JPS58200523A - Method of producing solid electrolytic condenser - Google Patents

Method of producing solid electrolytic condenser

Info

Publication number
JPS58200523A
JPS58200523A JP8372082A JP8372082A JPS58200523A JP S58200523 A JPS58200523 A JP S58200523A JP 8372082 A JP8372082 A JP 8372082A JP 8372082 A JP8372082 A JP 8372082A JP S58200523 A JPS58200523 A JP S58200523A
Authority
JP
Japan
Prior art keywords
layer
capacitor element
capacitor
electrode
electrode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8372082A
Other languages
Japanese (ja)
Inventor
小田 富太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8372082A priority Critical patent/JPS58200523A/en
Publication of JPS58200523A publication Critical patent/JPS58200523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法に関し、特に無
電解ニッケルメッキによる電極引出し層の形成工程にお
ける処理液のコンデンサエレメント内への不所望な浸み
込みに起因する特性劣化の改良に関す゛るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, and in particular to a process for forming an electrode lead layer by electroless nickel plating, in which characteristic deterioration is caused by undesired penetration of a processing liquid into a capacitor element. This is related to the improvement of

一般に、この種固体電解コンデンサは例えば弁作用を有
する金属粉末を円柱状に加圧成形し焼結してなるコンデ
ンサエレメントに予め弁作用を有する金属線を#j極リ
ードとして植立し、この陽極リードの導出部分に第1の
外部リード部材を溶接すると共に、第2の外部リード部
材をコンデンサエレメントの周面に酸化層、半導体層、
グラファイト層を介して形成された電極引出し層に半田
付ケシ、カつコンデンサエレメントの全周面を樹脂材に
て被覆して構成されている。
In general, this type of solid electrolytic capacitor is made by, for example, press-molding metal powder having a valve action into a cylindrical shape and sintering it.A metal wire having a valve action is installed in advance as the #j electrode lead on a capacitor element, and the anode A first external lead member is welded to the lead-out portion of the lead, and a second external lead member is welded to the circumferential surface of the capacitor element with an oxide layer, a semiconductor layer,
It is constructed by covering the entire circumferential surface of a capacitor element with a soldering poppy and a capacitor element on an electrode lead-out layer formed through a graphite layer.

ところで、コンデンサエレメントの電極引出し層はグラ
ファイト層が半田部材に対して殆んど濡れ性を示さず、
第2の外部リード部材のグラファイト層への半田付けが
不可能に近いことに鑑み、グラファイト層に対する電気
的1機械的な接続性に優れ、かつ半田部材に対する鋪れ
性にも優れている導電部材にて形成されている。
By the way, in the electrode lead layer of the capacitor element, the graphite layer shows almost no wettability to the solder material.
In view of the fact that it is almost impossible to solder the second external lead member to the graphite layer, the conductive member has excellent electrical and mechanical connectivity to the graphite layer and also has excellent corrosion resistance to the solder member. It is formed in

この導電部材としては例えば平均粒径が2〜3μの銀粉
及び樹脂を含み、かつ全体に占める銀粉の割合を70重
1%に設定したものが広く用いられている。尚、導電部
材は通常、銀粉、無機質材。
This conductive member is widely used, for example, containing silver powder with an average particle size of 2 to 3 μm and a resin, and in which the ratio of the silver powder to the whole is set to 70% by weight. The conductive material is usually silver powder or inorganic material.

樹脂及び溶剤よりなる導電性懸濁液として構成はれてお
り、電極引出し層はこの導電性懸濁液にコンデンサエレ
メントを浸漬し引上げた後、加熱処理することによって
形成される。そして、銀粉は樹脂の熱硬化によってコン
デンサエレメントの周面に固定されると共に、銀粉相互
及びグラファイト層との電気的な接続が良好に保たれる
It is constructed as a conductive suspension consisting of a resin and a solvent, and the electrode lead layer is formed by immersing a capacitor element in this conductive suspension, pulling it up, and then subjecting it to heat treatment. The silver powder is fixed to the circumferential surface of the capacitor element by thermosetting the resin, and good electrical connection between the silver powder and the graphite layer is maintained.

