JPS58199799A - Liquid growth method of group 3-5 compound - Google Patents

Liquid growth method of group 3-5 compound

Info

Publication number
JPS58199799A
JPS58199799A JP8194982A JP8194982A JPS58199799A JP S58199799 A JPS58199799 A JP S58199799A JP 8194982 A JP8194982 A JP 8194982A JP 8194982 A JP8194982 A JP 8194982A JP S58199799 A JPS58199799 A JP S58199799A
Authority
JP
Japan
Prior art keywords
group
solution
liquid phase
growth
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8194982A
Other languages
Japanese (ja)
Inventor
Takashi Sugino
隆 杉野
Kota Kano
加納 剛太
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8194982A priority Critical patent/JPS58199799A/en
Publication of JPS58199799A publication Critical patent/JPS58199799A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve reproducibility and workability in liquid growth of a group III-V compd., by using a soln. containing dissolved group V elements in a multi- element alloy added with other metals to a base metal such as Ga, In or the like. CONSTITUTION:A two-element or multi-element alloy wherein >=1 kind among Al, Zn, Te, Cd, Sn, Ge, Si are added in a trace amt. in a base metal such as Ga, In, Ga-In or the like and elements of the group V such as As are both fluxed. A semiconductor laser of a group III-V compd. or the like is epitaxially grown in a liquid phase by using such soln. The variation in oscillation wavelength of the semiconductor laser or the like is reduced by the above-mentioned method. It is desirable to use the two-element or multi-element alloy after forming the same into roughly the same shape as the soln. phase in a boat for growth in the above-mentioned method.

Description

【発明の詳細な説明】 本発明はm−v族化合物坐尋−の液相成長法に関する。[Detailed description of the invention] The present invention relates to a method for liquid phase growth of m-v group compounds.

液相エピタキシャル成長法は発光ダイオードや半導体レ
ーザーの作製等に広く用いられ、現在これらの素子作製
に不可欠な結晶成長技術となっている。所望のエピタキ
シャル層を得るために溶液を構成する元素の割合、温度
を設定し、基板上に溶液を導き、液相エピタキシャル成
長が行なわ゛れる。この時、結晶の組成、不純物濃度を
再現性よく制御するためには、溶液構成の際、各成分の
秤量を再現性よく行なわなければならない。
Liquid phase epitaxial growth is widely used in the production of light emitting diodes and semiconductor lasers, and is currently an indispensable crystal growth technique for the production of these devices. In order to obtain a desired epitaxial layer, the ratio of elements constituting the solution and the temperature are set, the solution is introduced onto the substrate, and liquid phase epitaxial growth is performed. At this time, in order to control the crystal composition and impurity concentration with good reproducibility, it is necessary to weigh each component with good reproducibility when forming the solution.

しかし溶液を構成する物質の内、微少量加える物質に対
しては秤量を再現性よく行なうことは特に困難であり、
秤量のだめの所要時間も長くなる。
However, it is particularly difficult to reproducibly weigh substances that are added in very small amounts among the substances that make up the solution.
The time required for weighing is also increased.

ClA1!−V族混晶におけるG&中へのAfの添加量
のばらつきや、InGa −V族混晶におけるIn中へ
のGaの添加量のばらつきによって;成長した結晶のバ
ンドギャップ、格子定数等の物理量が変化する。又、■
−■族溶液溶液中ナーやアクセプター不純物を添加する
場合も微少量を秤量しなければならず、そのばらつきに
よって、作製する素子の特性が変化する。たとえば発光
ダイオードや半導体レーザー等では、発光1発振波長が
再現性よく制御できないということや発光出力1発光効
率1発振しきい値電流等のばらつきを招くことになる。
ClA1! -Due to variations in the amount of Af added to G& in the V group mixed crystal, and variations in the amount of Ga added to In in the InGa-V group mixed crystal; physical quantities such as the band gap and lattice constant of the grown crystal Change. Also, ■
- Even when adding a donor or acceptor impurity to the group solution, a very small amount must be weighed, and variations in this amount will change the characteristics of the fabricated device. For example, in light emitting diodes, semiconductor lasers, etc., the oscillation wavelength per emission cannot be controlled with good reproducibility, and variations in the threshold current per emission output and luminous efficiency per oscillation are caused.

