JPS58199806A - Production of metallic lithium powder - Google Patents

Production of metallic lithium powder

Info

Publication number
JPS58199806A
JPS58199806A JP57081508A JP8150882A JPS58199806A JP S58199806 A JPS58199806 A JP S58199806A JP 57081508 A JP57081508 A JP 57081508A JP 8150882 A JP8150882 A JP 8150882A JP S58199806 A JPS58199806 A JP S58199806A
Authority
JP
Japan
Prior art keywords
powder
li3n
metallic lithium
lithium
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57081508A
Other languages
Japanese (ja)
Inventor
Shigeru Matake
茂 真竹
Atsuo Imai
今井 淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57081508A priority Critical patent/JPS58199806A/en
Publication of JPS58199806A publication Critical patent/JPS58199806A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enable the simple production of metallic Li powder having optional grain sizes at a proper time by heating Li3N powder in an inert gaseous atmosphere or under reduced pressure and decomposing the same thermally while preventing melt sticking. CONSTITUTION:Li3N powder 1 is dropped from the upper part of a quartz tube 2 and the falling Li3N powder is decomposed thermally by a heater consisting of an iodine electric lamp 4 for heating and is immediately cooled to deposit metallic Li powder 5 on a well part. An inert gas 6 is flowed from the lower part to the upper part of the tube 2 in this case to control the speed of dropping. The Li3N powder 1 to be used is controlled to have the grain sizes similar to the grain sizes of desired metallic Li powder. On the other hand, the Li3N powder is spread thinly and is placed on a tray to prevent the melt sticking thereof in the stage of thermal decomposition under reduced pressure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、金属リチウム粉末の製造方法に閤し、更KP
L<は、任意の粒径を有する金属リチウム粉末を、随時
、簡便に得ることが可能な金属リチウム粉末の製造方法
に―する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing metallic lithium powder,
L< makes it possible to easily obtain metallic lithium powder having any particle size at any time.

〔発明の技術的背□景とその問題点〕[Technical background of the invention and its problems]

従来、金属リチウム粉末社、金属リチウム自体が極めて
塑性に富むものであるために、これを機械的Kll砕し
て粉末とすることはできず、例えば、加熱111kした
金属リチウムを耐熱性の噴−器中に入れ、これを不活性
ガス中に噴霧し、冷却固化せしめる方法によりal造さ
れている。
Previously, Metal Lithium Powder Co., Ltd., was unable to mechanically crush metal lithium into powder because it was extremely plastic. Aluminium is produced by a method in which the aluminum is poured into a container, sprayed into an inert gas, and cooled and solidified.

しかしながら、このような方法ては、得られる金属リチ
ウム@*0粒径範囲が狭く、又、500j−以上の大き
な粒径を有するものが得られないという問題点を有して
いる。更に、上記し先方法では、金属リチウム11*を
大量に生産する場合には適するが、大がか)な設備を資
するえめに1少量のものを随時製造する必要がある場合
には、簡便さに欠けるという問題点を有している。
However, such a method has the problem that the particle size range of metallic lithium@*0 obtained is narrow and that it is impossible to obtain particles having a large particle size of 500J- or more. Furthermore, the above-mentioned method is suitable for producing large amounts of metallic lithium 11*, but it is not convenient when it is necessary to produce small quantities at any time without requiring large-scale equipment. The problem is that it lacks.

〔発@O1的〕 本実WAoa的は、上記した問題点を解消し、任意の粒
径を有する金属リチウム粉末を、随時、筒便に得ること
が可能な金属リチウム粉末の製造方法を提供することに
ある。
[Original @O1] The present invention by WAoa solves the above-mentioned problems and provides a method for producing metallic lithium powder that can conveniently obtain metallic lithium powder having any particle size at any time. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明の金属リチウム粉末の製造方法は、窒化リチウム
(LinN)粉末を、不活性ガス雰囲気中又は減圧下に
おいて、加熱し、融着を防止しつつ熱分解せしめること
を特徴とするものである。
The method for producing metallic lithium powder of the present invention is characterized by heating lithium nitride (LinN) powder in an inert gas atmosphere or under reduced pressure to thermally decompose it while preventing fusion.