しかし乍ら、このような固体電解コンデンサが湿度の高
い雰囲気で使用に供されると、電極引出し層を構成する
銀は水分の存在によってイオン化し、マイグレーション
現象を呈するようになる。
However, when such a solid electrolytic capacitor is used in a humid atmosphere, the silver constituting the electrode lead layer is ionized by the presence of moisture and exhibits a migration phenomenon.

このために、銀のグラフアイ:、ニド層、半導体層、酸
化層への移動によって漏洩電流特性が損なわれる。
For this reason, the leakage current characteristics are impaired due to the migration of silver to the graphite layer, the semiconductor layer, and the oxide layer.

このようなマイグレーション現象は周囲条件、!l!′
、1作条件などに影響されるものであるが、特に第1゜
第2の外部リード部材に直流電圧が印加されていない状
態で、かつ湿度が高い程顕著に現われ、漏洩電流特性も
著しく搦なわれる傾向にある。
Such migration phenomenon depends on the ambient conditions,! l! ′
Although it is influenced by the operating conditions, it is especially noticeable when no DC voltage is applied to the first and second external lead members and when the humidity is high, and the leakage current characteristics are also significantly improved. There is a tendency to become more popular.

従って、本出願人は先に、コンデンサエレメントに酸化
層、半導体層、グラファイト層を形成すると共に、グラ
ファイト層上に電極引出し層を、無電解ニッケルメッキ
処理によって形成する固体を解コンデンサの製造方法を
提案した。
Therefore, the present applicant first developed a method for manufacturing a solid-state decomposed capacitor in which an oxide layer, a semiconductor layer, and a graphite layer are formed on a capacitor element, and an electrode lead layer is formed on the graphite layer by electroless nickel plating. Proposed.

この方法によれば、電極引出し層の描線部材のコンデン
サエレメント内へのマイグレーションを完全に防止でき
ることによって漏洩電流特性を著L〈改善できる上、コ
ンデンサとしての品位をも高めることができる。
According to this method, it is possible to completely prevent the migration of the drawing member of the electrode drawing layer into the capacitor element, thereby significantly improving the leakage current characteristics, and also improving the quality of the capacitor.

ところで、この無電解ニッケルメッキによる電極引出し
層はコンデンサエレメントを活性化処理液に、それの頂
面部が浸漬されない程度に浸漬した後、さらに無電解ニ
ッケルメッキ浴に処理液′\の浸漬レベルと同レベルに
なるように浸漬することによって形成されている。
By the way, this electrode lead layer formed by electroless nickel plating is made by immersing the capacitor element in an activation processing solution to the extent that the top surface of the capacitor element is not immersed, and then immersing it in an electroless nickel plating bath at the same level as the immersion level of the processing solution. It is formed by dipping it to a level.

しかし乍ら、コンデンサエレメントの活性化処理液への
浸漬レベルに変動がない場合には上述のように優れた効
果が期待できるものの、特にバッチ処理する場合には寸
法精度のバラツキなどの問題もあって、コンデンサエレ
メント個々の浸漬レベルを一定にすることは極めて難し
く、中にはコンデンサエレメントの頂面部が処理液に浸
漬されるものも発生するようになる。
However, if there are no fluctuations in the level of immersion of the capacitor element in the activation treatment solution, excellent effects can be expected as described above, but there are also problems such as variations in dimensional accuracy, especially when batch processing is performed. Therefore, it is extremely difficult to maintain a constant immersion level for each capacitor element, and in some cases, the top surface of the capacitor element is immersed in the processing liquid.

