JPS5847290A - Liner cladding tube for nuclear fuel and its fabrication - Google Patents

Liner cladding tube for nuclear fuel and its fabrication

Info

Publication number
JPS5847290A
JPS5847290A JP56146915A JP14691581A JPS5847290A JP S5847290 A JPS5847290 A JP S5847290A JP 56146915 A JP56146915 A JP 56146915A JP 14691581 A JP14691581 A JP 14691581A JP S5847290 A JPS5847290 A JP S5847290A
Authority
JP
Japan
Prior art keywords
tube
liner
cladding
nuclear fuel
cladding tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56146915A
Other languages
Japanese (ja)
Inventor
務 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP56146915A priority Critical patent/JPS5847290A/en
Publication of JPS5847290A publication Critical patent/JPS5847290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Extrusion Of Metal (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 1一 本発明は原子炉の炉心に使用する核燃料要素、特に、核
燃料を内部に収納するライナー被覆管ならびにその製造
方法に係り、被覆管の内管となるライナー管の管厚を非
破壊検査により全長に亘り測定可能な被覆管を提供する
ことを目的とするものである。
Detailed Description of the Invention 1. The present invention relates to a nuclear fuel element used in the core of a nuclear reactor, particularly a liner cladding tube for storing nuclear fuel therein, and a method for manufacturing the same. The object of the present invention is to provide a cladding tube whose thickness can be measured over its entire length by non-destructive testing.

従来、核分裂原子炉の炉心は特公昭55−33037号
公報にも記載される如く、ペレット状。
Conventionally, the core of a nuclear fission reactor is in the form of pellets, as described in Japanese Patent Publication No. 55-33037.

棒状などの核燃料を被覆管内に収納し、こil、を多数
支持格子を利用して一定間隔に格子状に集合、組立を行
ない、その適当数を組み合わせて炉心として形成してい
るが、こ\で核燃料を収納する前記被覆管は、外部を流
れる冷却材、減速材≦こ対し非反応性であり、かつ内部
の気体である放射性核分裂生1戊吻に対し、非反応性で
外部への漏出を防止する機能を有している。そのため該
被覆管の材料は通常、ジルコニウムあるいはその合金な
ど特殊な材料で構成されており、運転中の化学的反応に
対処することができるが、その反面運転中には機械的に
種々の問題をも惹起する。即ち、核燃料2− ペレットと被覆管の相互作用(ペレット、クラッド、イ
ンクラクション、以下PCI作用という)により被覆管
の脆い割れ目が、核分裂反応時の熱により生じた核燃料
ペレットの割れ目と被覆管の交差する部分または核燃料
ペレット端部に応力集中して生じ、被覆管のとの部分が
破損し核分裂生成物が漏出するという危険性がある。
Nuclear fuel in the form of rods is stored in a cladding tube, and the fuel is gathered and assembled at regular intervals using a support grid, and an appropriate number of them are combined to form a reactor core. The cladding tube, which houses the nuclear fuel, is non-reactive with respect to the coolant and moderator flowing outside, and is non-reactive with respect to the radioactive fission product, which is the gas inside, and does not leak to the outside. It has a function to prevent Therefore, the material of the cladding is usually made of special materials such as zirconium or its alloys, which can cope with chemical reactions during operation, but on the other hand, it can cause various mechanical problems during operation. It also causes In other words, brittle cracks in the cladding occur due to the interaction between nuclear fuel pellets and the cladding (pellet, cladding, injection, hereinafter referred to as PCI action), and the intersection between the cracks in the nuclear fuel pellet and the cladding caused by the heat during the nuclear fission reaction. There is a risk that stress will be concentrated at the end of the cladding tube or the end of the nuclear fuel pellet, resulting in damage to the cladding tube and the leakage of fission products.

