JPS5819862A - Manufacture of electrode for lead storage battery - Google Patents

Manufacture of electrode for lead storage battery

Info

Publication number
JPS5819862A
JPS5819862A JP56120287A JP12028781A JPS5819862A JP S5819862 A JPS5819862 A JP S5819862A JP 56120287 A JP56120287 A JP 56120287A JP 12028781 A JP12028781 A JP 12028781A JP S5819862 A JPS5819862 A JP S5819862A
Authority
JP
Japan
Prior art keywords
powder
electrode
silicone
active material
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56120287A
Other languages
Japanese (ja)
Other versions
JPS6322414B2 (en
Inventor
Katsuhiro Takahashi
勝弘 高橋
Keiichi Watanabe
啓一 渡辺
Naoto Hoshihara
直人 星原
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56120287A priority Critical patent/JPS5819862A/en
Priority to US06/398,656 priority patent/US4548835A/en
Priority to EP82303760A priority patent/EP0070718B1/en
Priority to DE8282303760T priority patent/DE3277485D1/en
Publication of JPS5819862A publication Critical patent/JPS5819862A/en
Publication of JPS6322414B2 publication Critical patent/JPS6322414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the utilization rate of an active material by packing a supporting body with both the active material and a powder, which is obtained by making a core powder in contact with a dispersion prepared by dispersing silicone into a disperse midium before the mixture is dried and crushed. CONSTITUTION:As an original solution, a cold-vulcanized silicone rubber emulsion containing a stabilized silicone rubber is prepared by using one kind of liquid. Next, the original solution is diluted with water,and a carbon powder obtained by carrying out 100-200 mesh sieving is kneaded into the diluted original solution. Next, the carbon powder moistened with the solution by stiring is dropped onto a high-speed rotary disk, and the carbon powder cores are dried while being separted. After that, thus obtained carbon powder is added to a paste prepared by kneading lead powder, sulfuric acid and water together, and the mixture paste is applied to a lead alloy grid before the grid coated with the mixture paste is dried, thereby making a pasted electrode. As a result, the diffusion path of electrolyte into the electrode body is secured due to the porous elastic particles excisting in the porous matter. Consequently, the utilization rate of the active material can be increased.

Description

【発明の詳細な説明】 本発明は、鉛蓄電池用電極の改良に関するもので、電極
の多孔体中に多孔質の弾性゛粒子を存在させ、電極体内
への電解液の拡散の経路を確保して活物質の利用率を向
上させるとともに、上記弾性粒子の弾性で充放電時の活
物質の膨張、収縮のストレスを吸収し、活物質構造の長
期に亘る安定性を確保することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electrode for a lead-acid battery, in which porous elastic particles are present in the porous body of the electrode to ensure a diffusion path for electrolyte into the electrode body. In addition to improving the utilization rate of the active material, the elasticity of the elastic particles absorbs the stress of expansion and contraction of the active material during charging and discharging, and the purpose is to ensure long-term stability of the active material structure. .

本発明は、分散媒にシリコーンを分散させたシリコーン
分散液とその分散媒中で固体を保つ芯用粉末とを接触さ
せ、こnを乾燥、粉砕することによって得らnる粉末を
活物質とともに支持体に充填することを特徴とする。
In the present invention, a silicone dispersion liquid in which silicone is dispersed in a dispersion medium is brought into contact with a core powder that remains solid in the dispersion medium, and the powder obtained by drying and pulverizing the core powder is combined with an active material. It is characterized by being filled into a support.

多孔体電極の活物質利用率の向上には、一般に多孔体内
部への電解液の十分な拡散が必要であることは言うまで
もないが、とくに鉛蓄電池では、電解液中の硫酸が活物
質であるために、拡散の影響は大きく、急放電になるは
どその傾向は強い。
It goes without saying that improving the active material utilization rate of porous electrodes generally requires sufficient diffusion of the electrolyte into the porous body, but especially in lead-acid batteries, the sulfuric acid in the electrolyte is the active material. Therefore, the influence of diffusion is large, and there is a strong tendency for sudden discharge to occur.