本発明は以上のような従来の諸問題を解決するm−v族
化合物の液相成長方法を提供するものである。
The present invention provides a method for liquid phase growth of m-v group compounds that solves the conventional problems as described above.

本発明は、m−v族化合物の結晶成長を行なうだめの溶
液を構成する物質の内、母体となる(たとえばGa 、
 In )に先に微量添加物となる金属(たとえばhe
 、 Zn 、 Te 、 Cd 、 Sn 、 Ge
 、 Si等)を溶解した均一な溶液を作製し、それを
急冷して二元又は多元合金の固形物を作製する。この合
金の小量と■族、■族の元素を共に溶解して溶液を作成
してこの溶液を用いて液相成長を行なう方法である。
The present invention is directed to materials that serve as a host (e.g., Ga,
In) is first added with a trace additive metal (e.g. he
, Zn, Te, Cd, Sn, Ge
, Si, etc.) is prepared, and it is rapidly cooled to produce a solid binary or multi-component alloy. This is a method in which a small amount of this alloy is dissolved together with elements of groups 1 and 2 to prepare a solution, and this solution is used to perform liquid phase growth.

以下具体的実施例を述べる。Specific examples will be described below.

GaAs −GaAzAsレーザπを作製する際、溶液
計・ Ga中へのAIの添加量はGa 1 fに対して、クラ
ッド層用溶液では1.5m9.活性層用溶液では0.3
2mgである。成長ごとに毎回秤量を行なって、液相エ
ピタキシャル成長を行ないレーザーのウェハーを作製し
た場合のレーザーの発振波長は図に示すように、10ツ
トについて、804nm〜822nmまでばらつくが、
本発明の方法を用いてGa−ムlの合金を使用し、そこ
へGaAsを溶かし込んだ溶液を使った場合、発振波長
のばら“つきは1セツトにつき807〜81了nmと小
さくなる。ここでn型、p型不純物としてはそれぞれS
nとGeを使用し、これらは逐次秤量して添加した。成
長温度は各ロフト間で1℃以内に制御した。
When producing a GaAs-GaAzAs laser π, the amount of AI added to the solution meter and Ga is 1.5 m9. 0.3 for active layer solution
It is 2 mg. When a laser wafer is produced by liquid phase epitaxial growth by weighing each time it is grown, the laser oscillation wavelength varies from 804 nm to 822 nm for every 10 wafers, as shown in the figure.
When using the method of the present invention to use a Ga-mul alloy and a solution containing GaAs dissolved therein, the variation in oscillation wavelength becomes as small as 807 to 81 nm per set. The n-type and p-type impurities are S, respectively.
n and Ge were used, and these were weighed and added sequentially. Growth temperature was controlled within 1°C between each loft.

このような合金使用による液相成長法によれば溶液を構
成する上で再現性が向上すると共に、作業性も向上する
。本実施例ではGa−A/の合金を用いたが、Ga−A
/ −3nやGa−ム1−Geの合金の作製も考えられ
る。
According to the liquid phase growth method using such an alloy, the reproducibility in forming a solution is improved, and workability is also improved. In this example, Ga-A/ alloy was used, but Ga-A
/ -3n and Ga-1-Ge alloys may also be produced.

ここで作製する合金固形物は組成が全く均一である必要
はなく、場所的に不均一であってもよい。
The alloy solid material produced here does not have to have a completely uniform composition, and may be locally non-uniform.

