JPS58199829A - Manufacture of uncalcined lump ore - Google Patents

Manufacture of uncalcined lump ore

Info

Publication number
JPS58199829A
JPS58199829A JP8546382A JP8546382A JPS58199829A JP S58199829 A JPS58199829 A JP S58199829A JP 8546382 A JP8546382 A JP 8546382A JP 8546382 A JP8546382 A JP 8546382A JP S58199829 A JPS58199829 A JP S58199829A
Authority
JP
Japan
Prior art keywords
ore
curing
force
temperature
uncalcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8546382A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Shigematsu
重松 達彦
Tatsutoshi Ichii
一伊 達稔
Chitose Shiotani
塩谷 千歳
Yoji Tozawa
戸沢 洋二
Masahiro Kawasaki
正洋 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8546382A priority Critical patent/JPS58199829A/en
Publication of JPS58199829A publication Critical patent/JPS58199829A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide prescribed hardness by molding iron ore contg. a specified amount of grains having a specified grain size and aging and hardening the molded ore in satd. steam at a specified temp. or in the air at ordinary temp. in a state where external force causing cracking and breaking such as impact force or pressurizing force is not applied. CONSTITUTION:A binder is added to iron ore contg. 10-80% grains having 1- 10mm. grain size. Water is optionally added, and >=1 kind of substance contg. a reducing agent or an oxide such as CaO, SiO2 or MgO may be added furthermore. They are molded, and the resulting lump material is aged and hardened in satd. steam at 20-90 deg.C or in the air at ordinary temp. for >=2hr in a state where external force causing cracking and breaking such as impact force or pressurizing force is not applied to the lump material immediately after the molding. The lump material is then aged under known conditions until prescribed strength is obtd., and it is dried and crushed.

Description

【発明の詳細な説明】 この発明は、高炉に使用する非焼成塊成鉱の製造方法に
関し、非焼成塊成鉱の歩留妙の向上と品質劣化の防止を
目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing unfired agglomerated ore used in a blast furnace, and aims to improve the yield of unfired agglomerated ore and prevent quality deterioration.

高炉に使用する非焼成塊成鉱としては、微粉鉱石に水硬
性バインダー(通常セメン))と適当な水分を加えて餉
造されるコールドボンドベレットが代表的である。すな
わち、従来のコールドポンドベンツ)は、仮4−以下の
粒径を有する粉鉱石にセメン)と水を加えて混合し、こ
れをペレタイザー、ブリケットマVンによ抄成型・造粒
し、Vヤフト炉等で養生硬化し高炉装入物として十分な
強度になつ九後高炉装入物として用いる。
A typical example of unfired agglomerate ore used in blast furnaces is cold bond pellets, which are made by adding a hydraulic binder (usually cement) and appropriate moisture to fine ore powder. In other words, the conventional cold pond benz) is made by adding cement and water to powdered ore having a particle size of 4 or less, then mixing it, forming it into paper and granulating it using a pelletizer or briquette machine, After curing and hardening in a furnace etc., it becomes strong enough to be used as a blast furnace charge, and then used as a blast furnace charge.

ところが、このような方法で製造される非焼成塊成鉱は
、■形状的に安息角が小さく高炉内での分布が不均一と
なること、■高温性状が劣るという欠点がある。■の対
策としては、焼成ぺVットで採用堪れている破砕によっ
て形状を改善する方法があるが、高炉装入物としては小
さくなる傾向があ゛ること、粉化し易iという点で、破
砕による形状改善は好ましくなかった。また、■の対策
としては、脈石組成を改善する方法、被還元性を改善す
る方法が知られているが、前者の方法では高品位鉱石O
使用が必要で、あり、後者の方法では冷間強度の低下、
還元時の粉化等の問題があった。
However, the uncalcined agglomerated ore produced by such a method has the disadvantages of (1) a small angle of repose due to its shape and uneven distribution in the blast furnace, and (2) poor high-temperature properties. As a countermeasure for (2), there is a method of improving the shape by crushing, which is commonly used in fired pellets, but it tends to be smaller as a blast furnace charge and is easier to powder. , shape improvement by crushing was not desirable. In addition, as countermeasures for (2), methods to improve gangue composition and methods to improve reducibility are known, but the former method
The latter method reduces cold strength,
There were problems such as powdering during reduction.