このような観点から、一般に利用率を向上するために、
活物質の充填密度を低下する方法がとらnるが、その方
法では、活物1質粒子同志の結合か弱3ベーコ・ 〈なり、高多孔度であるほど寿命が短く、なる。この欠
点を補なう1つとして、5102、ガラス粉末などの多
孔性物質を活物質中に混入し、見掛は上密に充填する方
法もあるが、活物質は充放電中に大きな体積変化を示し
、真比重で見ても充放電後の正負そnぞnの活物質はP
 b O22−5cc/4 ル#Pb  18,3cc
1モルから放電生成物PbSO4禰、9cq1モルへと
そnぞれ1.93倍、2.67倍と大きな変化をするの
で、剛体粒子の混入ではその歪は吸収できず、やはり活
物質の微細化を促す結果となる。
From this perspective, in order to generally improve the utilization rate,
One method is to reduce the packing density of the active material, but in this method, the bonds between the active material particles are weakly 3 Beco, and the higher the porosity, the shorter the life. One way to compensate for this drawback is to mix a porous material such as 5102 or glass powder into the active material and fill it up apparently densely, but the active material undergoes a large volume change during charging and discharging. In terms of true specific gravity, the positive and negative active materials after charging and discharging are P.
b O22-5cc/4 Le #Pb 18,3cc
Since 1 mol of discharge products PbSO4 and 9cq 1 mol change by 1.93 times and 2.67 times, respectively, the distortion cannot be absorbed by mixing rigid particles, and the fine particles of the active material This results in the promotion of

゛本発明は、このような活物質多孔体中への液の拡散の
経路を確保しつつ、同時に上記剛体ではなく、弾力性の
多孔体を形成し、この歪の吸収まで目的を達成しようと
するものである。弾性体と言えば、単純にゴムという発
想になるが、単にゴムの微粒子だけでは電解液の拡散の
促進には役立たず、いかに多孔質でかつ弾力性の微粉末
を形成するかが重要になってくる。
゛The present invention aims to achieve the purpose of absorbing this strain by ensuring a path for liquid diffusion into the active material porous body and at the same time forming an elastic porous body instead of the above-mentioned rigid body. It is something to do. When we think of an elastic body, we simply think of rubber, but fine rubber particles alone are not useful for promoting the diffusion of electrolyte, and it is important to form a fine powder that is both porous and elastic. It's coming.

本発明者らは、分散媒にシリコーンを分散した・分散液
と前記分散媒中で固体を保つ芯になる粉末特開昭58−
 19粍2(2) とを接触させ、これを乾燥することによって、上記目的
に合致する弾力性シリコーン多孔体を備える粉末を容易
に得られることを見出した。
The present inventors have developed a dispersion liquid in which silicone is dispersed in a dispersion medium, and a powder serving as a core that maintains a solid state in the dispersion medium.
It has been found that a powder having an elastic porous silicone material that meets the above purpose can be easily obtained by contacting the silicone powder with the silicone powder and drying it.