そこで、こ1+、に対処fるため1・こは特に被覆管の
母管内面番こ管全体の管厚【こ対し10′I10程度の
厚みで冶金的に結合されるライナー管の管厚が管全寵(
こわたり均一な強度でなければならないが、従来、管全
長に対しライナーの管厚を測定する手段がなく、現在で
は両管端を切断し、金、目試験により母管部とライナ一
部の組織の異なりを利用しライナー厚を測定するという
破壊試験に依存する外なく、管中央部の管厚、偏肉は事
実上、検査できないのが現状である。
Therefore, in order to deal with this problem, 1. In particular, the thickness of the entire inner diameter tube on the inner surface of the cladding tube is 10'. Kan Zenju (
Conventionally, there was no way to measure the thickness of the liner over the entire length of the pipe, and currently both ends of the pipe are cut and the thickness of the main pipe and part of the liner is measured using a metal and eye test. Currently, the pipe thickness and uneven wall thickness at the center of the pipe cannot be inspected, as the liner thickness is measured using the difference in structure, which relies on destructive testing.

即ち、従来の被覆管は、第1図(こ図示する如く、外管
であるジルコニウム2または4の合金製母管(a)内へ
内管であるジルコニウム製のライナー管(bl3− を嵌挿し、熱間押出して両管の組立体を形成し、これを
圧延等の加工処理によって所定径の被覆管tc)として
製造することが行なわわ、ていた。(前記特公昭55−
330375号公報第10欄33〜44行参照)従って
管径、特tこライナー管の管厚が管全し番こ対し均一か
どうか不明であっても前記破壊試験1.とよる管端部の
検査のみで使用せざるを得す、管厚の不向一部分のあっ
たり合、前記pc1作用による局所破j員がいきおい多
くならざるを得なかった。
That is, in the conventional cladding tube, as shown in FIG. , hot extrusion was carried out to form an assembly of both tubes, and this was manufactured as a cladding tube tc) of a predetermined diameter by processing such as rolling.
(See Publication No. 330375, Column 10, Lines 33-44) Therefore, even if it is unclear whether the pipe diameter, especially the thickness of the liner pipe, is uniform throughout the pipe number, the destructive test 1. However, if there is a part of the pipe with an unsuitable thickness, there is no choice but to use it only for inspecting the end of the pipe, and the local fracture caused by the PC1 action increases.

本発明は、か\る従来の欠陥に檻み、前記被覆管の製造
時!こ工夫した加工を施すことによって製造後の被覆管
のライナ一部分の厚さ及び偏肉を非破壊的に測定するこ
とを可能ならしめるべく、内管となる内管に加工的予め
軸方向に多数の短かいスリット孔等の欠損部を)lう成
し、これを外管となる母管内に挿入した後、熱間押出し
、圧延等lこより両者を冶金的に結合せしめ所要管径の
ライナーピ皮覆管を得る方法ならびにこね1区よって得
られるスリットを有1−だライナーを内側に備えた核燃
料=4− 用彼看管を特徴とするものである。
The present invention solves these conventional defects when manufacturing the cladding tube! In order to make it possible to non-destructively measure the thickness and wall thickness deviation of a part of the liner of the cladding tube after manufacturing by applying this devised processing, the inner tube, which will become the inner tube, is pre-processed in large numbers in the axial direction. After inserting this into the main tube that will become the outer tube, the two are metallurgically joined by hot extrusion, rolling, etc. to form a liner skin of the required diameter. The present invention is characterized by a method for obtaining a cladding tube and a nuclear fuel cladding tube provided with a slit liner inside obtained by kneading.

以下、本発明の具体的実1順の態様について説明する。Hereinafter, specific embodiments of the present invention will be described.