これらの問題を解決する方法として、この発明者らは以
下に示す非焼成塊成鉱の製造方法を提案した。
As a method to solve these problems, the present inventors proposed the following method for producing uncalcined agglomerate ore.

この方法は、粒径が10■以下で1m以上を10〜8〇
−含む鉄鉱石にバインダーと必要なら水分を加え、さら
に必要なら固体還元剤、 CIO、Sing 、14g
0等の酸化物を含む物質の1種ま九は2種以上を添加し
、成型後養生硬化して非焼成塊成鉱を製造する方法であ
る。この方法は、比較的品位の低い鉱石の使用が可能で
あること、大きな安息角が得られ良好なガス流れが与え
られること、かつ高温性状が良好な非焼成塊成鉱が得ら
れること等の利点を有する点で非常にすぐれている。し
かし、この方法は■粗粒鉱石を使用するため成型後亀裂
発生、破壊が生じやすい、■従来のベレット、ブリケッ
トは表面が高充填で強度が強いが、この方法では均−成
!Jされる、■従来のペレツ)、グリケラFに比較して
1個の重量が大で奉ることから、従来のベレツF、ブリ
ケット等と一様にハンドリングし養生する場合、すなわ
ち何等かの衝撃力、加圧力等の萄重が加わると亀裂、破
壊が生じ、成品歩留IIの低下、品質O劣化を生ずると
いう間融がある。従って、この非焼成塊成鉱の製造方法
におけ為養生には、従来のベレッF中プリヶッFと異な
る方法を採用する必要がある。
This method involves adding a binder and water if necessary to iron ore with a particle size of 10cm or less and 1m or more, and adding a solid reducing agent, CIO, Sing, 14g if necessary.
In this method, one or two or more substances containing oxides such as 0 or the like are added, and after molding, curing and hardening are performed to produce a non-calcined agglomerate. This method allows the use of relatively low-grade ores, provides a large angle of repose and good gas flow, and produces uncalcined agglomerates with good high-temperature properties. It is very good in terms of its advantages. However, this method uses coarse-grained ore, which tends to cause cracks and breakage after molding; ■Conventional pellets and briquettes have highly filled surfaces and are strong, but this method makes it evenly formed! Since the weight of one piece is larger compared to Glycera F, when handled and cured in the same way as conventional Pelletz F, briquettes, etc., in other words, some impact force When stress such as pressurizing force is applied, cracks and destruction occur, resulting in a decrease in product yield II and deterioration in quality O. Therefore, it is necessary to adopt a different method for curing in this method of manufacturing uncalcined agglomerate ore than that used in the conventional Beret F medium and Purikat F method.

この発明は、かか為要求に応えるためになされえもので
あって、その要旨は、粒径が10M以下で1m以上を1
0−8・−含む鉄鉱石にバインダーと必要なら水分を加
え、さらに必要なら固体還元剤。
This invention was made to meet these demands, and its gist is that the particle size is 10M or less and 1m or more is 1m or more.
0-8.- Add a binder and water if necessary to the iron ore containing, and if necessary, a solid reducing agent.

Cab、 S i(% 、 M(O等の酸化物を含む物
質の1種または8種以上を添加し、成型後養生硬化し、
て非焼成塊成鉱を製造する方法において、成型直後の塊
状物を衝撃力、加圧力等の亀裂、破壊の原因となる外力
が加わらない状態で温度20〜90℃の飽和蒸気中ある
いは常温大気中で少なくとも2時間以上養生硬化するこ
とを特徴とする非焼成塊成鉱の製造方法にある。
Adding one or eight or more substances containing oxides such as Cab, Si(%), M(O), curing and hardening after molding,
In the method of manufacturing non-calcined agglomerated ore, the agglomerate immediately after being formed is placed in saturated steam at a temperature of 20 to 90°C or in room temperature air without applying external forces such as impact force or pressure that may cause cracks or destruction. A method for producing a non-calcined agglomerate is characterized by curing and hardening for at least 2 hours or more.

以下、この発明法について詳細に説明する。This invention method will be explained in detail below.