特に、塩素分を含む処理液にあってはそれが−Hコンデ
ンサエレメントに浸み込むと、コンデンサ特性に悪影暢
を及ぼすことなく除去することは鈍しい。これがために
、製品化後において、湿気の浸入などによって残留塩案
分と結合し塩酸が生成されると、酸化層はそれの強いエ
ツチング、作用により措傷され、漏洩電流特性、耐圧特
性が著しく損なわれるという問題がある。
In particular, if a processing liquid containing chlorine permeates into the -H capacitor element, it is difficult to remove it without adversely affecting the capacitor characteristics. For this reason, when hydrochloric acid is generated by combining with residual salt due to moisture infiltration after commercialization, the oxidized layer is damaged by its strong etching and action, resulting in significantly deteriorated leakage current characteristics and voltage resistance characteristics. There is a problem of damage.

本発明はこのような点に鑑み、寸法精度に多少のバラツ
キがあっても無電解メッキ工程における処理液のコンデ
ンサエレメント内への不所望な浸み込みを軽減できる固
体電解コンデンサの製造方法を提供するもので、以下そ
の一製造方法について第1図〜第4図を参照して説明す
る。
In view of these points, the present invention provides a method for manufacturing a solid electrolytic capacitor that can reduce undesired infiltration of a processing liquid into a capacitor element in an electroless plating process even if there is some variation in dimensional accuracy. One manufacturing method will be described below with reference to FIGS. 1 to 4.

まず、第1図に示すように、弁作用を有する金属粉末を
円柱状に加圧成形し焼結してなるコンデンサエレメント
1に予め弁作用を有する金属線を陽極リード2として植
立する。そして、コンデンサニレメン)1に酸化層、半
導体層、グラファイト層を形成すると共に、グラファイ
ト層上にニッケル、錫、銅、鉄、カーボンなどの卑金属
粉末。
First, as shown in FIG. 1, a metal wire having a valve function is installed in advance as an anode lead 2 on a capacitor element 1 which is formed by press-forming metal powder having a valve function into a cylindrical shape and sintering it. Then, an oxide layer, a semiconductor layer, and a graphite layer are formed on the capacitor element (1), and base metal powders such as nickel, tin, copper, iron, and carbon are added on the graphite layer.

樹脂を含む導電部材を被着することにより、第1の電極
引出し層3を形成する。次に、第2図に示すように、コ
ンデンサエレメント1を活性化処理、液に、第1の電極
引出し麺3の上方部分(陽極IJ−ド側)が浸漬さiな
いように浸漬する。そして、引上げ後、ざらに無電解ニ
ッケルメッキ浴に、活性化処理への浸漬レベルとほぼ同
レベルになるように浸漬することにより、無電解ニッケ
ルメッキよりなる第2の電極引出し層4が形成1される
。次に、第3図に示すように、陽極リード2に第1の外
部リード部材5を溶接すると共に、第2の外部リード部
材6を第2の電極引出し層4に半EJi f、Jけ(7
)する。然る後、第4図に示すように、ニフンデン第2
の電極引出し鍮3,4は卑金属にて構成されているので
、方接負荷状態で高湿度雰囲気に長時間放置しても、電
極引出し胎の構成部材のコンデンサエレメント内へのマ
イグレーションヲ完全K 防IJ二できる。このために
、銀のマイグレーションに起因する特性劣化を皆無にで
き、品位の高いコンデンサを得ることができる。
The first electrode lead layer 3 is formed by depositing a conductive member containing resin. Next, as shown in FIG. 2, the capacitor element 1 is immersed in an activation treatment solution so that the upper part (anode IJ side) of the first electrode pull-out noodle 3 is not immersed. After pulling up, the second electrode lead layer 4 made of electroless nickel plating is formed by roughly immersing it in an electroless nickel plating bath at almost the same level as the immersion level in the activation treatment. be done. Next, as shown in FIG. 3, the first external lead member 5 is welded to the anode lead 2, and the second external lead member 6 is welded to the second electrode lead layer 4. 7
)do. After that, as shown in Figure 4, Nifnden 2nd
Since the electrode drawer brass 3 and 4 are made of base metal, the migration of the constituent members of the electrode drawer into the capacitor element is completely prevented even if the electrode drawer brass 3 and 4 are left in a high humidity atmosphere for a long time under direct load conditions. IJ2 can do it. Therefore, characteristic deterioration caused by silver migration can be completely eliminated, and a high quality capacitor can be obtained.

