JPS5819958B2 - Crucible for skull furnace - Google Patents
Crucible for skull furnaceInfo
- Publication number
- JPS5819958B2 JPS5819958B2 JP53070397A JP7039778A JPS5819958B2 JP S5819958 B2 JPS5819958 B2 JP S5819958B2 JP 53070397 A JP53070397 A JP 53070397A JP 7039778 A JP7039778 A JP 7039778A JP S5819958 B2 JPS5819958 B2 JP S5819958B2
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- molten metal
- melting
- skull
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【発明の詳細な説明】
本発明は活性金属または高融点金属等の溶解時に用いら
れるスカル炉用ルツボに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a skull furnace crucible used for melting active metals or high melting point metals.
スカル溶解は、酸素、窒素などの親和力の強い活性金属
の溶解法としてよ(知られており、通常の耐火材料で作
られた炉で溶解すると溶融活性金属と耐火材とが反応し
て溶融金属が汚染されるという問題を解決するために開
発されたものである。Skull melting is a method of melting active metals with a strong affinity for oxygen, nitrogen, etc. (known as skull melting).When melted in a furnace made of ordinary refractory materials, the molten active metals and refractory materials react and the molten metal is melted. It was developed to solve the problem of contamination.
スカル炉用ルツボは、一般にルツボの内壁にスカル層が
溶易に形成できる水冷型の金属性ルツボが用いられてお
り、溶製時にルツボからの汚染を完全に防止している。Crucibles for skull furnaces are generally water-cooled metal crucibles that can easily form a skull layer on the inner wall of the crucible, completely preventing contamination from the crucible during melting.
しかしながら、一方において高温の溶融金属あるいはス
カル層が水冷ルツボに直接に接触するために、ルツボ冷
却水への熱伝達量が多(なり、一般の溶解炉に比して熱
効率が極めて悪いという問題を抱えている。However, on the other hand, because the high-temperature molten metal or skull layer comes into direct contact with the water-cooled crucible, a large amount of heat is transferred to the crucible cooling water, resulting in the problem of extremely poor thermal efficiency compared to general melting furnaces. I'm holding it.
本発明者等は上記の問題点に対処して、スカル溶解本来
の目的を損うことなく熱効率を改善する方法について種
々検討した結果、ルツボ底部を除く内側壁に融点が高く
、断熱性の良い耐火材料を適当な厚さにライニングする
ことによシ熱効率を改善したスカル炉用ルツボを考案し
先に実用新案として出願(実願昭52−171146)
した。In order to address the above problems, the present inventors investigated various ways to improve thermal efficiency without impairing the original purpose of skull melting. He devised a crucible for skull furnaces with improved thermal efficiency by lining it with refractory material to an appropriate thickness, and filed an application as a utility model (Utility Model Application No. 171146/1989).
did.
その後さらに検討した結果、ライニングによる断熱効果
と併せて溶湯の攪拌による溶湯温度の均一化が熱効率の
改善に極めて効果のあることを見い出した。After further investigation, it was discovered that in addition to the heat insulating effect of the lining, equalizing the temperature of the molten metal by stirring the molten metal was extremely effective in improving thermal efficiency.
そこで溶製時に溶湯が充分攪拌でき得る水冷ルツボにつ
いて、さらに種々検討した結果、水冷ルツボの側壁周囲
に磁界発生コイルを配置し、ルツボ面に垂直方向の磁界
を発生させ、かつアーク電流がルツボの側壁に流れるよ
うにすれば、磁界とアーク電流成分との電磁気効果によ
り溶湯が充分に攪拌できることを見い出し本発明に至っ
た。Therefore, as a result of various studies on water-cooled crucibles that can sufficiently stir the molten metal during melting, we found that a magnetic field generating coil was placed around the side wall of the water-cooled crucible to generate a magnetic field perpendicular to the crucible surface, and the arc current was applied to the crucible. The inventors have discovered that if the molten metal is allowed to flow along the side wall, the molten metal can be sufficiently stirred by the electromagnetic effect of the magnetic field and the arc current component, leading to the present invention.