以下Ksi−いて、本発明を更ゝに評しくai14する
The present invention will be further evaluated below.

本発明者らは、鋭意検討を重ねた結果、原料としてLi
1N粉末を用いることにより、熱分解して得られる金属
リチウム粉末の粒径が容易に制御できることを見出し、
本発明を完成するに到った。
As a result of extensive studies, the present inventors discovered that Li as a raw material
We discovered that the particle size of metallic lithium powder obtained by thermal decomposition can be easily controlled by using 1N powder,
The present invention has now been completed.

即ち、LIINは、室温において、酸素及び水蒸気を遮
断した状態では安定である。又、その粒径によって若干
相違するが、多少の水蒸気を含む空気中においても短時
間の処理であれば目立゛つた変化はなく、雀扱いが容易
なものである。
That is, LIIN is stable at room temperature in a state where oxygen and water vapor are blocked. In addition, although the particle size varies slightly, there is no noticeable change even in air containing some water vapor if the treatment is carried out for a short period of time, and it is easy to handle.

そして、その融点(845C)付近では、リチウムと窒
素に分解する傾向が大きく、その分解蒸気圧は約300
Torrである。本発明は、このよりなli、Nの性質
を利用した本のである。
Near its melting point (845C), it has a strong tendency to decompose into lithium and nitrogen, and its decomposition vapor pressure is approximately 300C.
Torr. The present invention is a book that utilizes the properties of li and N.

本発明において使用されるLLaN粉末は、所望とする
金属リチウム粉末と同程度の粒径を有するものであれば
よく、例えば、1μ−〜数■の平均粒径な有するものが
使用される。このようなLi畠N粉末は、例えば、窒素
ガス中ヘリウム、アルゴン等の希ガス雰囲気中において
、ボールミル等の過當知られている粉砕方法を用いて容
易Kllることができる。
The LLaN powder used in the present invention may have a particle size comparable to that of the desired metal lithium powder, and for example, one having an average particle size of 1 μm to several μm is used. Such Li HatakeN powder can be easily crushed using a well-known pulverization method such as a ball mill in an atmosphere of a rare gas such as helium or argon in nitrogen gas, for example.

とのLi5N粉末を、不活性ガス雰囲気中又は減圧下に
おいて、加熱し、−着を防止しつつ熱分解する。熱分解
時の加熱湯度は、原理的にはかな〕低くて屯よいが、5
60〜700Cであることが好ましい。560C未満で
は、他の条件によりLi3Nの熱分解が充分起こらない
場合があり、一方、700Cを超えると、減圧下におい
てはリチウムの蒸発が増加する。
Li5N powder is heated in an inert gas atmosphere or under reduced pressure to thermally decompose it while preventing deposition. The heating temperature during pyrolysis is, in principle, low and good, but
It is preferable that it is 60-700C. If the temperature is less than 560C, thermal decomposition of Li3N may not occur sufficiently due to other conditions, while if it exceeds 700C, evaporation of lithium increases under reduced pressure.

熱分解して得られる金属リチウムは、上記温度範囲にお
いて液体であるために1金属粒同士が相互に融着して粗
大化するのを紡ぐことが必要である。
Since metallic lithium obtained by thermal decomposition is liquid in the above temperature range, it is necessary to spin the metal particles so that they fuse together and become coarse.