第2図は本発明製造方法における工程の概要を示す図で
あって、例えばジルコニウム2又は4からなる母管(1
)と同じく例えばジルコニウムからなるライナー管(2
1の2つの素管を使用し、前記母管illを外管として
その内部に後者のライナー管(2)を内管として挿入し
、次いでとねら複合さね、た両管を熱間押出し、圧延等
公知の工程lこよりライナー管(2)を向−に喪延して
両者を冶金的tこ結合1−1所要管径に縮1条し、ライ
ナ一部分の最終]阜みが被覆管全体管厚の絡1o%H呈
IWである皮覆・び(4)を製造する工程は従来と変る
ところはないが、ここで重要なことは、前記ライナー管
+21 iz加工りこ先立ち、予め第2図、第3図に示
を如く軸方向に、lfB酷い比較的短かいスリット状の
孔(3)を適当な間隔で欠損しておくことである。
FIG. 2 is a diagram showing an outline of the steps in the manufacturing method of the present invention, and shows, for example, a main tube (1
), for example, a liner tube made of zirconium (2
Using the two raw tubes of No. 1, the latter liner tube (2) is inserted into the mother tube as an outer tube and the latter liner tube (2) is inserted as an inner tube, and then the two tubes are hot extruded. The liner tube (2) is stretched in the direction through a known process such as rolling, and both are metallurgically connected to reduce the tube diameter to the required diameter. The process of manufacturing the liner pipe (4), which is 10% H IW with pipe thickness, is the same as before, but what is important here is that the liner pipe is As shown in FIG. 3, relatively short slit-shaped holes (3) with severe lfB are cut out at appropriate intervals in the axial direction.

しかるとき、前述の製造方法によって製品化するにあた
り、前記孔(3)の欠損部は製品化さねた、波5− 覆管において、その管厚が第4図に示す如く局部的な減
少部分(5)となることが必要であり、肉厚の減少部分
が10%程度であれば、被覆管全長シこ亘って超音波肉
厚測定により第5図(イ)の如くスパイラルに走査して
精度よく検知でき、第5図(ロ)図示の如く記録紙上に
表示でき、各部のライナー管1享(h、)(h2)  
・を容易に測定することができる。
In this case, when the product is manufactured by the above-mentioned manufacturing method, the defective part of the hole (3) is not manufactured into a product. (5), and if the decrease in wall thickness is about 10%, use ultrasonic wall thickness measurement to scan the entire length of the cladding tube in a spiral as shown in Figure 5 (a). It can be detected accurately and displayed on the recording paper as shown in Figure 5 (b), and the liner tube 1 (h, ) (h2) of each part
・Can be easily measured.

なお、前記孔(3)の欠損部については、細長い比較的
短かいスリット状としたが、円形の孔などライナーのな
い凹所でもよく、この欠損部の大きさ。
Note that although the defective portion of the hole (3) is shaped like a relatively short slit, it may be a recess without a liner, such as a circular hole, and the size of the defective portion may vary.

間隔は製品化した被覆管の全長にわたって十分に肉厚測
定できるよう番こする程度となす必要がある。
The spacing needs to be just enough to measure the wall thickness over the entire length of the manufactured cladding tube.

以上は、本発明製造方法の1実施例番こついてであるが
、要は、本発明にあっては、ライナー管(2)に加工前
番こ予め軸方向tこ多数の短かいスリット状孔等の欠損
部を形成し、製品化後も、この欠損;■は管厚が局部的
に減少した部分として残ることが重要であり、母管(1
)lこライナー管(2)を挿入し、両者を冶金的に結合
し、かつ所定管径シこ縮径中るだめの手段は、前記熱間
押出し、圧延等の方法に限−6= られるものではなく公知の方法はすべて使用可能で、本
発明に包含さねるものである。
The above is an example of the manufacturing method of the present invention, but the point is that in the present invention, the liner pipe (2) is pre-processed with a large number of short slit holes in the axial direction. It is important that defects such as
) The means for inserting the liner pipe (2), metallurgically bonding the two, and reducing the pipe diameter to a predetermined diameter is limited to methods such as hot extrusion and rolling. All known methods can be used and are encompassed by the present invention.