このような粉末を得るには、油性シリコーン、水性エマ
ルジョンなどにまずシリコーンゴムを形成する触媒を加
えて、長鎖の重合度105〜106の乾燥などにより除
去する方法があるが、実際には、ゴム化条件と粉末の安
定性の合致するものは少なく、またゴム化の状態も不均
一になりやすい。そこでさらには、長鎖のシリコーンゴ
ム化の反応を進めて安定化された1液性常温加硫型シリ
コーンゴムの水性エマルジョンなどの1液性エマルジヨ
ンが適切である。この場合にはミ副反応生成物はなく、
水の乾燥によって、極めて多孔質で弾力性に富むシリコ
ーンの高分子層が混合した粉末の上に形成される。しか
も、一般に高い撥水性を有する材料でありながら、液に
対する浸透性をかなり有しており、その程度は、乾燥す
る時点の液性を6 ベ一二 調整することによシ選択できる。たとえばNaOHでp
H14以上にすると、強度も強くやや膨潤性を持った多
孔体となり、pH14以上程度では膨潤性は少ないが強
い弾性を示し、pH1以下の強酸性では弾力性、結合力
はやや弱いが、膨潤性に富み液の拡散に適した性質を示
す。
To obtain such a powder, there is a method of first adding a catalyst for forming silicone rubber to an oil-based silicone, water-based emulsion, etc., and then removing it by drying to a long chain polymerization degree of 105 to 106. There are few cases in which the rubberization conditions match the stability of the powder, and the state of rubberization tends to be uneven. Therefore, a one-component emulsion such as a one-component cold-vulcanizable aqueous emulsion of silicone rubber stabilized by proceeding with a reaction to form a long-chain silicone rubber is suitable. In this case, there are no side reaction products,
Upon drying of the water, a highly porous and elastic polymeric layer of silicone forms over the mixed powder. Moreover, although the material generally has high water repellency, it has considerable permeability to liquids, and the degree of permeability can be selected by adjusting the liquid properties at the time of drying. For example, with NaOH, p
When the pH is higher than 14, the porous material has strong strength and is slightly swellable.At pH 14 or higher, the material exhibits strong elasticity although the swelling property is low, and at pH 1 or below, the elasticity and binding strength are slightly weak, but it shows strong elasticity. It exhibits properties suitable for dispersing liquids.

このようにして、粉末の芯体にシリコーンの多孔体層を
形成して、これを活物質と共に用いることにより、得ら
nた電極中に電解液の経路を形薫するだけでなく、活物
質粒子間に活物質の充放電時の体積変化で生じる歪を吸
収する役割を果たすのである。
In this way, by forming a porous silicone layer on the powder core and using it together with the active material, it is possible to not only shape the path of the electrolyte in the resulting electrode, but also to form a porous layer of silicone on the powder core. It plays the role of absorbing the strain that occurs between particles due to volume changes during charging and discharging of the active material.

ここで粉末の上に上記シリコーンの多孔体を形成すせる
のは、シリコーンのエマルジョン等から水だけを乾燥し
た物体は、よく結着された一体の物体°になり、これを
粉末化することが極めて困難であると同時に、電解液に
対して浸潤性を持つ物体にならないからであり、粉末上
に形成して始めて多孔質な層が形成さnるのである。
The reason why the silicone porous body is formed on the powder is that the object obtained by drying only water from a silicone emulsion etc. becomes a well-bound solid body, which cannot be powdered. This is because it is extremely difficult and at the same time does not result in an object that has wettability to the electrolyte, and a porous layer can only be formed by forming it on powder.

゛さらに粉末にシリコーンを湿潤状態で接触させ、前記
粉末粒子をそのまま積層して乾燥した場合は、粉末を用
いない場合よりも粉末化しやすいが、そnでも粉末粒子
間にまたがって強いシリコーンの結合層が連結されてお
り、不均一な粒径の粉末になり易い。
゛Furthermore, if silicone is brought into contact with the powder in a wet state, and the powder particles are layered as they are and dried, it will be easier to powder than when no powder is used, but even then, strong silicone bonds will form between the powder particles. The layers are connected, which tends to result in a powder with non-uniform particle size.

そこで本発明では、さらにつぎのような手段を加えると
良い。すなわち湿潤状態にある粒子を分散しながら乾燥
する。この手段は、シリコーンの多孔体が水の逸散の過
程において形成さnていくものであるからできることで
あって、湿潤状態においてはシリコーンの結合力は零に
等しく、粒子の分散は容易である。このようにして得ら
nた乾燥シリコーン層は、再び水に対する溶解はないの
で、全く粉末として取り扱うことができる。
Therefore, in the present invention, it is preferable to further add the following means. That is, the wet particles are dried while being dispersed. This method is possible because a porous body of silicone is formed during the process of water dissipation, and in a wet state, the bonding force of silicone is equal to zero, and the particles can be easily dispersed. . The dry silicone layer obtained in this way does not dissolve in water again and can therefore be handled as a powder.