不活性ガス雰囲気中での熱分解に際しては、Li5N粉
末を不活性ガス中において緩やかに落下せしめるか、或
いは不活性ガス中に浮遊させて移送せしめ、それらの途
次に加熱部及び冷却部を順次設け、Li、N粉末を通過
せしめることkより、融着することなく金属リチウム粉
末を得ることかできる。この際の、加熱部におけるLi
、N粉末の滞留時間或いは通過距離は、熱分解により生
成した窒素が冷却によって金属リチウムと再結合するこ
とがないような条件であればよい。即ち、窒素が金属リ
チウムから拡散又は流動により充分垂紐すればよ< %
 LiMN粉末の粒径、不活性ガス流量、熱分解温度等
の条件を( 適宜組み合わせて選択することが好ましい。
During thermal decomposition in an inert gas atmosphere, the Li5N powder is allowed to fall gently in the inert gas, or is suspended in the inert gas and transferred, and the heating section and the cooling section are sequentially operated during the process. By passing the Li and N powders through the tube, it is possible to obtain metallic lithium powder without fusion. At this time, Li in the heating section
The residence time or passage distance of the N powder may be such that the nitrogen produced by thermal decomposition does not recombine with metallic lithium upon cooling. In other words, if nitrogen is sufficiently suspended from metallic lithium by diffusion or flow, <%
It is preferable to select appropriate combinations of conditions such as the particle size of the LiMN powder, the flow rate of inert gas, and the thermal decomposition temperature.

又、加熱方法としては、LlsNの分解後はLt液滴相
互の融着を防止するために′できるだけ早く冷却する仁
とが望ましいことから、不活性ガスは加熱せずKLim
N粉末だけを選択的に加熱する紡導加熱放射光等を用い
る方法が好ましい。
In addition, as for the heating method, it is desirable to cool the inert gas as quickly as possible in order to prevent the Lt droplets from fusing with each other after decomposition of LlsN, so the inert gas is not heated.
A method using spinning heating radiation or the like that selectively heats only the N powder is preferred.

上記した不活性ガス雰囲気中にお砂る製造方法としては
、例えば、m1図に示したような装置を用いて製造する
方法が挙げられる。第1図においては、窒化リチウム(
LlmN)粉末1を石英管2の上部よ)li下せしめ、
石英管の所定の位置に設けた反射板3を有する加熱用沃
素電球4から成る1熱装置によシ、落下するLi、N粉
末を熱分解し、直ちに冷却して石英管下部に設けえ11
11分に金属リチウム粉末5を堆積せしめるものである
。このIIK、不活性ガス6を石英管下部に設けた不活
性ガス導入口から上部に設けえ導出口へ、Lfi、N粉
末に対して向流で流すととにより、落下速度を制御する
ことができる。
Examples of the method for manufacturing sand in an inert gas atmosphere include a method using an apparatus as shown in Fig. m1. In Figure 1, lithium nitride (
LlmN) Powder 1 is lowered to the top of the quartz tube 2,
The falling Li and N powders are thermally decomposed by a heating device consisting of a heating iodine bulb 4 having a reflector plate 3 provided at a predetermined position of the quartz tube, and immediately cooled and placed at the bottom of the quartz tube.
The metal lithium powder 5 is deposited in 11 minutes. By flowing this IIK and inert gas 6 from the inert gas inlet provided at the bottom of the quartz tube to the outlet provided at the top in a countercurrent to the Lfi and N powder, the falling speed can be controlled. can.

尚、本発明において使用される不活性ガスとしては、例
えば、ヘリウム、アルゴン勢の希ガスが挙けられる。
In addition, examples of the inert gas used in the present invention include rare gases such as helium and argon.

一方、減圧下における熱分解KIIしては、Li1N粉
末末を板又は鳳に薄(拡けて載置し、それらの−着を防
ぐことが好ましい。このJIIK。
On the other hand, for thermal decomposition KII under reduced pressure, it is preferable to spread the Li1N powder powder thinly (spread) and place it on a plate or a plate to prevent it from sticking.This JIIK.

板又は息として使用する材料にはタングステンを用いる
ことが、金属リチウム又は窒化リチウムと高11におい
て殆んど反応することがないことから好ましい。減圧度
は、必ずしも真空状態Kまで近づける必費はなく、例え
ば%  10−”Torr程度でも目的は達成される。
It is preferable to use tungsten as the material used for the plate or breather because it hardly reacts with metallic lithium or lithium nitride at high temperatures. The degree of pressure reduction does not necessarily have to be close to the vacuum state K; for example, the purpose can be achieved even if the degree of pressure reduction is about 10-'' Torr.