また、本発明方法によるとき、前記加工前番こ予め設け
たライナー管の欠損部は加工後も残っているので、本発
明の本来の目的であるライナ一部分の前記PCI作用の
改善効果は一見、疑問が残るが、ライナーの前記欠損部
が彼覆管内面番こおいて局部的に欠1員しているにすぎ
ないのでPCI作用は無視できる程度である。
In addition, when using the method of the present invention, the defective portion of the liner tube provided in advance before processing remains even after processing, so the improvement effect of the PCI action of a portion of the liner, which is the original purpose of the present invention, does not appear at first glance. Although some doubts remain, the PCI effect is negligible since the defective portion of the liner is only a localized defect in the inner surface of the cladding tube.

これは一般的番こライナーの厚みは設計強度計算」−1
含めないのが通常であり、また彼覆管内に収納するペレ
ット状の核燃料の大きさに比べ、ライナー欠損部は十分
に小さく出来るからである。即ち、ライナー欠損部の大
きさは、前記ペレットの日間長さtこ対して十分小さく
、軸方同番こ対して細しく形成することlこよりPCI
作用は回避できるのである。何故ならば、前記の如く被
覆管の脆い割れは、ペレットの割ね、目または端部と、
被覆面との交差部に集中することが知らねでいるが、ラ
イナーの欠;置部が比較的小さけ相、ばペレットの割7
− れ目または端部と被覆管のライナー欠損部とは必らずし
も直接交差することがないからである。また軸方向シこ
対しては、欠損部を前述の如く細長くスリット状としだ
のはライナー厚測定の精度を上げるためと、ペレットの
割れ目は、管壁に沿って発生するのは断面方向番こ発生
するの番こ比較し、熱勾配が小さいためそれ程、細かく
割れないからである。(第6図参照) 更に、PCI作用回避の別の策として被覆管内面に長手
方向シこ細い溝を刻んだ所謂リブ付被覆管が提案されて
いるが、前記本発明の欠損部をリブ付被覆管と同様形状
に近い形状番こすることも有効である。これは、とのリ
ブ付被覆管は、くぼみ輪廓の形状を適当に変更すること
によって、応力集中や、静的摩擦割れの発生による破損
前【こ降伏点に達し、被覆管が塑性変形を起し、破損を
防雨することが知られでいるのであって、このことは本
発明ライナー欠損部が、PCI作用の悪影響のないこと
を示すものである。
This is the thickness of a general banko liner calculated by design strength"-1
This is because it is normally not included, and the liner defect can be made sufficiently small compared to the size of the pellet-shaped nuclear fuel stored in the cladding tube. That is, the size of the liner defective portion is sufficiently small compared to the daily length t of the pellet, and the size of the liner defective portion is formed to be thinner than the same length in the axial direction.
The effects can be avoided. This is because, as mentioned above, brittle cracks in the cladding tube are caused by splits, eyes, or edges of the pellet.
Although it is not known that the liner is concentrated at the intersection with the coated surface, the missing part of the liner is relatively small and the percentage of the pellet is 7%.
- The groove or end of the liner does not necessarily intersect directly with the liner defect in the cladding. In addition, in the axial direction, the reason why the defect is made into a long and thin slit shape as described above is to improve the accuracy of liner thickness measurement, and the cracks in the pellet occur along the pipe wall in the cross-sectional direction. This is because the thermal gradient is small compared to the one where it occurs, so it does not break into as many small pieces. (See Figure 6) Furthermore, as another measure to avoid the PCI effect, a so-called ribbed cladding tube in which a narrow groove is carved in the longitudinal direction on the inner surface of the cladding tube has been proposed. It is also effective to rub a shape similar to that of the cladding tube. This is because by appropriately changing the shape of the ribbed cladding, it is possible to prevent stress concentration and static friction cracking before failure (when the yield point is reached and the cladding undergoes plastic deformation). However, the liner defects are known to be rain proof against damage, indicating that the liner defects of the present invention are free from the adverse effects of PCI action.