すなわち、本発明は金属製水冷ルツボの穴部を融点が高
く、金属溶湯との反応が生じにくいAl2O3、Cab
、 ZrO2、MgO,Y2O3,BeOの単独または
これを混合した耐火材料で5〜30龍の範囲の厚さにラ
イニングし1.かつルツボ側壁周囲に磁界発生用コイル
を配置したことを特徴とするスカル炉用ルツボである。That is, the present invention uses Al2O3, Cab, etc., which have a high melting point and are difficult to react with molten metal, in the hole of a metal water-cooled crucible.
, lined with a refractory material of ZrO2, MgO, Y2O3, BeO alone or a mixture thereof to a thickness in the range of 5 to 30 mm.1. The crucible for a skull furnace is characterized in that a magnetic field generating coil is arranged around the side wall of the crucible.
本発明においては、前述した先願ルツボのようにルツボ
側壁上部にまで耐火材料をライニングするとアーク電流
が側壁へ流れなくなり、電磁気効果がなく溶湯の攪拌が
できなくなるため、ライニング部分は図示するごとき範
囲に限定してアーク電流が側壁へ流れるようにしたもの
である。In the present invention, if the refractory material is lined up to the upper part of the side wall of the crucible as in the earlier crucible mentioned above, the arc current will not flow to the side wall, there will be no electromagnetic effect, and the molten metal will not be stirred. The arc current flows only to the side wall.
またさらにライニング材質、ライニング厚さおよびライ
ニング面積がルツボの構成上重要な意味をもっている。Furthermore, the lining material, lining thickness, and lining area have important meanings in the construction of the crucible.
すなわち、ライニング材としては融点が高く、活性金属
溶湯との反応が生じにくい耐火材料、Al2O3,Ca
O9zrO29MgO9Y20.ll、BeOなどが好
適であり、またライニングの厚さは5〜30朋の範囲が
良好であることを実験的に確認している。In other words, as a lining material, refractory materials that have a high melting point and are difficult to react with active metal molten metal, Al2O3, Ca
O9zrO29MgO9Y20. It has been experimentally confirmed that a lining thickness of 5 to 30 mm is suitable.
またルツボ側壁上部の電気の導通用部分はプラズマ電流
が十分流れ得る面積、すなわち通常プラズマ電流I(ア
ンペア)を目安にして%×1以上となる面積(mm2)
、(例えば2000Aの場合には101000i以上の
面積)を確保し、他の部分をライニングすることが望ま
しい。In addition, the electrically conductive part on the upper side wall of the crucible is an area where the plasma current can flow sufficiently, that is, an area (mm2) that is %x1 or more based on the normal plasma current I (ampere).
, (for example, an area of 101000i or more in the case of 2000A), and it is desirable to line the other parts.
図は本発明スカル炉用ルツボの一例を示す図である。The figure shows an example of a crucible for a skull furnace according to the present invention.
水冷ルツボ2の底部に耐火材料4をライニングし、かつ
ルツボの側壁周囲に磁界発生用コイル3を設置した構造
の水冷ルツボである。This water-cooled crucible has a structure in which the bottom of the water-cooled crucible 2 is lined with a refractory material 4, and a magnetic field generating coil 3 is installed around the side wall of the crucible.
本発明用水冷ルツボによる溶解に際しては溶解原料が溶
融しはじめたころに、磁界発生用コイル3に直流電流を
流すとルツボ面に垂直な磁界が発生する。During melting using the water-cooled crucible of the present invention, when a direct current is passed through the magnetic field generating coil 3 when the melted raw material begins to melt, a magnetic field perpendicular to the crucible surface is generated.
