle output signal | |
US4209715A (en) | Logic circuit | |
CN112583355B (en) | High-precision relaxation oscillator | |
JPS58201123A (en) | Semiconductor integrated circuit | |
JP2827854B2 (en) | Semiconductor integrated circuit | |
JPS60804B2 (en) | electronic clock | |
CN100547407C (en) | The signal generating circuit of electric capacitance measurement | |
JPS62190923A (en) | Level converting circuit | |
JP2641890B2 (en) | Semiconductor integrated circuit | |
JPS6193714A (en) | Duty converting circuit | |
JPH04245713A (en) | Flip flop circuit | |
JPS63185108A (en) | High frequency oscillating circuit | |
GB1393570A (en) | Device for electrical counting | |
JP3822502B2 (en) | Current mode inverter | |
JPH11355129A (en) | Semiconductor integrated circuit | |
JP3130592B2 (en) | Two-phase clock generation circuit | |
JPS5990425A (en) | Tri-state buffer circuit | |
JPH08107338A (en) | Frequency conversion circuit | |
CN115102540A (en) | Clock generation circuit based on phase-locked loop synchronous external clock | |
TWM591737U (en) | Low power level converter circuit | |
JPS6132457A (en) | Generating circuit for substrate voltage | |
JPS5516540A (en) | Pulse detection circuit | |
JP2004088539A (en) | Non return to zero/return to zero converting circuit |