以上、詳述した如く、本発明被覆管は、ライナ8− 一管に加工前予め軸方同番こ多数の短かいスリット状孔
等の欠損部を形成したことを特徴とし、加工後も、前記
欠損部が残るようにすること番こより、超音波肉厚測定
により従来の如く被覆管を破壊することなく、しかも全
長にわたり管厚を測定するが可能であると共に、更シこ
、これシこよりPCI作用を十分回避でき、より均斉で
、かつ安全な核燃料要素を提供することができると共G
こその製造は極めて効果的であり、良好な製品を製造す
る上に頗る好適である。
As described above in detail, the cladding tube of the present invention is characterized in that the liner 8 has a number of short slit-like holes of the same number axially formed in advance before processing, and even after processing, By ensuring that the defect portion remains, it is possible to measure the tube thickness over the entire length without destroying the cladding tube as in the conventional method by ultrasonic wall thickness measurement. It is possible to sufficiently avoid PCI effects and provide a more symmetrical and safer nuclear fuel element.
This production is extremely effective and is highly suitable for producing good products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の核燃料用ライナー被覆管の製造工程概要
図、第2図は本発明ライナー仮覆管の製造工程概要図、
第3図(イ)(ロ)は加工前のライナー管の一部を示す
正面図及びA −A’断面図、第4図(イ)(ロ)は加
工後の被覆管の管厚を示す軸方向及び断面方図、第5図
(イ)(ロ)は超音波管厚測定方法を示す走査状況説明
図及び記録状況説明図、第6図はペレット核燃料の割れ
状況説明図である。 (1)・・・・・母管。 9− (2)・・・・・・ライナー管。 (3)・・・・・スリット状孔。 (41・・・・・・・・・・被覆管。 (5)・・・・・ 局部的減少部分。 特許出噸人   原子燃料工業株式会社=10− ¥3目(イ) LA・ 琴3困(口〕 ¥4旧)     $4距ν) / 華6図 (イ) $f卯口) −す山刃向 琴を旧
FIG. 1 is a schematic diagram of the manufacturing process of a conventional liner cladding tube for nuclear fuel, and FIG. 2 is a schematic diagram of the manufacturing process of a temporary liner cladding tube of the present invention.
Figures 3 (a) and (b) are front views and A-A' sectional views showing part of the liner tube before processing, and Figures 4 (a) and (b) show the thickness of the cladding tube after processing. The axial and cross-sectional views, FIGS. 5(A) and 5(B) are explanatory views of the scanning situation and the recording situation showing the ultrasonic tube thickness measurement method, and FIG. 6 is an explanatory view of the cracking situation of the pellet nuclear fuel. (1)・・・Mother tube. 9- (2)...Liner pipe. (3)...Slit-like hole. (41......Claying tube. (5)... Locally reduced portion. Patent issuer Nuclear Fuel Industry Co., Ltd. = 10- ¥3 (a) LA Koto 3 Trouble (mouth) ¥4 old) $4 distance ν) / Hana 6 picture (a) $f Uguchi) -Suyamaba mukokin old

Claims (1)