又、第2の電極引出L P、Q 4の下層には導電性に
優れた導電部材にて第1の電極引出り層3が形成されて
いるので、第2の外部リード部材6が接続される第2の
電極引出し層4を、上方部分1aを除く部分にのみ形成
してもコンデンサ特性が損なわれることはない。このた
めに、コンデンサエレメント1の活性化処理液への一漬
レベルを充分に浅くできることもあって、処理液のコン
デンサエレメントへの頂面部からの浸み込みによる特性
劣化を著しくわ・k少てきる。
Further, since the first electrode lead layer 3 is formed of a conductive material with excellent conductivity under the second electrode lead L P, Q 4, the second external lead member 6 is connected. Even if the second electrode extension layer 4 is formed only in the portions other than the upper portion 1a, the capacitor characteristics will not be impaired. For this reason, the level at which the capacitor element 1 is immersed in the activation treatment liquid can be made sufficiently shallow, which significantly reduces the characteristic deterioration caused by the treatment liquid seeping into the capacitor element from the top surface. Ru.

次に、具体的実施例について説明する。Next, specific examples will be described.

実施例1 タンタル粉末を3.5φ×4Mの円柱状に加圧成形し焼
結してなるコンデンサエレメントに予め○。5φ■のタ
ンタル線を陽極リードとして植立する。
Example 1 A capacitor element made by press-molding tantalum powder into a 3.5φ x 4M column and sintering it is pre-marked with ○. A tantalum wire of 5φ■ is installed as an anode lead.

そして、コンデンサエレメントに酸化層、半導体層、グ
ラファイト層を形成する。次に、銅粉、樹脂、溶剤より
なり、かつ銅粉の全体に占める割合を70重量%に設定
した導電部材にコンデンサエレメントを、それの頂面部
より0.1 wm下方部分が浸漬レベルとなるように浸
漬することにより、コンデンサエレメントの側周面、底
面に第1の電極引出り層を形成する。次に、このコンデ
ンサエレメントの側周面の中央部分が浸漬レベルとなる
ように1〜2秒間浸漬し、活性化処理する。次いて、こ
のコンデンサエレメントを硫酸ニッケル浴に、塩化パラ
ジウム浴への浸漬レベルと同しヘルになるように25分
間浸漬する。引上げ彼、洗浄、乾燥する。これによって
第1のf[i?引出し層の1・山部分には無電解ニッケ
ルメッキによる第2の’i4L極引出し層が形成できた
。尚、ニッケルメッキ層の厚みは2〜3μであった。以
下通常の方法にてタンタル固体電解コンデンサを製作す
る。
Then, an oxide layer, a semiconductor layer, and a graphite layer are formed on the capacitor element. Next, a capacitor element was placed in a conductive member made of copper powder, resin, and solvent, and the proportion of copper powder in the total amount was set to 70% by weight, and the part 0.1 wm below the top surface of the conductive member was set at the immersion level. By immersing the capacitor element in this manner, a first electrode extension layer is formed on the side peripheral surface and bottom surface of the capacitor element. Next, the capacitor element is immersed for 1 to 2 seconds so that the center portion of the side circumferential surface thereof is at the immersion level for activation treatment. The capacitor element is then immersed in a nickel sulfate bath for 25 minutes to the same level of immersion as the palladium chloride bath. Raise it, wash and dry. This allows the first f[i? A second 'i4L pole extraction layer was formed by electroless nickel plating on the 1. peak portion of the extraction layer. Note that the thickness of the nickel plating layer was 2 to 3 μm. A tantalum solid electrolytic capacitor is manufactured using the following conventional method.

