JPS58199139A - Manufacture of composite coating pipe - Google Patents

Manufacture of composite coating pipe

Info

Publication number
JPS58199139A
JPS58199139A JP57081391A JP8139182A JPS58199139A JP S58199139 A JPS58199139 A JP S58199139A JP 57081391 A JP57081391 A JP 57081391A JP 8139182 A JP8139182 A JP 8139182A JP S58199139 A JPS58199139 A JP S58199139A
Authority
JP
Japan
Prior art keywords
tube
zirconium
composite
cladding
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57081391A
Other languages
Japanese (ja)
Inventor
鶴岡 重雄
今橋 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57081391A priority Critical patent/JPS58199139A/en
Publication of JPS58199139A publication Critical patent/JPS58199139A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子炉燃料要素に係わり、特にジルコニウム合
金被覆管の内壁面上にジルコニウム障壁を般ける複合型
被覆管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nuclear reactor fuel elements, and more particularly to a composite cladding that includes a zirconium barrier on the inner wall surface of the zirconium alloy cladding.

現在、原子炉の核燃料は、管、又は棒のような種々の容
器に充填されている。一般にこれら容器は、原子炉内で
の使用状況から(a)耐食性が優れていること、(b)
非反応性であること、(C)熱伝導性が良好なこと、(
d)ある程度の高温まで、靭性で延性が良好であること
、(e)中性子吸収断面積が小さいこと等が要求される
。以下、これら原子炉の核燃料を充填する容器を燃料被
覆管と呼ぶ。
Currently, nuclear fuel for nuclear reactors is packed into various containers such as tubes or rods. In general, these containers have (a) excellent corrosion resistance, (b) from the usage conditions in nuclear reactors.
be non-reactive; (C) have good thermal conductivity; (
d) It is required to have good toughness and ductility up to a certain high temperature, and (e) it is required to have a small neutron absorption cross section. Hereinafter, the containers filled with nuclear fuel for these nuclear reactors will be referred to as fuel cladding tubes.

ジルコニウム合金は、中性子吸収断面積が小さく、且つ
、靭性で延性も良好である。また、この合金は原子炉冷
却水に対する耐食性が比較的良好であることから、核燃
料生成物として広く使用されている。
Zirconium alloys have a small neutron absorption cross section and good toughness and ductility. Additionally, this alloy has relatively good corrosion resistance against nuclear reactor cooling water, and is therefore widely used as a nuclear fuel product.

しかし、原子炉の負荷変動が大きい場合、核燃料から放
出される核燃料生成物(ヨウ素ガス等)によって、ジル
コニウム合金は内面から腐食される。そして、被4f内
に充填されている核燃料ベレットからの応力が作用して
、被膚菅に応力腐食割れを生ずる。
However, when the load fluctuations of a nuclear reactor are large, the zirconium alloy is corroded from the inside by nuclear fuel products (such as iodine gas) released from the nuclear fuel. Then, stress from the nuclear fuel pellets filled in the covering 4f acts, causing stress corrosion cracking in the covering duct.