【特許請求の範囲】 1、 母管からなる外管内Eこライナー管を内装してな
るライナー被覆管であって、前記ライナー管は、その軸
方向に適宜間隔をおいて形成された軸方向lこ延びる多
数の短かいスリット状孔などの欠損部を有して、被覆管
の軸方向にわたり、局部的な管厚減少品分を存在せしめ
ていることを特徴とする非破壊検査により全長にわたり
ライナー管の管厚測定可能な核燃料用ライナー被覆管。 9、核燃料を内部に収納する被覆管を製造するにあたり
、内管となるライナー管に加工前予め軸方向に多数の短
かいスリット状孔等の欠損部を形成し、外管となる母管
内に前記ライナー管を唾入した後、熱間押出し、圧延等
により両者を冶金的に結合し、かつ所要管径に成形する
ことを特徴とする核燃料用ライナー被覆管の製造方法。
[Scope of Claims] 1. A liner-clad tube having an inner inner liner tube consisting of a mother tube, wherein the liner tube has an axial liner tube formed at appropriate intervals in the axial direction. Non-destructive testing revealed that the liner has defects such as a large number of short slit-like holes that extend over the entire length of the cladding tube, resulting in the presence of localized areas of reduced tube thickness in the axial direction of the cladding tube. A liner cladding tube for nuclear fuel that allows the thickness of the tube to be measured. 9. When manufacturing a cladding tube that stores nuclear fuel inside, a large number of short slit-shaped holes or other defects are formed in the axial direction in the liner tube, which will become the inner tube, in advance, and then inside the main tube, which will become the outer tube. A method for producing a liner cladding tube for nuclear fuel, which comprises: inserting the liner tube, then metallurgically bonding the liner tubes together by hot extrusion, rolling, etc., and forming them into a required tube diameter.
JP56146915A 1981-09-16 1981-09-16 Liner cladding tube for nuclear fuel and its fabrication Pending JPS5847290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146915A JPS5847290A (en) 1981-09-16 1981-09-16 Liner cladding tube for nuclear fuel and its fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146915A JPS5847290A (en) 1981-09-16 1981-09-16 Liner cladding tube for nuclear fuel and its fabrication

Publications (1)

Publication Number Publication Date
JPS5847290A true JPS5847290A (en) 1983-03-18

Family

ID=15418436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146915A Pending JPS5847290A (en) 1981-09-16 1981-09-16 Liner cladding tube for nuclear fuel and its fabrication

Country Status (1)

Country Link
JP (1) JPS5847290A (en)

Similar Documents

Publication Publication Date Title
JP5614313B2 (en) Standard specimen for nondestructive inspection and its manufacturing method
JPS5847290A (en) Liner cladding tube for nuclear fuel and its fabrication
US4720624A (en) Non-uniform resistance heating tubes
US6557421B2 (en) Mandrel supported tensile test to evaluate weld bonding
JP3005844B2 (en) Method for forming metal phase test body of metal tubular sample material
JPH01192405A (en) Manufacture of metal tube
JPS6144143A (en) Zirconium alloy coated pipe and manufacture
US4631167A (en) Method for the production of a nuclear reactor assembly and assembly obtained by this method
EP0704855B1 (en) Method for fabricating end plugs for nuclear fuel rods
Aungst Ultrasonic Testing of Heavy-walled Zircaloy Tubing
RU2228550C2 (en) Method for manufacturing fuel elements and fuel assemblies
Beck et al. Irradiations of U-20Pu-10Fs Alloy Fuel Rods
JPS61223580A (en) Nuclear fuel rod for nuclear reactor
Bieler et al. Voltage drop and temperature measurements during tube closure by resistance welding
Meservey Temperature measurement on Zircaloy-clad fuel pins during high temperature excursions
Louthan Jr Destructive Evaluation of Irradiated Zircaloy Sheathing
JPS58165084A (en) Zilconium liner tube for nuclear fuel
Burdg et al. THE DEVELOPMENT AND TESTING OF THE UO $ sub 2$ FUEL ELEMENT SYSTEM. PROGRESS REPORT FOR PERIOD MAY 15-AUGUST 31, 1959
CN116625562A (en) Real-time monitoring method for residual stress distribution inside 3D printing optical fiber preform
Doman et al. IN-REACTOR MONITORING OF THE ZIRCALOY-2 PRTR PRESSURE TUBES
Pankaskie IN-REACTOR MONITORING OF ZIRCALOY-2 PRTR PRESSURE TUBES, PART III. JULY 1963-NOVEMBER 1963
JPS6148873B2 (en)
Schaffer THE BURSTING TEST METHOD AND ITS APPLICATION IN TESTING HAPO URANIUM FUEL ELEMENTS
Cochrun et al. The Effect of Longitudinal Markings on the Bursting Strength of Zircaloy-2 Tubing
Simonson ZIRCONIUM--SUMMARY REPORT ON DEVELOPMENT OF TUBES WITH INTERNAL SPIRALLED RIBS