先ず、ζO発明の対象とする非焼成塊成鉱の製造方法に
おける原料鉱石の限定理由について説明する。すなわち
、コールドボンド鉱の場合は、0.5〜1■以下の鉱石
はセメンF1副原料と反応し均一な溶融組織となってい
るが、1mg+以上の鉱石はその11の状態で残留し、
軟化収縮にはほとんど寄与しない。その理由は、鉱石粒
とセメンtとの反応は表面でおこb1鉱石内部まで七メ
ン1)II成が拡散せず、鉱石中の脈石量が少ないこと
による。このセメントと反応しまい1111以上の鉱石
量を変化させて高温性状を副ぺてみると、第1IIに示
すごとく、鉱石中に1m以上の粒径のものが10−以上
あれば通常の高炉原料と同等の軟化性状が得られる。ま
た1箇以上の鉱石量と回転強度の関係を調べてみると、
第2図に示すとと〈l謡以上の鉱石粒の比率が80−を
越えると、実用に耐え得る目標値の回転強度85−よシ
低くなり実用に耐えないものとなる。これは、高温性状
は1m以上の鉱石粒の比率が大となる程良好となる一方
、微粉鉱石が減少すみにともない充填性が悪化すること
がその原因と推察される。
First, the reason for limiting the raw material ore in the method for producing uncalcined agglomerated ore, which is the object of the ζO invention, will be explained. That is, in the case of cold bond ore, ores of 0.5 to 1 cm or less react with the cement F1 auxiliary material and form a uniform molten structure, but ores of 1 mg+ or more remain in the 11 state,
It hardly contributes to softening shrinkage. The reason for this is that the reaction between ore grains and cement t occurs on the surface, and the 7-men 1) II formation does not diffuse into the interior of the ore, and the amount of gangue in the ore is small. When we change the amount of ore that reacts with this cement and examine the high-temperature properties, we find that if the ore contains particles with a particle size of 1 m or more and 10 or more, it is considered to be a normal blast furnace raw material, as shown in Section 1II. Equivalent softening properties can be obtained. In addition, when examining the relationship between the amount of ore at one or more locations and the rotational strength, we find that
As shown in FIG. 2, if the ratio of ore grains with a diameter of 1 or more exceeds 80, the rotational strength of the target value of 85, which can withstand practical use, becomes lower than 85, making it impractical. The reason for this is presumed to be that, while the high-temperature properties become better as the ratio of ore grains of 1 m or more increases, the filling properties deteriorate as fine ore decreases.

以上の理由により、原料鉱石には粒径が10111以下
で1m以上の鉱石粒を10〜80−含む粉粒鉱石を用い
ているのであゐ、なお、鉱石粒の上限を10鴎以下とし
九〇は、ioms以上の鉱石は何等塊成化すb必要がな
いからである。
For the above reasons, we use powdered ore containing 10 to 80 ore grains with a particle size of 10111 or less and 1 m or more in diameter. This is because ores larger than ioms do not need to be agglomerated in any way.

次に、ζO発明法KJiPけゐ養生条件について説明す
る。この発明者らは、非焼成塊成鉱の破砕歩留参は衝撃
力、加圧力に対する安定性を示すと考え、回転強度指数
と破砕歩留やとの関係を調べ丸。
Next, the curing conditions of the ζO invention method KJiP key will be explained. The inventors believed that the crushing yield of uncalcined agglomerate ore indicates stability against impact force and pressing force, and investigated the relationship between the rotational strength index and the crushing yield.

その結果、第、3図に示すとお勤非焼成塊成鉱の破砕歩
留塾は強度O低下KJ6じて増加し、この非焼成塊成鉱
は低強度時に外力、が加わると歩留や、品質の低下を惹
起することが判明した。また、目標歩留やとしてaOs
を採用すると、外力が加わらない状況で養生し、その回
転強度指数が40以上となればよいことが理解“できる
As a result, as shown in Figure 3, the crushing yield of non-calcined agglomerate ore increases as the strength O decreases, and when external force is applied to this non-calcined agglomerate at low strength, the yield decreases. It was found that this caused a decline in quality. In addition, as the target yield, aOs
If you adopt this, you can understand that it is only necessary to cure it in a situation where no external force is applied and the rotational strength index becomes 40 or more.