かかる瞳1!を防止する対策として、燃料と被覆管との
間に各種の金−Rdlkを設けることが試みられている
。これらの中で、4褪な純度のジルコニウムをジルコニ
ウム合金管の内壁に内張すした複合型被覆管が酸も有望
視されている。ジルコニウム、11&の厚みは、被(管
厚みの約5〜30%である。シルコニタムは、ジルコニ
ウム合金に比べて軟かいDで、核燃料要素内の¥部ひず
みが減少し、応力腐食割れを防止する。また、寵大な中
性子捕獲ペナルティ、熱伝達ペナルティ、又は材料の非
両立性を惹起しない点も優れた特徴である。第1図ハシ
ルコニウムII璧を有することの有効性を示す図で、横
軸、縦軸にはそれぞれ被Iff肉厚方向位置(■)、応
力δ(規格ilりがとってあり、Aがジルコニウム障壁
を有する被覆管、Bがジルコニウム障壁のない被覆管の
場合を示している。この図から、厚み75μmのジルコ
ニウム障壁の存在により、被覆管に加わる応力が大幅に
緩和されることが分る。
It takes 1! As a measure to prevent this, attempts have been made to provide various types of gold-Rdlk between the fuel and the cladding tube. Among these, a composite cladding tube in which the inner wall of a zirconium alloy tube is lined with zirconium of a 4-grade purity is also considered to be promising. The thickness of zirconium, 11&, is approximately 5-30% of the tube thickness.Sirconitum is softer than zirconium alloys, reducing strain within the nuclear fuel element and preventing stress corrosion cracking. It is also an excellent feature that it does not cause large neutron capture penalties, heat transfer penalties, or material incompatibilities. , the vertical axis shows the position of the cladding tube with a zirconium barrier (■) and the stress δ (standard il), respectively. This figure shows that the presence of the 75 μm thick zirconium barrier significantly alleviates the stress applied to the cladding tube.

このような複合被覆管は、ジルコニウム障壁の厚みが所
望する寸法に形成されていることが極めて重要である。
In such a composite cladding tube, it is extremely important that the thickness of the zirconium barrier is formed to a desired dimension.

したがって、ジルコニウム障壁厚みを非破壊で測定する
必要がある。しかし、従来から複合管一般の厚み測定に
実施されている渦電流、又は超音波法が適用できない欠
点がある。それは、ジルコニウム合金管とジルコニウム
障壁は、物理的性質が極めて類似していること、また、
その境界が金属結合されているためである。そのため、
ジルコニウム合金管とジルコニウム障壁境界部に音響的
効果を設け、この境界部からの音響的効果からジルコニ
ウム障壁厚み計測可能な燃料被横管がある。また、音響
的効果を介在させた複合波4fは素管から塑性Un工さ
れるが、音響境界も素管に追随して変形し、燃料被覆管
としての特性を損わないように、且つ、音響的境界は燃
料被覆管のジルコニウム障壁厚み非破壊計測可能なよう
に、連続して均一に分布する必要がある。しかし、両端
面に開放して形成された音響的介在物は、素管の塑性加
工につれて変形するものの、開放端近傍から領次加工方
向に押し出され、一部流出し、断続的となり、且つ、不
均一分布となるので、連続的なジルコニウム障壁厚み計
測ができなく、なる。
Therefore, it is necessary to non-destructively measure the zirconium barrier thickness. However, there is a drawback that the eddy current or ultrasonic methods conventionally used to measure the thickness of composite pipes in general cannot be applied. That is, the physical properties of the zirconium alloy tube and the zirconium barrier are very similar, and
This is because the boundaries are metal bonded. Therefore,
There is a fuel cladding tube in which an acoustic effect is provided at the boundary between the zirconium alloy tube and the zirconium barrier, and the thickness of the zirconium barrier can be measured from the acoustic effect from this boundary. In addition, although the composite wave 4f with an acoustic effect is plastically unprocessed from the raw pipe, the acoustic boundary also deforms following the raw pipe, so that the characteristics as a fuel clad pipe are not impaired, and The acoustic boundaries must be continuous and uniformly distributed to allow for non-destructive measurement of the zirconium barrier thickness of the fuel cladding. However, although the acoustic inclusions formed with open ends on both end faces deform as the raw pipe undergoes plastic processing, they are pushed out from near the open ends in the regional processing direction, some of them flow out, and become intermittent. Since the distribution becomes non-uniform, continuous measurement of the zirconium barrier thickness becomes impossible.

そのため、ジルコニウム#噴厚みを連続的に非破壊計測
するには、音響的境界は複合型被覆素管の両端面に4出
しないように形成介在させる必要力Iある。
Therefore, in order to continuously and non-destructively measure the thickness of zirconium injection, it is necessary to form an acoustic boundary on both end faces of the composite coated pipe so that it does not protrude.