次にトーチ1と溶湯8間のアーク電流がルツボ側壁に流
れると、これに直角なアーク電流成分と磁界との電磁気
効果により溶湯に攪拌力が生じて溶湯温度の均一化がは
かられ、結果的には熱効率が大きく改善できる。Next, when the arc current between the torch 1 and the molten metal 8 flows to the side wall of the crucible, a stirring force is generated in the molten metal due to the electromagnetic effect between the arc current component perpendicular to this and the magnetic field, and the temperature of the molten metal is made uniform. As a result, thermal efficiency can be greatly improved.
また溶湯とルツボの・間にはスカル層9が形成されるた
め溶湯の汚染は完全に防止できる。Furthermore, since a skull layer 9 is formed between the molten metal and the crucible, contamination of the molten metal can be completely prevented.
次に本発明ルツボを用いた場合の熱効率を実施例により
詳細に説明する。Next, the thermal efficiency when using the crucible of the present invention will be explained in detail using examples.
実施例 1
図に示した水冷型銅製ルツボ(容器内径800mm)を
用いて純クロムの溶解を行った。Example 1 Pure chromium was melted using a water-cooled copper crucible (container inner diameter: 800 mm) shown in the figure.
まずルツボ底をMgO:A1203=8=2の組成の耐
火材料を用いて厚さ20yran程度にライニングした
。First, the bottom of the crucible was lined with a refractory material having a composition of MgO:A1203=8=2 to a thickness of about 20 yran.
このルツボ内に純クロムの原料を装入し、炉内を真空に
排気した後Arガスで置換しプラズマアークを着弧して
溶解精練を行った。A raw material of pure chromium was charged into this crucible, and after the inside of the furnace was evacuated to vacuum, it was replaced with Ar gas and a plasma arc was ignited to perform melting and scouring.
なお溶解中は磁界発生用コイルに3OAの直流電流を流
し、30ガウスの磁界を発生させ、溶湯の攪拌を行なQ
た。During melting, a direct current of 3OA is passed through the magnetic field generation coil to generate a magnetic field of 30 Gauss and stir the molten metal.
Ta.
つづいて鋳込んで純クロム鋳塊を得たが、鋳塊は肌荒れ
もなく、寸だクランクの発生もなく極めて健全であった
、まだルツボのライニング面には未溶解原料が残ってお
り、その上に厚さ数1ommのスカル層が形成されてお
り耐火物との反応はまったく生じていないことがわかっ
た。Next, a pure chromium ingot was obtained by casting, but the ingot was extremely sound with no roughening of the surface and no slight cranking.However, unmelted raw material still remained on the lining surface of the crucible, and It was found that a skull layer with a thickness of several 10 mm was formed on top, and no reaction with the refractory occurred at all.
次に本発明ルツボ使用による熱効率および電力原単位の
改善効果を調べるために、ルツボ冷却水の受熱量および
電力原単位を調べた。Next, in order to investigate the effect of improving the thermal efficiency and electric power consumption by using the crucible of the present invention, the amount of heat received by the crucible cooling water and the electric power consumption were examined.
なお比較のために従来ルツボ(ライニングしていないル
ツボ)および先願ルツボ(実願昭52−171146)
についても同様に調べた。For comparison, a conventional crucible (unlined crucible) and a prior application crucible (Utility Application 171146/1982)
We also investigated in the same way.
その結果を第1表に示す。The results are shown in Table 1.
同表にみられるごとく本発明ルツボを用いることにより
冷却水の吸入口と排出口との温度差は先願ルツボと同程
度であるが1 kg溶解当りの電力使用量(電力原単位
)は先願ルツボよりもさらに少いことがわかる。As shown in the table, by using the crucible of the present invention, the temperature difference between the cooling water inlet and the outlet is about the same as that of the earlier application crucible, but the power consumption per 1 kg melting (power unit) is lower. It turns out that it is even less than the Wish Crucible.
すなわち本発明ルツボは先願ルツボにくらべて熱効率が
さらによいことを示している。In other words, this shows that the crucible of the present invention has better thermal efficiency than the crucible of the prior application.