上記した減圧下における製造方法としては、例えば、第
2図に示したような装置を用いて製造する方法が挙げら
れる。第2図において、石英管7内に、測温用熱電対保
護管8及びJI9KLilN粉末1を載置したものを入
れ、これを、炉心管10.ヒーターl及び保温用耐火物
栓から成る加熱装置内に挿入する。そして、石英管7に
取9付けられた水冷ジャケラ)13に水を流して冷却し
ながら、排気口14より排気ポンプで排気しながら所定
湯度に加熱し、LiIN粉末を熱分解せしめるものであ
る。
Examples of the above-mentioned manufacturing method under reduced pressure include a manufacturing method using an apparatus as shown in FIG. 2. In FIG. 2, a temperature-measuring thermocouple protection tube 8 and JI9KLilN powder 1 are placed in a quartz tube 7, and this is inserted into a furnace core tube 10. Insert into a heating device consisting of a heater l and a refractory plug for heat retention. Then, while cooling by flowing water through a water-cooled jacket 13 attached to the quartz tube 7, the hot water is heated to a predetermined temperature while being exhausted by an exhaust pump from the exhaust port 14, and the LiIN powder is thermally decomposed. .

本発明の金属リチウム粉末の製造方法は、必ずし龜上記
した装置のみに限定される本のではない。又、例えば、
第2図に示した装置に不活、1.、 性ガスを導入し、加熱して熱分解せしめてもよい。
The method for producing metallic lithium powder of the present invention is not necessarily limited to the above-mentioned apparatus. Also, for example,
Inactivation of the apparatus shown in FIG. 2: 1. , a reactive gas may be introduced and heated to cause thermal decomposition.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第1図に示した装置を用いて、アルゴンガス雰囲気中に
おいて、窒化リチウムを熱分解せしめた。
Example 1 Using the apparatus shown in FIG. 1, lithium nitride was thermally decomposed in an argon gas atmosphere.

即ち、長さ約2m、直径30mを有する石英管の上部よ
)、平均粒IIsハの窒化リチウム粉末を落下せしめ、
石英管中部に設けた反射板及び沃素電球によ〕窒化リチ
ウム粉末のみを加熱して熱分解し先後、落下中に自然放
冷せしめて下部に設は九溜部分に堆積させた。この際に
、石英管下部より上部へ、アルゴンガスヲ400 l+
4/Imの流量で流した。尚、熱分解時における窒化リ
チウム粉末温度は、正確にはわからないが、680C前
後であると思われる。
That is, lithium nitride powder with an average grain size of IIs was dropped onto the top of a quartz tube having a length of about 2 m and a diameter of 30 m,
Only the lithium nitride powder was heated and thermally decomposed using a reflector plate installed in the middle of the quartz tube and an iodine bulb. After that, it was allowed to cool naturally while falling, and was deposited in the lower part of the tube. At this time, add 400 liters of argon gas from the bottom of the quartz tube to the top.
It was flowed at a flow rate of 4/Im. Although the temperature of the lithium nitride powder during thermal decomposition is not precisely known, it is thought to be around 680C.

石英管下部に堆積している銀白色を呈する粉末をX線回
折法により分析したところ、リチウムのみであることが
確認された。
When the silver-white powder deposited at the bottom of the quartz tube was analyzed by X-ray diffraction, it was confirmed that it was only lithium.

又、フィッシャーのサブシープナイザ−(モデル14−
312. フィッシャー・サイエンティフィック(株)
製、 115V、 66 t イ/ ル、 0.I A
MP、)を用いて、上記銀白色粉末の粒径を測定したと
ころ、5μ輌前後であp1殆んど変化していないことが
確認された。
In addition, Fisher's sub-seepener (Model 14-
312. Fisher Scientific Co., Ltd.
Manufactured by, 115V, 66t I/L, 0. IA
When the particle size of the silvery white powder was measured using MP, ), it was confirmed that p1 hardly changed at around 5 μm.