本発明の目的は、ジルコニウム障壁厚み非破壊計測o7
能なように設けた音響的境界が、Rfの両4rfjJK
IIl出しないように、また、素管の塑性変形に追随し
て連続的に、且つ、均一に分布するように形成介在させ
、更に、音響的境界以外の境界は金属接合する複合型燃
料被覆管を得ることKある。
The purpose of the present invention is to measure zirconium barrier thickness non-destructively.
The acoustic boundaries created to allow both Rf and RfjJK
Composite fuel cladding tubes are formed so that they do not leak out, are continuously and evenly distributed following the plastic deformation of the raw tube, and are metal-bonded at boundaries other than acoustic boundaries. It is possible to obtain.

本発明の特徴は、ジルコニウム障壁厚み非破壊計測可能
なように設は友音響的境界が、燃料被覆管を製造する塑
性加工において、両端面に露出しないように、且つ、均
一に分布するように形成介在させ得る複合型燃料被覆素
管を提供するにある。
The characteristics of the present invention are that the zirconium barrier thickness is set so as to be non-destructively measurable, and the acoustic boundary is uniformly distributed so that it is not exposed on both end faces during plastic working for manufacturing fuel cladding tubes. The object of the present invention is to provide a composite fuel-clad raw tube that can be formed by intervening.

すなわち、本発明は、第2図に模式的に示すように、ジ
ルコニウム合金外管−1とジルコニウム内管−2境界部
に、両端面に6出しないように音響的介在物−3を形成
させた後、一体化して複合型燃料被覆管を作製する。ま
た、第2図において、音4的境界を有しない部分は、ジ
ルコニウム障壁厚みを非破壊測定できない部分であるか
ら、被覆管完成後切断除去するので第3図に模式的に示
すリング−4のように、ジルコニウム合金又はジルコニ
ウムの代替材が使用できる。このとき、リング−4と音
響的境界以外は金属結合することが必要であり、リング
−4は拡管効率を向上させるため端面の凹んだ形状が良
い。
That is, as schematically shown in FIG. 2, the present invention forms an acoustic inclusion 3 at the boundary between the zirconium alloy outer tube 1 and the zirconium inner tube 2 so as not to protrude from both end faces. After that, they are integrated to create a composite fuel cladding tube. In addition, in Fig. 2, the part that does not have a ring-4 boundary is a part where the zirconium barrier thickness cannot be measured non-destructively, so it is cut and removed after the cladding is completed. As such, zirconium alloys or zirconium substitutes can be used. At this time, it is necessary to perform metallic bonding with the ring 4 except for the acoustic boundary, and the ring 4 preferably has a recessed end face in order to improve tube expansion efficiency.

一般に、内管を拡張して外管と一体化する拡管法に、ロ
ーラ拡管法、爆発拡管法がある。しかし、ローラ拡管法
は管内面を圧延するため、硬化及びひずみを生ずる。ま
た、4尭拡管法は内径の小さい管にはa用が難かしいこ
と、内管と外管の接触が軸方向に対して十分に得られる
かどうか疑問である等の問題がある。そこで、本発明で
は、静的に均一な圧力を付加するゴム拡管法により、ジ
ルコニウム合金外管とジルコニウム内管境界両端面に、
屡出しをいように音響的晴界を介在させた後、一体化し
て、複合型燃料被覆素管を作製する。このように、ジル
コニウム合金外管とジルコニウム内管境界部に、両端面
に4出しないように形成された音響的介在物は、素管の
塑性UQ工の場合でも流出することなく、素管に追随し
て変形するため、連続的に、且つ、均一に分布すること
ができる。
In general, there are two types of pipe expansion methods that expand an inner pipe and integrate it with an outer pipe: a roller pipe expansion method and an explosive pipe expansion method. However, since the roller tube expansion method rolls the inner surface of the tube, it causes hardening and distortion. In addition, the four-way tube expansion method has problems such as difficulty in applying it to tubes with small inner diameters, and doubts as to whether sufficient contact between the inner tube and the outer tube can be obtained in the axial direction. Therefore, in the present invention, by using a rubber tube expansion method that statically applies uniform pressure, the boundary between the zirconium alloy outer tube and the zirconium inner tube is
After intervening an acoustic clear field, they are integrated to produce a composite fuel-clad raw tube. In this way, the acoustic inclusions formed at the boundary between the zirconium alloy outer tube and the zirconium inner tube so that they do not protrude on both end faces do not flow out into the tube even in the case of plastic UQ processing of the tube. Since it deforms accordingly, it can be distributed continuously and uniformly.