例えば、高温で均一に溶解しているものでも、温度をさ
げて固形物にした時、最初に小量添加した成分が表面に
偏析することもある。このため、液相成長に使用するボ
ート内でめ溶液の均一度を増すため、作製する合金固形
物はボートの溶液だめの形状と同一のものが望ましい。
For example, even if the material is dissolved uniformly at high temperature, when the temperature is lowered to form a solid, the components added in small amounts at the beginning may segregate on the surface. Therefore, in order to increase the uniformity of the solution in the boat used for liquid phase growth, it is desirable that the alloy solid material to be produced has the same shape as the solution reservoir in the boat.

【図面の簡単な説明】[Brief explanation of drawings]

図は逐次メタルを秤量して溶液を構成して結晶成長を行
なったウエノ・−(Alと、結晶成長を行なったウェハ
ー(Blから作製した半導体レーザーの発振波長の分布
を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名A 
           B
The figure shows the distribution of oscillation wavelengths of semiconductor lasers fabricated from wafers (Al) and wafers (Bl) on which crystal growth was performed. Name of person Patent attorney Toshio Nakao and 1 other person A
B

Claims (2)

【特許請求の範囲】[Claims] (1)ガリウム、インジウム、ガリウム−インジウムの
いずれか1つと、アルミニウム、亜鉛、テルル、カドミ
ウム、錫、ゲルマニウム、シリコンの中の少くとも1つ
とからなる二元または多元合金に、■族元素を溶解した
溶液を用いて液相成長することを特徴とするm−v族化
合物の液相成長法。
(1) Group III elements are dissolved in a binary or multi-component alloy consisting of any one of gallium, indium, gallium-indium, and at least one of aluminum, zinc, tellurium, cadmium, tin, germanium, and silicon. 1. A method for liquid phase growth of m-v group compounds, characterized in that liquid phase growth is carried out using a solution of
(2)二元または多元合金を、成長用ボートの溶液法。(2) Solution method in a boat for growing binary or multi-component alloys.
JP8194982A 1982-05-14 1982-05-14 Liquid growth method of group 3-5 compound Pending JPS58199799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194982A JPS58199799A (en) 1982-05-14 1982-05-14 Liquid growth method of group 3-5 compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194982A JPS58199799A (en) 1982-05-14 1982-05-14 Liquid growth method of group 3-5 compound

Publications (1)

Publication Number Publication Date
JPS58199799A true JPS58199799A (en) 1983-11-21

Family

ID=13760742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194982A Pending JPS58199799A (en) 1982-05-14 1982-05-14 Liquid growth method of group 3-5 compound

Country Status (1)

Country Link
JP (1) JPS58199799A (en)

Similar Documents

Publication Publication Date Title
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
JPH02106982A (en) Inverted transparent substrate optoelectronic device and its manufacture
US4526632A (en) Method of fabricating a semiconductor pn junction
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
US4479222A (en) Diffusion barrier for long wavelength laser diodes
JP3211594B2 (en) Compound semiconductor crystal substrate
US4228455A (en) Gallium phosphide semiconductor device having improved electrodes
US4606780A (en) Method for the manufacture of A3 B5 light-emitting diodes
JPH08335715A (en) Epitaxial wafer and its manufacture
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JPS58199799A (en) Liquid growth method of group 3-5 compound
JPH055191B2 (en)
US4287527A (en) Opto-electronic devices based on bulk crystals of complex semiconductors
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
US4439399A (en) Quaternary alloy
JP3237408B2 (en) Method for manufacturing compound semiconductor crystal
EP0093569B1 (en) A method of liquid phase epitaxial growth
US4629519A (en) Forming magnesium-doped Group III-V semiconductor layers by liquid phase epitaxy
US20020139416A1 (en) Multi-element polycrystal for solar cells and method of manufacuturing the same
JP2000058904A (en) Epitaxial wafer and its manufacture as well as light emitting diode
JPH02110983A (en) Manufacture of light emitting semiconductor element
JP2853292B2 (en) Method and apparatus for liquid phase epitaxial growth of semiconductor crystal
US6890781B2 (en) Transparent layer of a LED device and the method for growing the same
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JP2804093B2 (en) Optical semiconductor device