実施例 2
純度99.9%のzr02耐火物をルツボ底にライニン
グ(厚さ10mm)した図に示すごとき水冷型銅製ルツ
ボを用いて、純チタンの原料を装入し炉内を真空に排気
した後Arガスで置換し、プラズマアークを着弧して溶
解精練を行った。Example 2 Using a water-cooled copper crucible as shown in the figure, in which the bottom of the crucible was lined with ZR02 refractory with a purity of 99.9% (thickness: 10 mm), a raw material of pure titanium was charged and the inside of the furnace was evacuated to a vacuum. Afterwards, the gas was replaced with Ar gas, and a plasma arc was ignited to perform melting and scouring.
なお磁界コイルには50Aの直流電流を流し、50ガウ
スの磁界を発生させて溶湯の攪拌を行った。Note that a direct current of 50 A was passed through the magnetic field coil to generate a magnetic field of 50 Gauss to stir the molten metal.
得られた鋳塊は極めて健全であり、純度は99.9%以
上であった。The obtained ingot was extremely sound and had a purity of 99.9% or more.
本実施例においてもルツボのライニング面には未溶解原
料が充分に残っていることが確認された。In this example as well, it was confirmed that a sufficient amount of undissolved raw material remained on the lining surface of the crucible.
次に本発明ルツボの改善効果を調べるために実施例1と
同様に溶解時のルツボ冷却水の受熱量および電力区単位
を調べた。Next, in order to examine the improvement effect of the crucible of the present invention, the amount of heat received by the crucible cooling water during melting and the unit power area were examined in the same manner as in Example 1.
なお比較のために従来のルツボおよび先願ルツボ(実願
昭52−171146)についても同様に調べた。For comparison, a conventional crucible and a crucible of a prior application (Utility Model Application No. 171146/1983) were also examined in the same manner.
その結果を第2表に示す。The results are shown in Table 2.
同表にみられるごとく純チタン溶解の場合でも本発明ル
ツボを用いることにより冷却水の受熱量は先願ルツボと
同程度であるが電力使用量は明らかに少なく、熱効率が
さらに良好であることを示している。As shown in the same table, even in the case of pure titanium melting, by using the crucible of the present invention, the amount of heat received by the cooling water is about the same as that of the crucible of the prior application, but the amount of electricity used is clearly lower, and the thermal efficiency is even better. It shows.
以上のように、本発明のスカル炉用ルツボは従来のルツ
ボに(らべて製品の品質を損なうことな(熱効率を改善
することができ、溶解時間の短縮あるいはプラズマ出力
の低減など経済的価値大ななる発明である。As described above, the skull furnace crucible of the present invention can improve thermal efficiency (compared to conventional crucibles) without impairing product quality, and has economical value such as shortening melting time or reducing plasma output. This is a great invention.
また実施例においてはプラズマアークを熱源とする純ク
ロム、純チタンの溶解例を示したが、このほかタングス
テン、ニオブ、タンタル、モリブデンなどの高融点金属
の溶解用としても本発明ルツボを用いることができる。In addition, although the example shows an example of melting pure chromium and pure titanium using a plasma arc as a heat source, the crucible of the present invention can also be used for melting high-melting point metals such as tungsten, niobium, tantalum, and molybdenum. can.
図は本発明ルツボの実施例を示す図である。
1・・・・・・トーチ、2・・・・・・金属製水冷ルツ
ボ、3・・・・・・攪拌用磁気コイル、4・・・・・・
耐火材料、5・・・・・・冷却水、6・・・・・・冷却
水吸入口、7・・・・・・冷却水排出口、8・・・・・
・溶湯、9・・・・・・スカル層。The figure is a diagram showing an embodiment of the crucible of the present invention. 1...Torch, 2...Metal water-cooled crucible, 3...Magnetic coil for stirring, 4...