し念がって、本発明により製造したジルコニウム障債型
燃料被榎ifは、(2)債後ジルコニウム障壁厚み非破
壊計測が滞りなく遅怖できる。
In view of the above, the zirconium barrier type fuel if manufactured according to the present invention allows (2) non-destructive measurement of the zirconium barrier thickness after bonding without any delay.

実施例 (1)  外管として、am−1aa−切削仕上げした
外径が140.5im、内径が69.6 、Wのジルカ
ロイ中空ビレット、内管として、同じく溶製−&td−
切削仕上げし念外径が69.4■、内径が4&4鴫の高
純度ジルコニウム中空ビレットの外衣面に、円周を4等
分した位#4個所に幅5m、深さ0.3 wmの溝を連
続して形成し、この嘴に粒径100μmの黒鉛粉末をメ
チルセルローズと混合して塗込み乾燥した。
Example (1) The outer tube is an am-1aa machined Zircaloy hollow billet with an outer diameter of 140.5 mm and an inner diameter of 69.6 mm, and the inner tube is also made by melting and td.
A groove with a width of 5 m and a depth of 0.3 wm is placed on the outer surface of a high-purity zirconium hollow billet with an outer diameter of 69.4 mm and an inner diameter of 4 & 4 mm, which has been cut and finished. Graphite powder with a particle size of 100 μm mixed with methyl cellulose was applied to the beak and dried.

次に、黒鉛粉末が両4i[IKIIl出しないような形
状にして、且つ、ジルカロイ外管−1及びジルコニウム
内管−2との接@面とゴム拡管’TDなように工夫した
形状の軟d411!IJ/グー4を用意し、これらを第
4図に模式図に示したように組合せて設置した。次いで
髪型プレスを用いてゴム拡管1、ジルカロイ外管−1と
ジルコニウム内管−2との境界部の1両端面を軟鋼リン
グ−4で覆い、外部に4出しないように黒鉛−3を介在
させると共に、ジルカロイ外管−11ジルコニウム内管
−2及び軟鋼リング−3の境界は金属結合させた複合型
核料被覆管を作製した。
Next, the soft d411 was shaped so that the graphite powder would not come out on both sides, and the contact surface with the Zircaloy outer tube-1 and the zirconium inner tube-2 was shaped like a rubber expanded tube 'TD. ! IJ/Goo 4 was prepared and installed in combination as shown schematically in FIG. Next, using a hairstyle press, cover both end faces of the boundary between the expanded rubber tube 1, the Zircaloy outer tube 1, and the zirconium inner tube 2 with a mild steel ring 4, and interpose graphite 3 so as not to expose the outer tube 1 to the outside. At the same time, a composite nuclear material cladding tube was fabricated in which the boundaries between the Zircaloy outer tube-11, the zirconium inner tube-2, and the mild steel ring-3 were metallurgically bonded.