なお、芯用の粉末には、炭素、あるいはポリエステルな
どの各種の有機高分子など、水や電解液中で不溶性の材
料を用いることが最も単純であるが、たとえば、シリコ
ーンのエマルジョン中では固体を保つが強酸や強アルカ
リ中では溶解する金属や化合物の粉末、あるいは水中で
は固体である7ベー7 が有機物質には溶解する化合物などを用いて、上記シリ
コーンの多孔層を形成したのち、この芯用粉末を溶解除
去する方法を用いると、純粋に近い多孔性シリコーンの
弾性粉末を得ることができも一方、芯用粉末材料として
、電極に用いる活物質材料あるいはそれらに用いる調整
段階の生成物を用いても良いが、一度乾燥して粉砕され
て得らnた粉末は、シリコーンの多孔体で被覆されてお
り、導電性は乏しいので、あくまで芯材としての役割り
が主である。
The simplest way to use the powder for the core is to use a material that is insoluble in water or an electrolyte, such as carbon or various organic polymers such as polyester. After forming the above silicone porous layer using powders of metals and compounds that remain stable but dissolve in strong acids and strong alkalis, or compounds that are solid in water but dissolve in organic substances, this core is When using the method of dissolving and removing the powder for the core, it is possible to obtain an elastic powder of porous silicone that is close to pure. Although it may be used, the powder obtained by drying and pulverizing is coated with a porous silicone material and has poor conductivity, so it mainly serves as a core material.

さてこのようにして得らnた弾力性多孔体(粒子表面に
上記多孔体を形成された粉末を含む)に通常用いられる
鉛あるいは鉛化合物の粉末と混合してガラスやプラスチ
ックスの多孔体に粉末状で混合、充てんし、クラッド式
極板に構成される。
Now, the elastic porous body obtained in this way (including powders with the above-mentioned porous bodies formed on the particle surface) is mixed with commonly used lead or lead compound powder to form porous bodies of glass and plastics. It is mixed in powder form, filled, and constructed into a clad plate.

また、上記のような素材と水や硫酸とを練合する練合物
中に混入し、これをグリッドに塗着してペースト式電極
としたり、クラッドの多孔体に充てんすることもできる
。これらの仕上りの電極構造の中には、本発明で得らn
たシリコーンの強い弾性と電解液の浸潤性を有する多孔
体が存在し、見掛は上帝に充填さnた電極であっても、
その電極体内深く電解液を導入し、しかも活物質粒子間
に介在して、充放電時の活物質の体積変化の歪を吸収し
て、長期安定に優nた特性を保つことは明らかである。
It is also possible to mix the above-mentioned materials with water or sulfuric acid into a kneaded mixture and apply this to a grid to form a paste-type electrode, or to fill a porous body of a cladding. Some of these finished electrode structures include n
There is a porous body with the strong elasticity of silicone and the permeability of the electrolyte, and even if the electrode is apparently completely filled,
It is clear that the electrolyte is introduced deep into the electrode, intervening between the active material particles, absorbing the strain caused by the volume change of the active material during charging and discharging, and maintaining excellent long-term stable characteristics. .

以下、実施例によって本発明の特徴と効果を述べる。Hereinafter, the features and effects of the present invention will be described with reference to Examples.