実施例2 菖2図に示した装置を用いて、減圧下において、窒化リ
チウムを熱分解せしめた。
Example 2 Using the apparatus shown in Figure 2, lithium nitride was thermally decomposed under reduced pressure.

即ち、平均粒径0.3■を有する窒化リチウム粉末を、
タングステン板上に疎らに敷きつめ、このタングステン
板を石英管内に入れた。次いで、この石英管を加熱炉内
に挿入し、油回転ポンプを用いて4 X 1o−3程度
に減圧しながら窒化リチウムを670Cにおいて20分
間加熱した後、石英管を加熱炉から取9出し冷却した。
That is, lithium nitride powder having an average particle size of 0.3
They were spread loosely on a tungsten plate, and the tungsten plate was placed inside a quartz tube. Next, this quartz tube was inserted into a heating furnace, and the lithium nitride was heated at 670C for 20 minutes while reducing the pressure to about 4 x 1o-3 using an oil rotary pump.The quartz tube was then taken out of the heating furnace and cooled. did.

タングステン板上の粉末を、実施例1と同様にしてX線
回折法により分析したところ、すべてリチウムに変化し
ていることがmgされた。
When the powder on the tungsten plate was analyzed by X-ray diffraction in the same manner as in Example 1, it was found that all of the powder had been converted to lithium (mg).

r発明の効果〕 本発明の製造方法によれば、原料として使用する窒化リ
チウム粉末の粒径を選択するととにより、任意の粒径を
有する金属リチウム粉末な得ることが可能であ勤、又、
従来得ることのできなかっ九粒径を有するものを得るこ
とが可能である。更に、製造装置が簡便なものであるた
めに、少量の金属リチ9ム粉末を、随時、容易に得るこ
とができるという利点を有している。
Effects of the Invention] According to the production method of the present invention, it is possible to obtain metallic lithium powder having an arbitrary particle size by selecting the particle size of the lithium nitride powder used as a raw material;
It is possible to obtain particles having a particle size of 9, which was previously impossible to obtain. Furthermore, since the manufacturing equipment is simple, it has the advantage that a small amount of metallic lithium powder can be easily obtained at any time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不活性ガス雰囲気中にお叶る本発明方法の一概
念因、第2図は同じく減圧下における本発明方法の一概
念図である。 1・−窒化リチウム粉末、2.7・・・石英管、3・・
反射板、4−加熱用沃素電球、 5・・・金属リチウム粉末、6・・・不活性ガス、き・
・・測温用熱電対保護管、9・・・皿、10・・・炉心
管、11・・・ヒータ、  12・・・保温用耐火物、
 13・・・水冷ジャケット、14・・・排気口。 ψ F 28−
FIG. 1 is a conceptual diagram of the method of the present invention which is carried out in an inert gas atmosphere, and FIG. 2 is a conceptual diagram of the method of the present invention which is also carried out under reduced pressure. 1.-Lithium nitride powder, 2.7...Quartz tube, 3.
Reflector, 4-Iodine bulb for heating, 5...Metal lithium powder, 6...Inert gas,
...thermocouple protection tube for temperature measurement, 9...dish, 10...furnace core tube, 11...heater, 12...refractory for heat retention,
13...Water cooling jacket, 14...Exhaust port. ψ F 28−

Claims (2)