しかる後、熱間押出し一冷間圧延一焼鈍くの工程で、外
径が1252閣、内径が10.80■、肉厚がα86■
の内部に1lIs■、厚み約5μmの黒鉛介在物を有す
る複合型核燃料被覆管を作製し、両端の軟鋼部は切断除
去した。
After that, through the steps of hot extrusion, cold rolling, and annealing, the outer diameter is 1252 mm, the inner diameter is 10.80 mm, and the wall thickness is α86 mm.
A composite nuclear fuel cladding tube having graphite inclusions of 1 lIs and approximately 5 μm thick inside was fabricated, and the mild steel portions at both ends were cut and removed.

本発明による長さ4,000mの複合型燃料被覆管を、
周波数10MH!の水浸超音波パルス反射法で計測し、
被覆管からの反射エコーをブラウン管に明察し之結釆を
5g5図に示した。また、信号出力をレコーダに記録さ
せた。第5図(a)は介在物のない反射エコー、(b)
は介在物からの反射エコーであり、どちらの反射エコー
も明確に明察された。このようにして計測したジルコニ
ウム障壁厚み分布を第6図に示す。、(2)実施例(1
)ではジルコニウム内管外表面に黒鉛を介在させた。(
2)で、は、ジルカロイ外管内表面に介在させた後、実
施例(1)と同じ方法で複合燃料被覆管を作製したが、
測定結果もほぼ同様であった。
A composite fuel cladding tube with a length of 4,000 m according to the present invention,
Frequency 10MH! Measured using water immersion ultrasonic pulse reflection method,
The reflected echo from the coated tube was clearly observed on a cathode ray tube, and the result is shown in Figure 5g5. In addition, the signal output was recorded on a recorder. Figure 5 (a) is a reflected echo without inclusions, (b)
are reflected echoes from inclusions, and both reflected echoes were clearly seen. The zirconium barrier thickness distribution measured in this manner is shown in FIG. , (2) Example (1
), graphite was interposed on the outer surface of the zirconium inner tube. (
In 2), after interposing Zircaloy on the inner surface of the outer tube, a composite fuel cladding tube was prepared in the same manner as in Example (1).
The measurement results were also almost the same.

以上、実施例では黒鉛について述べたが、黒鉛以外であ
っても、音響的幼果を有する物質の介在物であれば、ジ
ルコニウム障壁厚みに非破壊計測ができる。したがって
、本発明はジルコニウム障壁厚み非破壊計測可能な複合
被覆管の製造法すべてに適用できる。
Although graphite has been described in the above embodiments, non-destructive measurement of the zirconium barrier thickness can be performed even if the inclusion is of a material other than graphite that has an acoustic seedling. Therefore, the present invention is applicable to all methods of manufacturing composite cladding tubes that allow non-destructive measurement of the zirconium barrier thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆管の応方図、第2、第3図は被覆管の形状
を示す図、努4図は岨合せ構造を示す図、第5図は反射
エコーを示す図、第6図は非破壊測定したジルコニウム
障壁厚み分布を示す図である。 1・・・ジルカロイ外管、2・・・シルコニ’)ムnf
、3・・・黒鉛、4・・・軟鋼リング、5・・・拡管媒
体ゴム、6(JL) (8) 第4目 毛 5日
Figure 1 is an orientation diagram of the cladding tube, Figures 2 and 3 are diagrams showing the shape of the cladding tube, Figure 4 is a diagram showing the mating structure, Figure 5 is a diagram showing reflected echoes, and Figure 6 is a diagram showing the shape of the cladding tube. is a diagram showing the zirconium barrier thickness distribution measured non-destructively. 1...Zircaloy outer tube, 2...Sirconi') mnf
, 3... Graphite, 4... Mild steel ring, 5... Tube expansion medium rubber, 6 (JL) (8) 4th eye hair 5 days

Claims (1)