実施例1 原液として104〜106の重合度で安定化さnたシリ
コーンゴム46重量%を含む1液性常温加硫型シリコー
ンゴムエマルジヨン1pH14に調しながら湿潤状態と
し、乾燥雰囲気中で高速回転円盤上に落下させて、上記
芯体の炭素粉末を分離しつつ乾燥した。得られた粉末を
鉛粉、硫酸、水を練合した従来のペースト中に鉛粉量に
対して6重量%添加し、この練合物を常法にしたがって
鉛9べ一7′ 合金グリッドに塗着、乾燥してペースト極を得たこの電
極をAとする。
Example 1 A one-component cold-curable silicone rubber emulsion containing 46% by weight of silicone rubber stabilized with a degree of polymerization of 104 to 106 as a stock solution.The emulsion was kept in a wet state while adjusting the pH to 14, and then rotated at high speed in a dry atmosphere. It was dropped onto a disc to separate and dry the carbon powder of the core. The obtained powder was added to a conventional paste made by mixing lead powder, sulfuric acid, and water in an amount of 6% by weight based on the amount of lead powder, and this mixture was made into a lead 9-7' alloy grid according to a conventional method. This electrode, which was coated and dried to obtain a paste electrode, is designated as A.

実施例2 実施例1と同じ要領で100〜200メツシ瓢の鉄粉を
芯材としてシリコーンゴムのエマルジョンと接触させ、
乾燥した粉末を、さらに塩酸中に数回浸漬し、十分鉄を
溶解したのち、塩素イオンが検出されなくなるまで水で
洗浄し、乾燥して中空の多孔性弾性シリコーンの多孔体
を得た。この粉末を鉛粉、水、硫酸の常用のペースト中
に、鉛粉に対して0.6重量%添加し練合したペースト
ラ調整し、同様にしてペースト極を構成した。この電極
をBとする。
Example 2 In the same manner as in Example 1, 100 to 200 pieces of iron powder was used as a core material and brought into contact with a silicone rubber emulsion,
The dried powder was further immersed in hydrochloric acid several times to sufficiently dissolve the iron, then washed with water until no chlorine ions were detected, and dried to obtain a hollow porous elastic silicone porous body. This powder was added to a commonly used paste of lead powder, water, and sulfuric acid in an amount of 0.6% by weight based on the lead powder, and kneaded to prepare a pastera, and a paste electrode was constructed in the same manner. This electrode is designated as B.

実施例3 Pb、Pbo、PbO2,Pb2O3の混合粉末の1却
のうちsoyを分取し、こnに実施例1のシリコーンゴ
ムエマルジョン原液60fを混合し、湿潤状態まで予備
乾燥したのち、分散しつつ乾燥し、それを残りの鉛粉と
混合した。この混合物を連座につながる鉛合金の芯金を
挿入した市販のクラッド用チューブ中に充填してクラッ
ド用極板を構成した。この電極をCとする。この場合シ
リコーン多孔体を形成した鉛粉の導電性はほとんどない
Example 3 Soy was separated out of the mixed powder of Pb, Pbo, PbO2, Pb2O3, and 60 f of the silicone rubber emulsion stock solution of Example 1 was mixed with it, pre-dried to a wet state, and then dispersed. It was then mixed with the remaining lead powder. This mixture was filled into a commercially available cladding tube into which a connected lead alloy core bar was inserted to form a cladding electrode plate. This electrode is designated as C. In this case, the lead powder forming the silicone porous body has almost no conductivity.

本発明の効果を明らかにするために、電極AおよびBで
厚さを同一に充填した正極を6枚、負極は市販の電極6
枚を用いて公称36Ah相当の電池を構成するとともに
、比較例として、実施例1で炭素粉末とシリコーンゴム
いない電極D、本発明を適用しないで炭素粉末をのみを
適用した電極Eを用いて電池を構成した。これらの電池
を1OAの電流゛で1,5時間放電し、4Aで4時間充
電する充放電を繰り返しなから20サイクル毎に容量を
調べた。その結果を第1図に示す。
In order to clarify the effects of the present invention, six positive electrodes filled with electrodes A and B to the same thickness were used, and a negative electrode was a commercially available electrode 6.
A battery with a nominal capacity of 36 Ah was constructed using the same electrode, and as a comparative example, a battery was constructed using electrode D in which carbon powder and silicone rubber were not used in Example 1, and electrode E in which only carbon powder was applied without applying the present invention. was constructed. These batteries were repeatedly charged and discharged by discharging them at a current of 1 OA for 1.5 hours and charging them at 4 A for 4 hours, and their capacities were checked every 20 cycles. The results are shown in FIG.