このコンデンサを温度が65℃、相対湿度が95%の雰
囲気内に無負荷状態で放置し、特定の時間毎に直流電圧
46Vにて3分間充電した後の漏洩電流を測定し、それ
の不良発生率を調べた処、下表に示す結果が得られた。
This capacitor was left unloaded in an atmosphere with a temperature of 65°C and a relative humidity of 95%, and the leakage current was measured after charging at a DC voltage of 46 V for 3 minutes at specific time intervals. When we investigated the ratio, we obtained the results shown in the table below.

上表より明らかなように、漏洩電流の初期特性において
は本発明品、従来品共に全く差異は認められなかった。
As is clear from the above table, no difference was observed in the initial characteristics of leakage current between the product of the present invention and the conventional product.

父、不良発生率においては500時間経過後までは有意
差は認められなかったものの、1000時間では本発明
品が10%であるのに対し従来品は60%もの不良が発
生しており、顕著な差異が誌められた。これは本発明品
の電極引出し層に銀を全く使用していないためと考えら
れる。
Although no significant difference was observed in the defect rate until 500 hours had elapsed, at 1000 hours, the inventive product had 10% defects, while the conventional product had 60% defects, which was significant. A significant difference was noted. This is considered to be because no silver was used in the electrode lead layer of the product of the present invention.

又11本発明品を分解し、コンデンサエレメント内にお
ける残留塩案分の有無について調査した処、全く検出さ
れなかった。
In addition, when the 11 products of the present invention were disassembled and the presence or absence of residual salt in the capacitor element was investigated, no salt was detected at all.

実施例a 実施例1.において、第1の電極引出し層を構成する金
属粉末を銅粉よりニッケル粉に置換した処、実施例1と
同様な効果が得られた。又、第2の電極引出し層の第1
の電極引出し層に対する接着性が若干向上した。
Example a Example 1. In this example, the same effect as in Example 1 was obtained by replacing the copper powder with nickel powder as the metal powder constituting the first electrode extraction layer. Moreover, the first electrode lead layer of the second electrode extraction layer
The adhesion to the electrode lead layer was slightly improved.

尚、本発明において、コンデンサエレメントは円柱状の
他、角柱状、扁平状に構成することもてきる。又、無電
解ニッケルメッキ処理工程における処理液は実施例以外
のものを使用することもてきる。さらにはチップ形に適
用することもてきる。
In the present invention, the capacitor element may have a prismatic shape or a flat shape in addition to a cylindrical shape. Furthermore, a treatment solution other than those in the embodiments may be used in the electroless nickel plating process. Furthermore, it can also be applied in chip form.

以上のように本発明によれば、寸法精度に多少のバラツ
キがあっても熱電解ニッケルメッキE程における処理液
のコンデンサエレメント内への不所望な浸み込みを軽減
でき、これの残留に起因する特性劣化を改善できる。
As described above, according to the present invention, even if there is some variation in dimensional accuracy, it is possible to reduce the undesired infiltration of the processing liquid into the capacitor element during the thermal electrolytic nickel plating step E, and the undesirable infiltration of the treatment liquid into the capacitor element due to the residual It is possible to improve the deterioration of characteristics caused by