Fireproof material, 5... Cooling water, 6... Cooling water inlet, 7... Cooling water outlet, 8...
- Molten metal, 9...Skull layer.
Claims (1)
の反応が生じに(いAl2O3,CaO9ZrO2Mg
O,Y2O3,BeOの単独またはこれを混合した耐火
材料で5〜30龍の範囲の厚さにライニングし、かつル
ツボ側壁周囲に磁界発生用コイルを配置したことを特徴
とするスカル炉用ルツボ。1. The bottom of the metal water-cooled crucible has a high melting point and is difficult to react with the molten metal (Al2O3, CaO9ZrO2Mg).
A crucible for a skull furnace, characterized in that it is lined with a refractory material of O, Y2O3, and BeO alone or in a mixture thereof to a thickness in the range of 5 to 30 mm, and a magnetic field generating coil is arranged around the side wall of the crucible.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53070397A JPS5819958B2 (en) | 1978-06-13 | 1978-06-13 | Crucible for skull furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53070397A JPS5819958B2 (en) | 1978-06-13 | 1978-06-13 | Crucible for skull furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54161506A JPS54161506A (en) | 1979-12-21 |
JPS5819958B2 true JPS5819958B2 (en) | 1983-04-20 |
Family
ID=13430267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53070397A Expired JPS5819958B2 (en) | 1978-06-13 | 1978-06-13 | Crucible for skull furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5819958B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2045553B1 (en) * | 2006-07-20 | 2012-04-25 | Kenzo Takahashi | Melting furnace with agitator |
US7651656B2 (en) | 2006-07-20 | 2010-01-26 | Kenzo Takahashi | Melting furnace with agitator and agitator for melting furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3717713A (en) * | 1971-02-18 | 1973-02-20 | M Schlienger | Arc furnace crucible |
-
1978
- 1978-06-13 JP JP53070397A patent/JPS5819958B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3717713A (en) * | 1971-02-18 | 1973-02-20 | M Schlienger | Arc furnace crucible |
Also Published As
Publication number | Publication date |
---|---|
JPS54161506A (en) | 1979-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3205352B2 (en) | Silicon purification method and apparatus | |
US6144690A (en) | Melting method using cold crucible induction melting apparatus | |
JPS5827937A (en) | Moving arc plasma reactor for chemical and metallurgical use | |
JPH05195102A (en) | Method for fusing aluminotitanium alloy in ceramic crucible | |
US3469968A (en) | Electroslag melting | |
US3417808A (en) | Melting and casting of titanium | |
US5244488A (en) | Direct smelting process with a thermal plasma | |
US4169722A (en) | Aluminothermic process | |
JPS5819958B2 (en) | Crucible for skull furnace | |
JP4263366B2 (en) | Method and apparatus for melting rare earth magnet scrap | |
JP2004125246A (en) | MELTING METHOD OF HIGH PURITY Si AND MELTER USED THEREFOR | |
Kroll et al. | Melting and Casting Zirconium Metal | |
JPH0639635B2 (en) | Electroslag remelting method for copper and copper alloys | |
JPS5940210B2 (en) | Melting method of titanium alloy for hydrogenation | |
JP3087277B2 (en) | Cold wall crucible melting device and melting method | |
JPH05295470A (en) | Method for deoxidizing titanium or titanium alloy | |
JPH0364423A (en) | Method for melting intermetallic compound ti-al-base alloy | |
JPH04362144A (en) | Induction melting method | |
JPH01180775A (en) | Vacuum arc remelting method for steel | |
US1416584A (en) | Method of preserving electric-furnace linings | |
JPS63212061A (en) | Manufacture of pure titanium ingot | |
US877518A (en) | Process of producing alloys or mixtures of metals with purifying or seasoning elements. | |
JPH0116289B2 (en) | ||
JPH03247726A (en) | Plasma melting method for active metal | |
JPS63303016A (en) | Vacuum arc melting method |