この図から明らかなように、本発明を適用した正極を用
いた電池は容量、寿命ともに優tている。
As is clear from this figure, the battery using the positive electrode to which the present invention is applied is superior in both capacity and life.

こnに対して、EではDよりも容量は得ら扛るが、ある
時点から急激に容量が低下し、脱落物も増加した。この
ことは、本発明のような弾力構造を有しないことに原因
があることを示唆している。
On the other hand, E had a higher capacity than D, but after a certain point the capacity suddenly decreased and the amount of debris increased. This suggests that the cause is that it does not have an elastic structure like the present invention.

ついで全充填量としてCと同一で従来の組成そのままの
クラッド式極板Fを構成し、約aOAhの電池を構成し
て電流−電圧特性を調べた。この場合は寿命そのものは
クラッド式であるので長く、差は認めにくいが、放電特
性にその差が現nる。
Next, a clad plate F having the same total filling amount as C and a conventional composition was constructed, a battery of about aOAh was constructed, and the current-voltage characteristics were examined. In this case, the lifespan itself is long because it is a clad type, and the difference is difficult to notice, but the difference appears in the discharge characteristics.

その2OAにおける放電特性の例を第2図 に示す。す
なわち分極がやや本発明では少なくなり、放電容量は、
実質的に活物質量が5チ程低下しているにも拘らず増加
している。
An example of the discharge characteristics at 2OA is shown in Figure 2. In other words, the polarization is slightly reduced in the present invention, and the discharge capacity is
Although the amount of active material has actually decreased by about 5 inches, it has increased.

以上のように、本発明は、シリコーンの弾性と多孔体を
有する構造が電解液の電極多孔体内への拡散を助け、し
かも充放電時の活物質の体積変化の歪をも°吸収し安定
な特性を与えることに役立つものであって、正極のみに
限らず、負極でも同類の効果が得らnることは容易に理
解できる。
As described above, in the present invention, silicone's elasticity and porous structure help the electrolyte to diffuse into the electrode porous body, and also absorb the strain caused by the volume change of the active material during charging and discharging, making it stable. It is easy to understand that the same effect can be obtained not only with the positive electrode but also with the negative electrode.

このような本発明の効果は、広く鉛蓄電池の特性と安定
性を改善するものである。
Such effects of the present invention broadly improve the characteristics and stability of lead-acid batteries.

・す。·vinegar.

11図 光飲電回数 12図 290−Figure 11 Number of photodrinking Figure 12 290-

Claims (1)