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法の説明図であって、第1図はコンデンサ
エレメントの側断面図s第2ntrz第2゜電極引出り
層の形成状態を示す側断面図、第3図は外部リード部材
の接続状態を示す側断面図、第4図は完成状態を示す側
断面図である。 第1図   第2図 第3図   第4図
The figures are explanatory diagrams of the method of the present invention, in which Fig. 1 is a side sectional view of a capacitor element, s 2nd ntrz, 2nd degree, a side sectional view showing the formation state of the electrode extraction layer, and Fig. 3 is a side sectional view showing the state of formation of the electrode extraction layer. FIG. 4 is a side sectional view showing the completed state. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 弁作用を有する金属粉末にて構成し、かつそれより弁作
用を有する金属線を陽極リードとして導出してなるコン
デンサエレメントに酸化層、半導体層、グラファイト層
をy成、する工程と、コンデンサエレメントのグラファ
イト層上に卑金属粉末。 樹脂を含む導電部材を被着することにより第1の電極引
出し肋を形成する工程と、コンデンサエレメントの上方
部分を除く第1の電体引出し層上に無電解ニッケルメッ
キよりなる第2の電極引出し層を形成する工程とを含む
ことを特徴とする固体電解コンデンサの製造方法。
[Claims] A capacitor element made of a metal powder having a valve action, from which a metal wire having a valve action is led out as an anode lead, and an oxide layer, a semiconductor layer, and a graphite layer are formed on the capacitor element. process and base metal powder onto the graphite layer of the capacitor element. A step of forming a first electrode lead-out rib by applying a conductive member containing resin, and a second electrode lead-out formed by electroless nickel plating on the first electric lead-out layer excluding the upper part of the capacitor element. A method for manufacturing a solid electrolytic capacitor, comprising the step of forming a layer.
JP8372082A 1982-05-18 1982-05-18 Method of producing solid electrolytic condenser Pending JPS58200523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8372082A JPS58200523A (en) 1982-05-18 1982-05-18 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8372082A JPS58200523A (en) 1982-05-18 1982-05-18 Method of producing solid electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS58200523A true JPS58200523A (en) 1983-11-22

Family

ID=13810343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8372082A Pending JPS58200523A (en) 1982-05-18 1982-05-18 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS58200523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963716A (en) * 1982-10-01 1984-04-11 松尾電機株式会社 Method of producing solid electrolytic condenser
JPS6167216A (en) * 1984-09-10 1986-04-07 関西日本電気株式会社 Solid electrolytic condenser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111338A (en) * 1979-02-20 1980-08-27 Central Glass Co Ltd Apparatus for shifting posture of article to be conveyed
JPS5683020A (en) * 1979-12-11 1981-07-07 Matsushita Electric Ind Co Ltd Solidstate electrolytic condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111338A (en) * 1979-02-20 1980-08-27 Central Glass Co Ltd Apparatus for shifting posture of article to be conveyed
JPS5683020A (en) * 1979-12-11 1981-07-07 Matsushita Electric Ind Co Ltd Solidstate electrolytic condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963716A (en) * 1982-10-01 1984-04-11 松尾電機株式会社 Method of producing solid electrolytic condenser
JPH0129049B2 (en) * 1982-10-01 1989-06-07 Matsuo Denki Kk
JPS6167216A (en) * 1984-09-10 1986-04-07 関西日本電気株式会社 Solid electrolytic condenser

Similar Documents

Publication Publication Date Title
US4121949A (en) Method of making a cathode electrode for an electrolytic capacitor
US4408257A (en) Cathode electrode for an electrical device
JPS58200523A (en) Method of producing solid electrolytic condenser
JP2615712B2 (en) Manufacturing method of solid electrolytic capacitor
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
US4016465A (en) Cathode electrode for an electrolytic capacitor and method of making same
JP2504182B2 (en) Solid electrolytic capacitor
JPH0244512Y2 (en)
JPS6112669Y2 (en)
JPS6123647B2 (en)
JPS5860524A (en) Chip-shaped solid electrolytic condenser
JPS5858717A (en) Electronic part
JPS5961116A (en) Method of producing chip type solid electrolytic condenser
JPS58218111A (en) Method of producing solid electrolytic condenser
JPS6017902Y2 (en) solid electrolytic capacitor
JPS5963716A (en) Method of producing solid electrolytic condenser
JPS58197714A (en) Method of producing solid electrolytic condenser
JPS59211215A (en) Solid electrolytic condenser and method of producing same
JPH0511408B2 (en)
JPH0888141A (en) Lead frame and manufacture thereof
JPS5841764B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0314040Y2 (en)
JPS5950209B2 (en) solid electrolytic capacitor
JPS6041718Y2 (en) electronic components
JPH088202B2 (en) Tantalum solid electrolytic capacitor