【特許請求の範囲】[Claims] 1、 ジルコニウム合金から成る被覆管内懺面上に設け
たジルコニウム障壁厚みを非破壊測定可能なるような音
響的効果を有する境界が、両端面に露出しないように介
在させることを特徴とした複合被覆管の$1!造法。
1. A composite cladding tube made of a zirconium alloy, characterized in that a boundary having an acoustic effect that enables non-destructive measurement of the thickness of the zirconium barrier provided on the inner surface of the cladding tube is interposed so as not to be exposed on both end faces. $1! Construction method.
JP57081391A 1982-05-17 1982-05-17 Manufacture of composite coating pipe Pending JPS58199139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081391A JPS58199139A (en) 1982-05-17 1982-05-17 Manufacture of composite coating pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081391A JPS58199139A (en) 1982-05-17 1982-05-17 Manufacture of composite coating pipe

Publications (1)

Publication Number Publication Date
JPS58199139A true JPS58199139A (en) 1983-11-19

Family

ID=13744997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081391A Pending JPS58199139A (en) 1982-05-17 1982-05-17 Manufacture of composite coating pipe

Country Status (1)

Country Link
JP (1) JPS58199139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918989A (en) * 1988-03-30 1990-04-24 Compagnie Europeenne Du Zirconium - Cezus Ultrasonic method of measuring the thickness of the plating on a metal tube, the corresponding apparatus and its application to Zr plated alloy tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918989A (en) * 1988-03-30 1990-04-24 Compagnie Europeenne Du Zirconium - Cezus Ultrasonic method of measuring the thickness of the plating on a metal tube, the corresponding apparatus and its application to Zr plated alloy tubes

Similar Documents

Publication Publication Date Title
US4735768A (en) Fuel rod for a nuclear reactor fuel assembly
JPS5736017A (en) Manufacture of sheath for nuclear fuel element
JPS6361989A (en) Manufacture of composite coated tube for nuclear fuel
JPS58199139A (en) Manufacture of composite coating pipe
US3108936A (en) Fuel element for nuclear reactor
US4728491A (en) Cladding tube of a zirconium alloy especially for a nuclear reactor fuel rod and method for fabricating the cladding tube
JPS6313125B2 (en)
JPH01192405A (en) Manufacture of metal tube
JPS6137924A (en) Uniform cooling method of tubular body
JPS6056425A (en) Manufacture of metallic tubular member
RU2223561C2 (en) Method for manufacturing three-layer tubular fuel elements
Ray Extrusion of a Complex Shape Through A Round Die
JPS5847290A (en) Liner cladding tube for nuclear fuel and its fabrication
Simonson ZIRCONIUM--SUMMARY REPORT ON DEVELOPMENT OF TUBES WITH INTERNAL SPIRALLED RIBS
Greenspan et al. BERYLLIUM RESEARCH AND DEVELOPMENT IN THE AREA OF COMPOSITE MATERIALS. Quarterly Progress Report to WADC for the Period October 1, 1958 to January 1, 1959
Hood et al. THE CONVERSION OF EXTRUDED BERYLLIUM TUBING TO A CLOSE TOLERANCE BORE TUBE. Laboratory Report 1812. Includes Appendices: B. THE TROUBLE WITH BERYLLIUM. C. NITRIC FUME SCRUBBING
JP2500165B2 (en) Method for manufacturing fuel cladding tube
Simonson ZIRCONIUM--SUMMARY REPORT ON DEVELOPMENT OF 3$ sub 4$ DIAMETER HOUSING TUBE WITH INTERNAL STRAIGHT RIBS
Nelles Extrusion development for nuclear fuels at Chalk River
Tuffin et al. Tubular stainless steel-zircaloy transition joints prepared by tandem extrusion
JPS6031088A (en) Nuclear fuel composite coated pipe and manufacture thereof
Bieler et al. Voltage drop and temperature measurements during tube closure by resistance welding
Polakowski Manufacture of crack-free, small zircaloy tubing by drawing on a ductile, disposable core
JPS6031277B2 (en) Method of manufacturing nuclear fuel elements
JPS6060584A (en) Composite type coated pipe and manufacture thereof