とζろで、セメンシ硬化体の強度は養生条件によ〉変化
することが通常の七メンY、コンクリーシの分野で知ら
れてい為、この養生温度と強度の関係は第4図に示すと
お伽、養生温度の増加とともに強度は増加す為が、養生
温度が90℃以上になると強度は低下し、100℃では
着しく低くなる。
It is known in the field of regular concrete and concrete that the strength of cement hardened products changes depending on the curing conditions, so the relationship between curing temperature and strength is shown in Figure 4. As a fairy tale, the strength increases as the curing temperature increases, but when the curing temperature increases to 90°C or higher, the strength decreases, and at 100°C, it drops sharply.

温度10G’Cで養生した試料には微細な亀裂が入って
おり、この亀裂により強度が低下し九ものと推察される
。従って、養生温度は90℃以下が好ましい。
The sample cured at a temperature of 10 G'C had fine cracks, and it is estimated that the strength decreased due to these cracks. Therefore, the curing temperature is preferably 90°C or lower.

一方、養生温度が低くなると強度も低くな夛、10℃以
下では七メンFの水硬性の発現が遅れ為。
On the other hand, the lower the curing temperature, the lower the strength, and below 10℃, the development of hydraulic properties of Shichimen F is delayed.

この場合、100℃以上の場合と異なり長時間養生すれ
ば問題はない、しかし、生産性等の面から養生時間はで
きるだけ短い方が望ましく、また設備の大きさからして
も養生温度の下限は常温とはぼ同じ20℃が適当である
In this case, unlike the case where the temperature is 100°C or higher, there is no problem if the curing is carried out for a long time. However, from the viewpoint of productivity etc., it is desirable to shorten the curing time as much as possible, and the lower limit of the curing temperature is also determined by the size of the equipment. A temperature of 20°C, which is about the same as room temperature, is suitable.

また、養生温度20〜90℃の飽和蒸気中と大気中で強
度O経時変化を調査した結果を第5図に示す。
Further, Fig. 5 shows the results of investigating changes in strength O over time in saturated steam at a curing temperature of 20 to 90°C and in the atmosphere.

第6図より明らかなごとく、回転強度指数の経時変化は
20〜90℃の温度領域では大きな差はなく、2時間の
養生で回転強度指数が40程度とな)8時間以上養生す
れば通常の非焼成塊成鉱と同様ハンドリングに耐え得る
強度が得られ、通常のハンドリングを行なっても極度の
歩留りの低下、品質の低下を惹起するものでないと判断
される。
As is clear from Figure 6, there is no big difference in the rotational strength index over time in the temperature range of 20 to 90°C, and after 2 hours of curing, the rotational strength index is around 40). It has the same strength as uncalcined agglomerated ore, and it is judged that it will not cause an extreme decrease in yield or quality even if it is handled normally.

なお、養生時の雰囲気は必ずし4飽和蒸気中でなくとも
、非焼成塊成鉱中の水分が蒸発しにくい条件であればよ
く、好ましくは、湿度は80〜90%以上あればなおよ
い。
The atmosphere during curing does not necessarily have to be 4-saturated steam as long as the moisture in the uncalcined agglomerated ore is difficult to evaporate, and preferably the humidity is 80 to 90% or more.

以上の知見よ抄、この発明では、成IJ直後の塊状物を
衝撃力、加圧力等の亀裂、破壊の原因となる外力が加わ
らない状態で温度20〜90’Cの飽和蒸気中島ふいは
常温大気中で少なくとも2時間以上養生硬化させ、その
後所定の強度を得るまで公知の条件で養生、乾燥、破砕
を行なえばよいこととなぁ。
Based on the above findings, in this invention, the saturated steam Nakajima pipe at a temperature of 20 to 90'C is heated to room temperature without applying any external force such as impact force or pressurization force that causes cracks or destruction to the lumps immediately after IJ. It is sufficient to cure and harden in the atmosphere for at least 2 hours, and then to cure, dry, and crush under known conditions until a predetermined strength is obtained.