【特許請求の範囲】 hl  分散媒にシリコーンを分散させたシリコーン分
散液と前記分散媒中で固体を保つ芯用粉末とを接触させ
る工程、つぎに乾燥して前記分散媒を除去する工程と粉
砕する工程と、得らnた粉末を活物質とともに支持体に
充填する工程を有する鉛蓄電池用電極の製造法。 (2)  シリコーン分散液が1液性常温加硫型シリコ
ーンゴムエマルジヨンである特許請求の範囲第1項記載
の鉛蓄電池用電極の製造法。 (3)乾燥工程が、芯用粉末をシリコーン分散液に分散
しながら行われる特許請求の範囲第1項記載の鉛蓄電池
用電極の製造法。 (4)前記乾燥工程の後に芯用粉末を溶出する工程を有
する特許請求の範囲第1項記載の鉛蓄電池用電極の製造
法。
[Claims] hl A step of bringing a silicone dispersion in which silicone is dispersed in a dispersion medium into contact with core powder that remains solid in the dispersion medium, then drying to remove the dispersion medium, and pulverization. A method for producing an electrode for a lead-acid battery, comprising a step of filling the obtained powder into a support together with an active material. (2) The method for producing an electrode for a lead-acid battery according to claim 1, wherein the silicone dispersion is a one-component room-temperature vulcanizable silicone rubber emulsion. (3) The method for producing an electrode for a lead-acid battery according to claim 1, wherein the drying step is performed while dispersing the core powder in a silicone dispersion. (4) The method for producing an electrode for a lead-acid battery according to claim 1, further comprising the step of eluting the core powder after the drying step.
JP56120287A 1981-07-16 1981-07-30 Manufacture of electrode for lead storage battery Granted JPS5819862A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56120287A JPS5819862A (en) 1981-07-30 1981-07-30 Manufacture of electrode for lead storage battery
US06/398,656 US4548835A (en) 1981-07-16 1982-07-15 Method for fabricating electrodes for use in lead storage batteries
EP82303760A EP0070718B1 (en) 1981-07-16 1982-07-16 Method for fabricating electrodes for use in lead storage batteries
DE8282303760T DE3277485D1 (en) 1981-07-16 1982-07-16 Method for fabricating electrodes for use in lead storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56120287A JPS5819862A (en) 1981-07-30 1981-07-30 Manufacture of electrode for lead storage battery

Publications (2)

Publication Number Publication Date
JPS5819862A true JPS5819862A (en) 1983-02-05
JPS6322414B2 JPS6322414B2 (en) 1988-05-11

Family

ID=14782500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56120287A Granted JPS5819862A (en) 1981-07-16 1981-07-30 Manufacture of electrode for lead storage battery

Country Status (1)

Country Link
JP (1) JPS5819862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127036A (en) * 1986-11-15 1988-05-30 Yoshiro Nakamatsu Adjustable reflective comfort heating device
KR102103316B1 (en) * 2018-10-25 2020-04-23 주식회사 한국아트라스비엑스 A method for manufacturing lead acid batteries in which porous silicon particles are mixed with an aqueous sulfuric acid solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127036A (en) * 1986-11-15 1988-05-30 Yoshiro Nakamatsu Adjustable reflective comfort heating device
KR102103316B1 (en) * 2018-10-25 2020-04-23 주식회사 한국아트라스비엑스 A method for manufacturing lead acid batteries in which porous silicon particles are mixed with an aqueous sulfuric acid solution

Also Published As

Publication number Publication date
JPS6322414B2 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
JPS5819862A (en) Manufacture of electrode for lead storage battery
JPS6010557A (en) Method of filling active substance in porous fibrous plaque
JPH06251759A (en) Separator for lead-acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JP2979856B2 (en) Active material paste for lead-acid batteries
US4765799A (en) Latex coated electrodes for rechargeable cells
JPH06103979A (en) Manufacture of conductive binding agent and application top various kinds of batteries
JP3186071B2 (en) Method for producing electrode plate for lead-acid battery and aggregated particles
JPS6161228B2 (en)
JPH02201872A (en) Plate for lead-acid battery
JPS63195962A (en) Battery
JPH10334886A (en) Electrode paste, electrode for electrolyte cell, and their manufacture
JPS5814463A (en) Manufacture of electrode for lead storage battery
JPH0566713B2 (en)
JP3511710B2 (en) Sealed lead-acid battery
JPS6046778B2 (en) Manufacturing method of lead-acid battery anode plate
JPS61148763A (en) Manufacture of negative plate for lead storage battery
JPS6250945B2 (en)
JPH09129239A (en) Organic electrolytic battery
JP2003132879A (en) Lead-acid battery
JP2002042818A (en) Positive electrode mix for alkaline battery
JPS61114471A (en) Positive plate of clad type lead storage battery
JPH0253908B2 (en)
JPS612271A (en) Negative plate for sealed cylindrical nickel-cadmium battery