【特許請求の範囲】[Claims] (1)  窒化リチウム粉末を、不活性ガス雰囲気中又
は減圧下において、加熱し、融着を防止しつつ熱分解せ
しめることを特徴とする金属リチウムの製造方法。
(1) A method for producing metallic lithium, which comprises heating lithium nitride powder in an inert gas atmosphere or under reduced pressure to thermally decompose it while preventing fusion.
(2)  熱分解温度が560〜700Cの範囲である
特許請求の範囲第1項記載の金属リチウム粉末の製造方
法。
(2) The method for producing metallic lithium powder according to claim 1, wherein the thermal decomposition temperature is in the range of 560 to 700C.
JP57081508A 1982-05-17 1982-05-17 Production of metallic lithium powder Pending JPS58199806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081508A JPS58199806A (en) 1982-05-17 1982-05-17 Production of metallic lithium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081508A JPS58199806A (en) 1982-05-17 1982-05-17 Production of metallic lithium powder

Publications (1)

Publication Number Publication Date
JPS58199806A true JPS58199806A (en) 1983-11-21

Family

ID=13748293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081508A Pending JPS58199806A (en) 1982-05-17 1982-05-17 Production of metallic lithium powder

Country Status (1)

Country Link
JP (1) JPS58199806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338622A3 (en) * 2006-10-13 2011-11-30 Fmc Corporation Stabilized lithium metal powder for li-ion application, composition and process.
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
RU2467829C2 (en) * 2007-05-16 2012-11-27 Фмк Корпорейшн STABILISED POWDER OF LITHIUM METAL FOR Li-ION APPLICATIONS, ITS COMPOSITION AND METHOD
US8980477B2 (en) 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980477B2 (en) 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US8753779B2 (en) 2004-04-15 2014-06-17 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US10003070B2 (en) 2004-04-15 2018-06-19 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
EP2338622A3 (en) * 2006-10-13 2011-11-30 Fmc Corporation Stabilized lithium metal powder for li-ion application, composition and process.
US10374228B2 (en) 2006-10-13 2019-08-06 Fmc Lithium Usa Corp. Stabilized lithium metal powder for li-ion application composition
RU2467829C2 (en) * 2007-05-16 2012-11-27 Фмк Корпорейшн STABILISED POWDER OF LITHIUM METAL FOR Li-ION APPLICATIONS, ITS COMPOSITION AND METHOD
US8377236B2 (en) 2007-05-16 2013-02-19 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process

Similar Documents

Publication Publication Date Title
US7964172B2 (en) Method of manufacturing high-surface-area silicon
NO330157B1 (en) Process and apparatus for producing high purity silicon
TW200914371A (en) Processing of fine silicon powder to produce bulk silicon
CN103143698A (en) Flowability testing method and device for zirconium base block amorphous alloy melt
JP4224453B2 (en) Rare earth metal-containing alloy production system
US9790580B1 (en) Methods for making bulk metallic glasses containing metalloids
JPH04505478A (en) Composite sample source evaporation device and evaporation method for alloy production
JPS58199806A (en) Production of metallic lithium powder
Chen et al. Thermodynamic properties and phase diagram of icosahedral Al x Li 3 Cu
TW201114955A (en) Methods of making an article of semiconducting material on a mold comprising particles of a semiconducting material
JP2013510243A (en) Nanoparticle production method and nanoparticle production apparatus
CN110453155A (en) A kind of spherical ferrozirconium eutectic superalloy and preparation method thereof
US3672879A (en) Tini cast product
JP3244252U (en) Metal vapor nucleation device for producing ultrafine powder materials by physical vapor phase method
Hu et al. Formation of non-equilibrium alloys by high pressure melt quenching
US3933990A (en) Synthesization method of ternary chalcogenides
US6235109B1 (en) Method of preparing crystalline or amorphose material from melt
JPS63111101A (en) Spheroidizing method for metal or alloy powder
JP2009078949A (en) Manufacturing method and manufacturing apparatus for sio powder
JP3313220B2 (en) Method and apparatus for producing metal slurry for casting
US3006734A (en) Process for preparing pure silicon
JP3134370B2 (en) Method for producing granular silicon polycrystal
JPS58188552A (en) Producing device of material solidified by quenching
JPS5891018A (en) Manufacture of fine nitride powder
Khan Reminiscent devitrification of the amorphous Co82B18 alloy