まえ、この発明法において、成型11後の塊状物を衝撃
力、加圧力等の亀裂、破壊の原因となる外力が加わらな
い状態で養生する方法としては、例えば成型用型枠の底
板と側枠とを分離構造とし、ローラコンベアー上で加圧
成型するようにし、成型後に側枠のみを外し底板が付い
え壇までローラボンベアー上を滑らせて、その上で養生
する方法がある。    ′ ζO発明は上記のごとく、成型直後の塊状物に衝撃力、
加圧力等の外力が加わらない状態で、かつ所定の強度が
得られる温度で長生するので、成型直後に衝撃力、加圧
力等の外力が加わると亀裂、破壊が生じ易い非焼成塊成
鉱であっても、高歩留りで品質の安定し九ものを得るこ
とができる。
In the method of the present invention, as a method for curing the lump after molding 11 without applying any external force such as impact force or pressurizing force that causes cracks or destruction, for example, the bottom plate and side frame of the molding frame can be cured. There is a method in which the parts are separated from each other, pressure molded on a roller conveyor, and after molding, only the side frame is removed, the bottom plate is attached, and the material is slid on the roller bomber until it reaches the platform, and then the product is cured on top of that. ' As mentioned above, the ζO invention applies impact force to the lump immediately after molding.
It is a non-fired agglomerated ore that grows long in the absence of external forces such as pressurizing force and at a temperature that provides a specified strength, so if external forces such as impact force or pressurizing force are applied immediately after forming, it is likely to crack or break. Even if there is a high yield and stable quality, it is possible to obtain products with high yield and stable quality.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

s1表に示す組成を有し、第2、表に示す粒度構成の原
料を混合し、1〜10膳のものを50−含ませて、中1
50■X長さ4QQss X厚さZoomの大きさのブ
ロックに成型し、これを衝撃力、加圧力等の亀裂。
s1 The raw materials having the composition shown in Table 1 and the particle size structure shown in Table 2 are mixed, and 50 pieces of 1 to 10 pieces are included, and medium 1 is mixed.
It is molded into a block with the size of 50cm x length 4QQss x thickness Zoom, and this is cracked by impact force, pressing force, etc.

破壊の原因となる外力が加わらない成型用型枠に入れ良
状態で温度20〜90℃の常温大気中、飽和蒸気中等種
々の条件で養生した後、破砕wAKよ)最大粒径501
11に破砕し九コールドボンド鉱の強度と歩留pを第3
表に示す。なお、第3表には比較のため成型後の塊状物
をハンドリングして養生硬化させたコールドボンド絋の
強度と歩留りを併わせて示し九。
After being placed in a molding frame that does not apply external forces that may cause destruction and curing under various conditions such as room temperature air at a temperature of 20 to 90 degrees Celsius, saturated steam, etc., it is crushed (wAK) Maximum particle size: 501
The strength and yield p of 9 cold bond ore crushed to 11
Shown in the table. For comparison, Table 3 also shows the strength and yield of cold-bonded knitting, which is obtained by handling and curing a lump after molding.

第3表より、”本発明法によれば7〇−以上の歩留りで
高品質のものが得られることが明らかである。
From Table 3, it is clear that according to the method of the present invention, high quality products can be obtained with a yield of 70 or more.

第1表  使用原料の組成 [ 「 第2表   使用原料の粒度構成 ) 、槍11寥1Table 1 Composition of raw materials used [ " Table 2 Particle size composition of raw materials used ) , 11 spears 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明におけるlss以上の鉱石粒の比率と
収縮適度の関係を示す図表、第2図は同じ(1m以上の
鉱石粒の比率と回転強度の関係を示す図表、第3図は関
じ(この発明における非焼成塊成鉱の回転強度指数と破
砕歩留りとの関係を示す図表、第4図は同上における養
生温度と回転強度指数の関係を示す図表、第6図は同上
における養生時間と回転強度指数の関係を示す図表であ
る。 出願人  住友金属工業株式会社 代理人   押   1)  良   (1第1t 0     10 +1mmユ 12図 第3図 回転蝕度指数 14図 第5図 養生時間[H1
Figure 1 is a chart showing the relationship between the proportion of ore grains larger than lss and the degree of shrinkage in this invention; (Figure 4 is a chart showing the relationship between the rotational strength index and crushing yield of non-calcined agglomerated ore in this invention. Figure 4 is a chart showing the relationship between the curing temperature and rotational strength index in the same as above. Figure 6 is a chart showing the relationship between the rotational strength index in the same as above.) This is a chart showing the relationship between the rotational strength index and the rotational strength index.Applicant: Agent Sumitomo Metal Industries, Ltd. H1

Claims (1)

【特許請求の範囲】 粒径が、。、以下、□、、以上を10〜8゜憾含む鉄鉱
石にパイン〆一と必要なら水分を加え、さらに必要なら
固体還元剤e C60e S 1oss MgO等の酸
化物を含む物質の1種または2種以上を添加し、成型後
養生硬化して非焼成塊成鉱を製造する方法において、成
を直後の塊状物を衝撃力、加圧力等の鯨。 破壊の原因となる外力が加わらない状態で温度20〜9
0℃の飽和蒸気中あるいは常温大気中で少なくとも2時
間以上養生硬化することを特徴とする非焼成塊成鉱の製
造方法。
[Claims] The particle size is. , Hereinafter, □, , To the iron ore containing 10 to 8 degrees of the above, add pine paste and water if necessary, and if necessary, add one or two of the substances containing oxides such as solid reducing agent e C60e S 1oss MgO etc. In the method of producing unfired agglomerated ore by adding seeds or more and curing and hardening after shaping, the agglomerate immediately after forming is subjected to impact force, pressurizing force, etc. Temperature 20-9 without applying any external force that may cause damage
A method for producing uncalcined agglomerate ore, which is characterized by curing and hardening in saturated steam at 0°C or in the atmosphere at room temperature for at least 2 hours.
JP8546382A 1982-05-19 1982-05-19 Manufacture of uncalcined lump ore Pending JPS58199829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8546382A JPS58199829A (en) 1982-05-19 1982-05-19 Manufacture of uncalcined lump ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8546382A JPS58199829A (en) 1982-05-19 1982-05-19 Manufacture of uncalcined lump ore

Publications (1)

Publication Number Publication Date
JPS58199829A true JPS58199829A (en) 1983-11-21

Family

ID=13859575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8546382A Pending JPS58199829A (en) 1982-05-19 1982-05-19 Manufacture of uncalcined lump ore

Country Status (1)

Country Link
JP (1) JPS58199829A (en)

Similar Documents

Publication Publication Date Title
US6676725B2 (en) Cold bonded iron particulate pellets
RU2224007C1 (en) Elevated-strength coal briquette and a method of fabrication thereof
SK74994A3 (en) Method of manufacture of cold pressed briquettes containing iron
JP2004536968A (en) Briquetting iron ore
CA1161256A (en) Cold bonding mineral pelletization
Bizhanov et al. Blast furnace operation with 100% extruded briquettes charge
CN112867804A (en) Binder formulation
US2976162A (en) Briquetting granular material
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JPS58199829A (en) Manufacture of uncalcined lump ore
KR101927710B1 (en) Mill scale briquet with reinforced strength
JPS621824A (en) Manufacture of cold-briquetted ore
US11414612B2 (en) Process for coal fine aggregation
DE3940327C1 (en) Cement-bonded coke mouldings - prepd. by mixing fine coke with mineral mortar and moulding moist mixt. in shaping machine
JP7188126B2 (en) Method for manufacturing carbon-containing non-fired pellets for blast furnace
DE3940328C2 (en) Process for the production of lime-bound coke moldings for metallurgical purposes, in particular for the production of iron and steel
JP2009030116A (en) Method for producing ore raw material for blast furnace
JPH0660359B2 (en) Method for producing unfired agglomerated ore
US3239330A (en) Shaped vanadium product
JPS60184642A (en) Manufacture of unfired lump ore
CN102030546A (en) Zircon product containing special zircon particles
RU2155731C2 (en) Method manufacture of periclase-carbonaceous refractories
CN115159989A (en) Production method of carbon block for large-section submerged arc furnace
US2687969A (en) Method for producing metallurgical cement
JP2020204078A (en) Method for manufacturing unfired agglomerated ore for shaft furnace